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Abstract. Magnetic Particle Imaging is a tomographic imaging technique that

measures the voltage induced due to magnetization changes of magnetic nanoparticle

distributions. The relationship between the received signal and the distribution of

the nanoparticels is described by the system function. A common method for image

reconstruction is using a measured system function to create a system matrix and set

up a regularized linear system of equations. Since the measurement of the system

matrix is time-consuming, different methods for acceleration have been proposed.

These include modeling the system matrix or using a direct reconstruction method

in time, known as X-space reconstruction. In this work, based on the simplified

Langevin model of paramagnetism and certain approximations, a direct reconstruction

technique for Magnetic Particle Imaging in the frequency domain with two- and

three-dimensional Lissajous trajectory excitation is presented. The approach uses

Chebyshev polynomials of second kind. During reconstruction, they are weighted

with the frequency components of the voltage signal and additional factors and then

summed up. To obtain the final nanoparticle distribution, this result is rescaled and

deconvolved. It is shown that the approach works for both simulated data and real

measurements. The obtained image quality is comparable to a modeled system matrix

approach using the same simplified physical assumptions and no relaxation effects. The

reconstruction of a 31× 31× 31 volume takes less than a second and is up to 25 times

faster than the state-of-the-art Kaczmarz reconstruction. Besides, the derivation of the

proposed method shows some new theoretical aspects of the system function and its

well-known observed similarity to tensor products of Chebyshev polynomials of second

kind.

1. Introduction

Magnetic Particle Imaging (MPI) is a tracer based medical imaging technology which

was introduced by Gleich and Weizenecker [1]. It captures the spatial distribution

of superparamagnetic iron oxide nanoparticles (SPIOs). This is commonly done by

generating certain magnetic fields which lead to a field-free point (FFP) that moves

inside an area of interest on a given periodic trajectory. A common choice is a

Lissajous trajectory. The SPIOs change their magnetization and induce a voltage
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signal in the receive coils. The main contribution comes from the SPIOs in the

region of the FFP. The relationship between the received voltage signal and the SPIO

distribution is described by the so-called system function which in the discrete setting is

represented by the system matrix. Neglecting certain particle interactions, the MPI

signal can be seen as the integral over the product of system function and SPIO

concentration. A typical method for image reconstruction is the use of a measured

system matrix [1]. For this, a delta sample of SPIOs is moved by a robot to all

spatial points of interest inside the field of view (FOV) and the corresponding signals are

measured. Dependent on the resolution, size, and dimension, this procedure can take

up to several days [2]. With the measured system matrix and the received voltage

signal, a system of linear equations is set up. Since the linear system is usually

ill-posed [3–5], it is regularized and then solved by using iterative methods like the

Kaczmarz algorithm [6]. In general, the entire procedure has certain drawbacks like the

long system matrix acquisition time and noise in the measurements. As an alternative,

modeling of the system matrix by describing the physical processes has been proposed,

which is a challenging task. For one-dimensional excitation patterns that assume

infinitely fast relaxation of the SPIOs, a simplified equilibrium model was proposed

in [7]. More involved models that incorporate the Brownian rotation or Neel rotation [8]

were presented for one-dimensional excitation patterns [9] and for 2D Lissajous type

excitation patterns [10]. Relying on the equilibrium model and the Langevin model of

paramagnetism, direct reconstruction methods in time-signal domain were successfully

performed for one-dimensional excitation including 2D and 3D Cartesian like sampling

patterns, commonly known under the name X-space reconstruction [11, 12]. Besides, a

direct reconstruction for one-dimensional excitation in the temporal Fourier domain was

proposed using Chebyshev polynomials [7]. Later, both reconstructions were shown to

be equivalent [13]. In [14], the X-space approach was extended to non-Cartesian FFP

trajectories. In addition, there exist other model based reconstruction techniques for

the two-dimensional case which use a simulated system matrix instead of a measured

one [15]. However, this procedure is not a direct method and still relies on solving the

inverse problem by inverting the system matrix. Another approach uses the Chebyshev

transformation to compress a measured system matrix. A compression to only one value

per row allows for a direct inversion [16], but this approach still needs a system matrix.

In this work, we propose a direct reconstruction technique for two- and three-

dimensional Lissajous-type excitation patterns for MPI. The reconstruction consists

of the summation of Chebyshev polynomials of second kind weighted with the

corresponding frequency components of the measured voltage signal and additional

factors, followed by a deconvolution. It is derived from the recently published expression

for the two- and three-dimensional system function by [17], which relies on the

equilibrium model and has already given rise to a new reconstruction method with

Bessel functions for one-dimensional excitation [18]. We show that the proposed direct

reconstruction works for two- and three-dimensional simulated data as well as for the

two-dimensional real measurements of the shape phantom and resolution phantom from
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the OpenMPIData [19]. As expected, the image quality is not superior to state-of-

the-art reconstruction with a measured system matrix, but comparable to model-based

approaches that do not incorporate relaxation effects. Instead of a superior image

quality, this method offers a very fast reconstruction even for 3D data and a fine grid.

In contrast to [16] that also allows for a fast direct reconstruction, the proposed approach

does not need a system matrix.

2. Methods

The system function s : Rd×R→ Rn′ links the measured voltage signal u : R→ Rn′ to

the SPIO distribution c : Rd → R. Here, d is the dimension of the SPIO distribution,

and n′ the number of receive coils. As the typical setting is to use n′ = d orthogonal

receive coils, this is also assumed in the following. The relationship between received

signal and SPIO distribution is denoted as [20]

u(t) =

∫
Rn

s(x, t)c(x) dx. (1)

The system function can be expressed as

s(x, t) = −µ0mP
∂

∂t
m̄(x, t) (2)

with m̄ : Rd × R → Rd being the mean magnetic moment of particles, µ0 the vacuum

permeability, m the magnetic moment of the nanoparticles, and P an d × d matrix

denoting the homogeneous coil sensitivity profile. Following the equilibrium model that

does not cover any relaxation effects, the mean magnetic moment is described by the

Langevin function, leading to

s(x, t) = µ0mP
∂

∂t
LLL (βG(xFFP(t)− x)) (3)

where G is a d × d diagonal matrix containing the applied gradients of the selection

field, β is a constant defined as β = µ0m
kBT

with the Boltzmann constant kB, T is the

temperature of the SPIOs, and xFFP : R→ Rd denotes the position of the FFP at time

t depending on the excitation. The Langevin function itself reads

L (x) =

{
coth(x)− 1

x
, x ∈ R\{0}

0, x = 0
(4)

in 1D, and the n-dimensional extension of the Langevin function is defined as

LLL (x) =

{
L (‖x‖) x

‖x‖ , ‖x‖ 6= 0

0, ‖x‖ = 0,
(5)

where ‖ · ‖ denotes the Euclidean norm.

The proposed direct reconstruction method is derived from the representation of

the two- and three-dimensional system function in Fourier space for the Langevin model

and the use of Lissajous trajectories [17]. We will start to deal with the case of two-

dimensional excitation and then extend the approach to 3D.
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2.1. Two-dimensional Lissajous trajectory

We start with the case of two-dimensional excitation of a Lissajous-type with excitation

frequencies fx = fB
NB

and fy = fB
NB−1

, where fB is an arbitrary basis frequency and

NB ∈ N, NB ≥ 2 a frequency divider. Then, the k-th frequency components sk(x) of

the temporal Fourier series of the system function s can be expressed as [17]

sk(x) =sgn(det (AG))Ck

∑
λ∈Z

(−i)λ
∫
R2

[
∂2

∂z1∂z2
LLL (βGz)

]
z=x−u

V−k+λNB

(
Gx

Ax
u1

)
Vk−λ(NB−1)

(
Gy

Ay
u2

)
du (6)

with the matrix Ck given by

Ck = −2kfDi

π
µ0mP , (7)

A = diag(Ax, Ay) denoting the drive-field amplitudes in x- and y-direction, fD denoting

the frequency of the whole Lissajous trajectory, G = diag(Gx, Gy), and z1, z2 and u1, u2
denoting the first and second component of z and u, respectively. Besides,

Vn(x) =

rect
(
x
2

) (
−U|n|−1(x)

√
1−x2

|n|

)
, n 6= 0

π
2
sgn(x+ 1)− rect

(
x
2

)
arccos(x), n = 0,

(8)

where Un denotes the Chebyshev polynomial of second kind and n-th order.

The frequency components of the spatio-temporal Fourier series of the system

function can be expressed as [17]

ŝk(ωx) =Ck
π2

| det βG|
∑
λ∈Z

(−1)λL̂LL

(
G−1ωx
β

)
J−k+λNB

(
Ax
Gx

ωx1

)
Jk−λ(NB−1)

(
Ay
Gy

ωx2

)
. (9)

Here, Jn is the n-th Bessel function of first kind. The spatial Fourier transform of the

two-dimensional Langevin function is [17]

L̂LL (ωx) =
−π2iωx
‖ωx‖

∫ ∞
0

cosh(t)csch2
(π

2
‖ωx‖ cosh(t)

)
dt. (10)

In [21], it was already mentioned that only one or two summands contribute

significantly to the infinite sum in (6) and (9). This is due to the limited overlap

in the product of the Fourier transformed Langevin function with the tensor product of

the Bessel functions. In Fig. 1, the corresponding functions are plotted.

The Fourier transformed Langevin function is exponentially decreasing in an

isotropic way. The Bessel functions oscillate, and it can be observed that the position
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Figure 1. Bessel functions of different order (left) and magnitude of the Fourier

transform of the two-dimensional Langevin function in both directions (right). The

higher the order of the Bessel function, the greater the distance of its first maximum

from the origin.

of the first maximum which also is a global maximum is proportional to its order.

This means for the tensor product of the Bessel functions Jn(x)Jm(y) that the global

maximum, which simultaneously lies closest to the origin, is located around the position

(n,m). The larger n and m, the further away from the origin this maximum lies.

The consequence of this is that it is more suppressed by the exponentially decreasing

Fourier transformed Langevin function. It follows for the series in (6) and (9) that

only summands for which (nk,mk) = (k − λNB, k − λ(NB − 1)) is sufficiently close

to the origin can contribute significantly. This suggests that the summands for which

n2
k + m2

k is minimal have the greatest contribution. The computation of the energy of

the individual summands is shown in Fig. 2 and supports this assumption. For clarity,

the energy has been computed component-wise by numerical evaluation of (9) over the

equidistant grid {ωx1,0 , ..., ωx1,NE
} × {ωx2,0 , ..., ωx2,ME

} with spacing ∆ via

NE∑
i=0

ME∑
j=0

|∆2ŝk(ωx1,i , ωx2,j)|2. (11)

Since the orders of the Bessel functions are −k + λNB and k − λ(NB − 1), the index

λ∗k = arg min
λ∈Z

ρk(λ) = arg min
λ∈Z

(k − λNB)2 + (k − λ(NB − 1))2 (12)

contributes the most to the series. The solution of the minimization problem for λ ∈ R
would be given by λ∗k = (2NB − 1)k/(2N2

B − 2NB + 1), but since λ∗k must be an integer
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and the function ρk(λ) is a parabola, the solution becomes

λ∗k = round

(
(2NB − 1)k

(2N2
B − 2NB + 1)

)
. (13)

For a more compact formulation, we are defining the corresponding orders of the Bessel

functions

n∗k = −k + λ∗kNB

m∗k = k − λ∗k(NB − 1). (14)

The oscillation of the energy of the different frequency components seems to be

originated in the rounding of the optimal integer solution λ∗k. This can also be observed

in Fig. 2. The global decay is due to the increasing distance from the origin for increasing

frequency component, and the oscillation comes from the rounding. The corresponding

orders are also shown in this figure.

It can therefore be seen that the summand determined here makes the largest

contribution to the series. In some rare cases, further contributions may be equally

large, but not larger. In contrast to the estimation of the optimal summand in [21],

where the minimal mixing order which is minλ∈Z |k − λNB| + |k − λ(NB − 1)| was

determined, the index calculated here is still correct for larger frequency components.

Furthermore, it can be observed that in those cases in which the contribution of the

largest neighboring summand is similar to the assumed summand λ∗, the total energy

is generally low compared to the other frequency components. If several summands

have a similar contribution for a fixed frequency component k, this implies that the

global maxima of the associated Bessel functions have similar distances to the origin.

But due to the interrelationship of the orders (k − λNB, k − λ(NB − 1)), none of them

can be particularly close to the origin for sufficiently large values of NB. Therefore, the

total energy of such a frequency component would be low. Accordingly, the temporal

Fourier transformed system function for frequency components with high energy can be

approximated by

sk(x) ≈sgn(det (AG))Ck(−i)λ
∗
k

∫
R2

[
∂2

∂z1∂z2
LLL (βGz)

]
z=x−u

Vn∗k

(
Gx

Ax
u1

)
Vm∗k

(
Gy

Ay
u2

)
du. (15)

The frequency components for which this approximation is valid are those which are

relevant for the reconstruction. Let LLL z1,z2(y) =
[

∂2

∂z1∂z2
LLL (z)

]
z=y

denote the partial

derivative of the Langevin function. Using the substitutions y1 = Gx

Ax
u1 and y2 = Gy

Ay
u2

and the chain rule [
∂2

∂z1∂z2
LLL (βGz)

]
z=y

= β2 det(G)LLL z1,z2(βGy), (16)
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Figure 2. Top left: Energy of the summand associated with λ∗k and the other

summands of the x-coil for NB = 33. The y-coil, i.e., the second component, behaves

similar. Top right: Energy of simulated system matrix row and the inverse minimal

distance dependent on the frequency component. The wave-like pattern of the energy

is originated in the rounding of the optimal index λ. Bottom left: Corresponding

orders n∗k, m∗
k of the Bessel functions that contribute the most to the series in (9) for

NB = 33. Bottom right: The distance of the origin to the point (n∗k,m
∗
k) that indicates

the position of the global maximum of Jn∗
k
(ωx1

)Jm∗
k
(ωx2

) for NB = 33.

one gets

sk(x) ≈ det (AG−1)Ck(−i)λ
∗
k

∫
R2

[
∂2

∂z1∂z2
LLL (βGz)

]
z=x−G−1Ay

Vn∗k (y1)Vm∗k (y2) dy

= det (A)β2Ck(−i)λ
∗
k

∫
R2

LLL z1,z2(βGx− βAy)

Vn∗k (y1)Vm∗k (y2) dy. (17)

Note that the vanishing sgn-function in (15) is due to the substitution and the associated

changed limits of the integral. This step means for the representation of the temporal
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Fourier transformed measured voltage signal that

uk =

∫
R2

sk(x)c(x) dx

≈ det (A)β2Ck(−i)λ
∗
k

∫
R2

∫
R2

LLL z1,z2(βGx− βAy)

Vn∗k (y1)Vm∗k (y2) dy c(x) dx. (18)

Because of Fubini’s theorem [22], we can exchange the order of integration, and instead

of convolution of the Langevin function with the Chebyshev polynomials we obtain a

scaled result of the convolution of the concentration with the scaled partial derivative

of the Langevin function, i.e. with

c̃(y) = (c(z) ∗LLL z1,z2(−βGz))
(
G−1Ay

)
(19)

the approximation in (18) can be written as

uk ≈Ck(−i)λ
∗
kβ2 det(A)

∫
R2

V−k+λ∗kNB
(y1)

Vk−λ∗k(NB−1) (y2) c̃ (y) dy. (20)

For clarity, the notation of the convolution in (19) is

(a(Φx) ∗ b(Ψx))(Πy) =

∫
R2

a(Φx)b(Ψ(Πy − x)) dx (21)

for two functions a, b : R2 7→ R and Φ,Ψ,Π ∈ R2×2. For the multi-dimensional LLL z1,z2 ,

the convolution is performed component-wise.

Chebyshev polynomials of second kind are orthogonal on [−1, 1] with respect to the

scalar product weighted with
√

1− x2 and they form a complete orthogonal set. As a

consequence, a function f ∈ C1([−1, 1]2) can be expressed via the series

f(x, y) =
∞∑

n,m=0

anmUn(x)Um(y). (22)

This means for the coefficients anm that

anm =
4

π2

∫
[−1,1]2

f(x, y)Un(x)Um(y)
√

1− x2
√

1− y2 dx dy, (23)

i.e., the coefficients have the same form as the frequency components of the measured

voltage when leaving out the frequency components k with −k + λ∗kNB = 0 or

k + λ∗k(NB − 1) = 0. Defining

K = {k ∈ {0, 1, ..., K}|n∗k 6= 0,m∗k 6= 0}, (24)
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with K ∈ N the maximal frequency component to be used, the convolved concentration

c̃ can be approximated by

c̃(x) ≈
∑
k∈K

4|(k − λ∗kNB)(k − λ∗k(NB − 1))|
π2β2 det(A)

(Ck)
−1

uki
λ∗kU|n∗k|−1(x1)U|m∗k|−1(x2). (25)

To obtain the concentration c, the result of (25) must be deconvolved and scaled

correctly according to (19). Possible methods for the deconvolution are described in

Section 2.3.

In total, two approximations were made to obtain (25) that allows for a direct

reconstruction. These approximations were first the reduction of the infinite sum in (9)

to only one summand which contributes the most to the energy of the series. The

second approximation is to exclude frequency components in (25) that do not fullfill the

requirements in (24). This is necessary because for these cases there is not a Chebyshev

polynomial incoorporated in the signal, see (8). It is not entirely clear what the effect

of this deletion of those frequency components will be, but it might lead to errors in the

reconstruction process.

It should be noted that, due to the assumptions in (22), c̃ is assumed to have

support on [−1, 1]2 only and is thus recovered in this area. After rescaling, this area

corresponds to the so-called drive-field FOV (DF-FOV), which is the area covered by the

FFP trajectory. However, particles outside the DF-FOV still contribute to the voltage

signal because also particles in the vicinity of the FFP change their magnetization.

When the FFP is located at the boundary of the DF-FOV, the particles outside still

contribute to the measurement. Their influence is less than that of particles inside the

DF-FOV though, but in general the assumption of no contribution of such particles

is not correct and might lead to additional reconstruction artifacts at the DF-FOV

boundaries [23].

2.2. Three-dimensional Lissajous trajectory

The three-dimensional case is similar to the two-dimensional one, but more technical.

This is due to the more involved system-function representation in 3D. At first, we need

some auxiliary variables to get a compact formulation. These variables are dependent

on whether the frequency divider NB and the frequency component k are even or odd.
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Let

n(k, λ1, λ2) =


(λ1 + 2λ2)NB − k if NB even, k even,

(λ1 + 2λ2 + 1)NB − k if NB even, k odd,

(λ1 + λ2)NB − 2k if NB odd,

m(k, λ1, λ2) =



k
2
− (λ1 + λ2)(NB − 1) if NB even,

k even,
k
2
− (λ1 + λ2 + 1

2
)(NB − 1) if NB even,

k odd

k − (λ1 + λ2
2

)(NB − 1) if NB odd,

`(k, λ2) =


k
2
− λ2(NB + 1) if NB even, k even,

k
2
− (λ2 + 1

2
)(NB + 1) if NB even, k odd,

k − λ2
2

(NB + 1) if NB odd,

(26)

and

Ck =
−2fDki

π2
µ0mP . (27)

Now the frequency components of the three-dimensional temporal Fourier transformed

system function can be written as [17]

sk(x) =Cksgn(det (AG))
∑

λ1,λ2∈Z

(−i)λ1
∫
R3

[
∂3

∂z1∂z2∂z3
LLL (βGz)

]
z=x−u

Vn(k,λ1,λ2)

(
Gx

Ax
u1

)
Vm(k,λ1,λ2)

(
Gy

Ay
u2

)
Vl(k,λ2)

(
Gz

Az
u3

)
du. (28)

The spatio-temporal Fourier transform reads [17]

ŝk(ωx) =Ck
π3

| det(βG)|
∑

λ1,λ2∈Z

(−1)λ1L̂LL

(
G−1ωx
β

)
Jn(k,λ1,λ2)

(
Ax
Gx

ωx1

)
Jm(k,λ1,λ2)

(
Ay
Gy

ωx2

)
Jl(k,λ2)

(
Az
Gz

ωx3

)
. (29)

Since the behavior of the three-dimensional Fourier transformed Langevin function

is similar to the one in the two-dimensional case, the same considerations can be applied,

e.g. the function

ρk(λ1, λ2) = n(k, λ1, λ2)
2 +m(k, λ1, λ2)

2 + `(k, λ2)
2 (30)

must be minimized dependent on λ1 and λ2. For NB odd, the variables n,m and l do

not depend on whether the frequency component k is odd or even, so in this case we

get the solutions

λ1,k =
cek − 2bdk
4ab− c2

(31)

λ2,k =
cdk − 2aek
4ab− c2

(32)
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for λ1,k, λ2,k ∈ R with the variables

a = 2N2
B − 2NB + 1

b = 1.5N2
B + 0.5

c = 3N2
B − 2NB + 1

dk = 2k − 6NBk

ek = −6NBk.

Because the function ρk(λ1, λ2) in (30) forms a rotated elliptic paraboloid, the solutions

cannot be simply rounded to the nearest integer as in the 2D case to get the optimal

integer solution. The easiest way to find the optimal integer solution λ∗1,k and λ∗2,k
of (30) is to compute its value for the four possible combinations of bλ1,kc, dλ1,ke and

bλ2,kc, dλ2,ke. Here, b.c and d.e are denoting the floor and ceiling function, respectively.

However, the cases in which the solutions are different from the rounding to the nearest

integer are the cases in which the distance is large anyway, so in practice, a simple

rounding can be chosen though it is not optimal in all cases. For NB even, a distinction

for k even or odd must be done, but the principle is the same as for NB odd.

To obtain a more compact formulation later, we introduce the variables

n∗k = n(k, λ∗1,k, λ
∗
2,k)

m∗k = m(k, λ∗1,k, λ
∗
2,k)

`∗k = `(k, λ∗2,k). (33)

The behavior of the energy distribution is similar to that in the two-dimensional

case. Here, one summand is sufficient to describe a large part of the energy as well. If

several terms are necessary, the total energy of the frequency component is also low.
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Figure 3. Energy of the summand associated with λ∗1,k, λ
∗
2,k and the other summands

for the three-dimensional case and NB = 33. Left: x-coil, i.e., first component. Right:

y-coil, i.e. second component. The plot for the z-coil looks very similar to the y-coil.

It is visible that for very few components with high frequency and low total energy

the computed λ∗1,k, λ
∗
2,k are not the optimal solution, as another summand has a larger

energy. This is possible because the approximation of LLL z1,z2,z3 as a radially decreasing

function is not true close to the axes.
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This can also be seen in Fig. 3. In this example, the energy distribution of the summands

in the x-coil is better than for the y- and z-coil. This might be due to the frequency

dividers of 33 for the x-coil and 32 and 34 for the y- and z-coil, respectively. For certain

frequency components, the indices λ∗1,k, λ
∗
2,k minimizing (30) are not the optimal ones

with the largest contribution. This may occur because the assumption of LLL z1,z2,z3 being

a radially declining function is only an approximation and not true close to the axes.

But again, this only occurs when the total energy of the frequency component is low.

With the same procedure as in Section 2.1, we thus obtain in a first step

uk ≈Ck(−i)λ
∗
1,kβ3 det(A)

∫
R3

Vn∗k (y1)Vm∗k (y2)Vl∗k (y3) c̃ (y) dy (34)

with

c̃(y) = (c(z) ∗LLL z1,z2,z3(−βGz))
(
G−1Ay

)
, (35)

and with

K = {k ∈ {0, 1, ..., K} | n∗k 6= 0,m∗k 6= 0, l∗k 6= 0} (36)

the reconstruction of the convolved concentration becomes

c̃(x) ≈
∑
k∈K

−8|n∗km∗k`∗k|
π3β3 det(A)

(Ck)
−1 uki

λ∗1,k

U|n∗k|−1(x1)U|m∗k|−1(x2)U|`∗k|−1(x3). (37)

This still has to be rescaled and deconvolved according to (35) to obtain the final

reconstructed particle concentration c(y).

2.3. Deconvolution

The results obtained in Sections 2.1 and 2.2 are the SPIO concentrations convolved with

the derivative of the Langevin function. Therefore, a deconvolution has to be carried

out. There are several methods for doing this. Two methods are presented here. The

first one uses knowledge of the kernel, while the second one works without any precise

knowledge of the kernel.

2.3.1. Kernel-based deconvolution Assuming the Langevin model, the convolution

kernel is the derivative of the Langevin function. For each coil, a reconstruction c̃ is

obtained, which is, of course, based on the same ground-truth concentration. Therefore,

a system of equations containing the results from the individual coils can be set up,

and the solution of this system gives the final SPIO concentration. This can be done

in both the temporal frequency range, in which a convolution matrix has to be set

up, and the spatio-temporal frequency range, in which the convolution is replaced by a
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multiplication. For the deconvolution in spatio-temporal frequency range, let

Li =


L̂i(η1) 0 . . . 0

0 L̂i(η2)
. . .

...
...

. . . . . . 0

0 . . . 0 L̂i(ηN)

 (38)

with i = 1, ..., d denote the transfer matrix for the i-th component where ηj, j =

1, 2, . . . , N are the discrete spatial frequencies. Then, the regularized minimization

problem reads

min
c≥0

∥∥∥∥∥∥∥
L1

...

Ld

F (c)−

(ˆ̃c1(η1), . . . , ˆ̃c1(ηN))T

...
...

(ˆ̃cd(η1), . . . , ˆ̃cd(ηN))T


∥∥∥∥∥∥∥
2

2

+ λ‖c‖pp (39)

with ˆ̃ci being the spatial discrete Fourier transform of c̃i and F denoting the operator

of the discrete Fourier transform. In this case, a regularization with a p-norm, p ∈ N,

has been chosen. Typically p is chosen as p = 1 or p = 2. When omitting the constraint

c ≥ 0 and choosing p = 2 and L =
(
L1, . . . ,Ld

)T
, there is an analytical solution of this

minimization problem. It is given by

c =F−1

(LHL+ µI
)−1

LH

(ˆ̃c1(r1), . . . , ˆ̃c1(rN))T

...
...

(ˆ̃cd(r1), . . . , ˆ̃cd(rN))T


 (40)

with the new regularization factor µ that is proportional to λ due to the Plancherel

identity and the fact that in (39) the regularization is λ‖c‖pp and not λ‖F (c)‖pp. Since

the Li are sparse, the calculation of the inverse is possible in an efficient and fast

way. For the use of p = 1 or other regularization terms, an iterative solver would be

necessary, but due to the sparse Li, the solution can still be calculated efficiently. To

avoid deconvolution artifacts, it is recommended to use a zero padding of sufficient size

when computing the Fourier transforms. To obtain the concentration c, the inverse

Fourier transform of the solution has to be computed. In the following, this method is

referred to as the SLE deconvolution.

2.3.2. Deconvolution without an explicit kernel If one wants to reconstruct the SPIO

concentration without explicit use of the Langevin function as kernel, a deconvolution

can also be carried out. On the one hand, this can, of course, be done using methods in

which the kernel is estimated - an overview and evaluation of methods can e.g. be found

in [24]. Another variant that uses some properties of the Langevin kernel is shown below.

The two-dimensional kernel LLL z1,z2 is depicted in Fig. 4 for both directions. It forms

approximately the derivative along one dimension, while it is a lowpass filter along the
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Figure 4. First and second component of LLL z1,z2(x). A convolution with this function

corresponds to a highpass filter in one dimension and a lowpass filter in the other

dimension.

other dimension. More specifically, the first component of the filter forms the derivative

in the x2-direction and smoothes in the x1-direction. The second component behaves

exactly the other way around: Here, the derivative is formed in the x1-direction, while

smoothing takes place in the x2-direction. For the three-dimensional case, it forms the

derivative in two dimensions, while smoothing the remaining dimension. This is an

observation based on the appearance of the derivatives of the Langevin function.

To resolve the derivation, an integration can be applied by summing up c̃

cummulatively in the corresponding dimensions. The result is the blurred SPIO

distribution. For a rough representation of the concentration, this step is sufficient and

can be calculated very fast. It should be noted that one gets a separate reconstruction

for each coil which is blurred in one direction. To combine these different results into a

single unblurred reconstruction, the method from [25] can be used which was presented

for MPI X-space reconstruction with different resolutions. The proposed method can

be easily adapted to the three-dimensional case. A visualization is shown in Fig. 5. In

the following, this method is referred to as the Cumsum deconvolution.

c̃ (x-coil)

c̃ (y-coil)

sum

sum

Ref. [25]

Figure 5. Visualization of the Cumsum deconvolution for the two-dimensional case.

The obtained c̃ of each coil, corresponding to the first and second component of c̃, is

summed up cummulatively and then merged by using the method of [25].
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2.4. Complete approach

Here, a short overview over the steps of the total method is given. For simplicity, it is

split up for the two-dimensional and three-dimensional case. The following applies to

the former:

1) Map the frequency component k to the orders of the Chebyshev polynomials. For

2D, this is done by computing λ∗k as in (13). The λ∗k is used in step 2) to determine

the final orders for both directions.

2) Approximate the convolved particle distribution c̃ by applying (25).

3) Rescale and deconvolve the obtained result from Step 2) for recovery of the original

particle distribution. The rescaling is done according to (19). Two deconvolution

techniques are presented in section 2.3.

The three-dimensional case is similar:

1) Map the frequency component k to the orders of the Chebyshev polynomials. For

3D, this is done by computing λ∗1,k and λ∗2,k. A sufficient approximation is the

rounding to the nearest integer value of λ1,k and λ1,k given in (32). Then the orders

|n∗k|− 1, |m∗k|− 1 and |`∗k|− 1 of the Chebyshev polynomials in all three dimensions

are given by (33).

2) Approximate convolved particle distribution c̃ by applying (37).

3) Rescale and deconvolve the obtained result from Step 2) for recovery of the

original particle distribution. The rescaling is done according to (35). The same

deconvolution techniques as in 2D can be applied.

2.5. Simulation experiments

To evaluate the proposed method, reconstructions with simulated data with two- and

three-dimensional excitation resulting in a Lissajous trajectory were carried out. To

deconvolve the obtained c̃, the Cumsum deconvolution and the SLE deconvolution with

both `1 and `2 regularization were performed. The fast iterative shrinkage thersholding

algorithm [26] also known as FISTA was used to solve the `1-deconvolution problem.

To compare the methods the mean absolute error (MAE) is computed. The MAE for

two images A1, A2 ∈ Rn1×n2 is

MAE(A,B) =
1

n1n2

n1,n2∑
i,j=1

|A1(i, j)− A2(i, j)| . (41)

Since the scaling of the reconstruction using the Cumsum deconvolution is not known

due to the unknown kernel and its scaling, all final images were normalized to the range

[0, 1] to allow for a fair comparison. The parameters from Table 1 were used for the

simulations.

The phantoms for two- and three-dimensional simulation are shown in Fig. 6. The

3D phantom is presented as both an isosurface and a slice at z = 13 of the x-y-plane
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Table 1. Parameters used for obtaining the simulated voltage signal for the

experimental simulation part.

Parameter Value

Particle core diameter 30 nm

Temperature 293 K

Gradient strength 2D Gx = Gy = 1 T
µ0m

Excitation amplitudes 2D Ax = Ay = 0.0125 T
µ0

Excitation frequencies (fx, fy) = (2.5
96
, 2.5
93

) · 106 Hz

FOV 2D 12.5 mm ×12.5 mm

Gradient strength 3D Gx = Gy = −1
2
Gz = 1 T

µ0m

Excitation amplitudes 3D Ax = Ay = Az = 0.0125 T
µ0

Excitation frequencies (fx, fy, fz) = (2.5
93
, 2.5
96
, 2.5
99

) · 106 Hz

FOV 3D 12.5 mm ×12.5 mm ×6.25 mm

which includes all six concentration elements of the phantom. Each phantom contains

circular or rectangular forms with different concentration and size. A grid of 61 × 61

pixels in 2D and 41× 41× 41 voxels in 3D was used to simulate the voltage vector. The

voxel resolution of the reconstruction is freely selectable in each case - here a resolution

of 51× 51 pixels was used for 2D and a resolution of 31× 31× 31 voxels in 3D.

To evaluate the impact of noise, also simulations with added noise has been

performed. To this end, the simulated voltage signal has been corruped by Gaussian

noise ending up in an SNR of 15 dB, 25 dB and 35 dB. For reconstruction of the corrupted

signals, a frequency selection has been made to exclude frequency components with

expected poor SNR. The same method explained later in section 2.6 has been used,

i.e., the thresholding (k − λ∗kNB)2 + (k − λ∗k(NB − 1))2 < τ was tested for each

frequency component k. The thresholds τ = 120, 220, ..., 820 were tested. Besides,

the regularization parameter λ was optimized in each case for the deconvolution via
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Figure 6. Phantoms for the simulation experiments. Left: two-dimensional phantom.

Middle: three-dimensional phantom as an isosurface. Right: Slice of three-dimensional

phantom of the x-y-plane at z = 13.
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SLE-`2 and SLE-`1.

2.6. OpenMPIData experiments

To evaluate the direct reconstruction approach on real data, the measurements from

the OpenMPIData were used. Neither the reconstruction with a modeled system

matrix according to the equilibrium model nor the proposed approach assuming the

same equilibrium model worked well on the measured 3D data. Therefore, only the

procedure for the 2D data is described in the following. For background correction, the

available empty measurements were averaged and then subtracted from the measured

system matrix and the measured voltage signal induced by the phantom. Because many

steps of the imaging chain in MPI are not covered by the simplified model, like the

effects of the analog band-stop filter and a pre-amplifier, the Fourier components of the

system function after filtering can be described by (6) and (28), multiplied with âk, a

complex valued transfer function of the receive chain. The transfer function has to be

estimated to reconstruct the measured data. This was done as in [15] by simulation of

the system matrix and using a sampling of 3.6% of the measured 2D system matrix.

For the sampling, each 3rd pixel in both dimensions of the 2D system matrix inside

the DF-FOV was chosen. With this procedure, the transfer function dependent on the

frequency components was approximated and then used to adjust the measured voltage

signal in Fourier space. With â`,k being the estimated transfer function for coil ` and

frequency component k, the corrected frequency components of the voltage signal were

calculated as ũ`,k =
u`,k
â`,k+ε

with the regularization ε = 10−16.

It is a standard procedure to exclude frequency components with a low SNR from

the reconstruction. Typically, the SNR is estimated based on the measured system

matrix. In order to circumvent the use of a measured system matrix, here for the

frequency selection a threshold decision was made based on the distance of the orders

of the Bessel functions to the origin, i.e. (k − λ∗kNB)2 + (k − λ∗k(NB − 1))2 < τ was
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Figure 7. Example for differences of simulated and measured system matrices. The

magnitudes of the 3D system matrices of the slice z = 11 and frequency component

k = 1551 are shown. A different shape of the wave hills as well as an additional offset

of the values are visible. Since the proposed reconstruction relies on the same model

as the simulation, those differences can lead to deviations in the reconstruction.
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tested. The threshold was chosen as τ = 420. This has the advantage that no system

matrix has to be used to estimate the SNR. Instead, it was assumed that the noise

level for each frequency component is at a similar level and thus has less influence on

high energy frequency components than on low energy ones. Therefore, the SNR is

expected to be better for frequency components contributing a high energy impact,

which are those with low Bessel function orders. Thus, the lower the threshold τ , the

fewer frequency components are taken into account and their SNR should be higher.

The chosen value of τ = 420 is a good compromise. A smaller τ resulted in less accurate

detail reconstruction, while higher threshold values lead to more artefacts. Difficulties

can be caused by high-energy frequency components that differ strongly from the model,

but this is also true for standard SNR-estimation based frequency selection. An example

is shown in Fig. 7. This effect could be one of the reasons why this approach did not

work well for the 3D case.

The shape phantom and the resolution phantom were reconstructed. These are

shown in Fig. 8. Because there is no ground-truth data available, a reconstruction

with the measured system matrix was performed and the result was used as ground-

truth particle distribution. This reconstruction was done using the Kaczmarz algorithm

with Tikhonov regularization with 15 iterations and optimized regularization parameter

via grid search. To be precise, the Kaczmarz algorithm was used to minimize the

problem ‖Sc − u‖22 + λ‖c‖22, where S is the system matrix. For comparison purposes,

a reconstruction with the modeled system matrix was generated according to [15]. The

Kaczmarz algorithm was performed with 15 iterations as well and the regularization

parameter was also optimized. This comparison is chosen because the simulated system

matrix relies on the same simplified model of the system function, so the results of the

proposed method cannot be expected to be better.

2.7. Time performance

In addition, the computation times of the Kaczmarz reconstruction and the proposed

methods are compared. All computations were performed in MATLAB on an Intel

Core i7-7700K 4.20 GHz CPU. The computation time for the pre-calculations of the

Chebyshev polynomial values on the interval [−1, 1] is not included, because this has

to be computed never again and can be reused for every future reconstruction with the

same resolution. However, if implemented efficiently, it takes less than a second for

standard resolutions.

3. Results

In this section, the results of the experiments are shown. At first, we look at the

reconstruction results for the simulation setup. Then the results for the OpenMPIData

and the comparison of the time performance are presented.
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Figure 8. Shape phantom (left) and resolution phantom (right) of the

OpenMPIData [19].

x-coil y-coil x-coil y-coil

Cumsum: 0.138 SLE (`2): 0.105 SLE (`1): 0.088

Figure 9. Top: Obtained c̃ (left) and cummulatively summed up c̃ (right) for the x-

and y-coil, i.e., the first and second component. Bottom, from left to right: Simulation

phantom, deconvolved summed up c̃ and solution of the regularized deconvolution

problem with `2 regularization and `1 regularization. Below the images the achieved

MAE is stated.

3.1. Reconstructions of simulated data

The proposed approach was tested on simulated two- and three-dimensional data. For

the two-dimensional simulation setup, the reconstruction of c̃ and the cummulative

summation are shown in Fig. 9. One can see the property of the filter mentioned in

Section 2.3.2 to form the derivative in one direction. The final reconstructions are also

shown in Fig. 9. On the right side the reconstructions using the regularized system of

equations with an `2- and `1-regularization are depicted, respectively. In both cases the

weighting factor λ was chosen to optimize the MAE. The SLE-`1 deconvolution achieves

the best MAE with 0.088 followed by the `2 regularized with 0.105. The Cumsum

deconvolution achieves an MAE of 0.142. The worse MAE of the Cumsum deconvolution

image corresponds to the visible blurring in the reconstructed image. Besides, the three
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Figure 10. Reconstruction of the 3D simulation phantom (left) by the proposed

approach followed by the Cumsum deconvolution, the SLE deconvolution with `2
regularization and SLE deconvolution with `1 regularization (from left to right). To

visualize the 3D reconstruction, the x-y-plane at z = 13 is shown. The MAE is given

for both the total volume as well as for the depicted slice only.

smallest circles are only very weakly indicated. The two other deconvolution techniques

are not blurred and resolve the smallest circles. In the `1 regularized reconstruction

some artifacts are visible inside the concentration circles, but it resolves the smaller

concentration circles best.

As mentioned before, a three-dimensional reconstruction was performed as well. To

visualize the results of the reconstructions, the x-y-plane at z = 13 is depicted. The

obtained reconstructions are shown in Fig. 10. The smallest concentration element at

the border could not be resolved. All other elements are visible when c̃ is deconvolved

by the SLE-`2 or SLE-`1 deconvolution. The latter one shows less blurring and obtains

the best MAE for the presented slice, but resolves some of the elements less clear. The

proposed method followed by the Cumsum deconvolution does not resolve the lower

element and obtains the worst MAE.

Lastly, the reconstruction results of the simulated signals corrupted by noise are

presented. The influence of the thresholding parameter τ and the the obtained images

for each tested SNR are shown in Fig. 11. The proposed reconstruction method can

cope with noisy data. For an SNR better than 25 dB no thersholding seems to be

neccessary, but for the tested SNR of 15 dB the applied thresholding improves the

reconstruction quality. The Cumsum deconvolution shows ths most artifacts in the

reconstructed images, while the SLE-`1 deconvolution shows the least artifacts. The

SLE-`2 deconvolution resolves the smaller circles best, but suffers from more artifacts

than the SLE-`1 deconvolution. Nonetheless, it achieves the best MAE for the SNR of

35 dB and only slightly worse MAE values for the other two tested noise levels.

3.2. Reconstructions of OpenMPIData

The reconstruction results for the two-dimensional measurements are depicted in Fig. 12.

One can see that the reconstruction with the proposed direct method works on measured
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Figure 11. Results of the proposed reconstruction for the 2D simulation phantom with

noise corruption. Top: MAE dependent on the rheshold τ for the frequency selection.

Results for the reconstruction followed by Cumsum deconvolution (left) and by SLE-

`2 deconvolution (right). The curves of the SLE-`1 deconvolution behave similar to

the SLE-`2 deconvolution curves. Below: Reconstructed 2D phantoms for an SNR of

15 dB, 25 dB and 35 dB. The achieved MAE is stated below the reconstruction image.

The second row shows the reconstruction followed by Cumsum deconvolution, the third

row the SLE-`2 deconvolution and the forth row the SLE-`1 deconvolution. For each

reconstruction image the optimal τ and regularization parameter λ was chosen.
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Table 2. Computation time for 2D and 3D setting and different grid sizes of the

standard system matrix reconstruction with Kaczmarz algorithm with 5 iterations and

the proposed methods.

Reconstruction Calculation time

Standard, Kaczmarz, grid 51× 51 0.074 s

c̃, grid 51× 51 0.012 s

- Cumsum deconvolution 0.002 s

- SLE-`2 deconvolution 0.001 s

- SLE-`1 deconvolution 0.018 s

Standard, Kaczmarz, grid 31× 31× 31 18.735 s

c̃, grid 31× 31× 31 0.719 s

- Cumsum deconvolution 0.009 s

- SLE-`2 deconvolution 0.016 s

- SLE-`1 deconvolution 0.696 s

two-dimensional data. The shape phantom could be resolved by all three proposed

deconvolution techniques. The resolution phantom is fully resolved by the simulated

system matrix approach and the proposed approach followed by the SLE deconvolution

with an `1 regularization. Using the two other deconvolution methods, either the outer

or the inner structure of the resolution phantom is only weakly indicated. For the

proposed method, some artifacts appear at the border of the DF-FOV.

3.3. Time performance

The results of the time measurements for reconstruction are shown in Table 2. It is

obvious that the direct reconstruction is significantly faster than the standard Kaczmarz

reconstruction. In the 2D setting for the reconstruction of the OpenMPIData, the

proposed method followed by the Cumsum deconvolution or SLE-`2 deconvolution is

about five times faster than the state-of-the-art reconstruction using the Kaczmarz

algorithm and would allow one to reconstruct more than 70 images per second.

With increasing number of pixels the speed advantage increases. The reconstruction

of a 31 × 31 × 31 image is about 25 times faster than state-of-the-art Kaczmarz

reconstruction, and it takes less than a second using the Cumsum deconvolution or

SLE-`2 deconvolution. Using the SLE-`1 deconvolution takes longer than the two other

methods but is still faster by a factor of 2.5 and 13 for the first and second scenario,

respectively.

4. Discussion

The proposed approach can resolve spatial particle concentrations of different sizes for

the two- and three-dimensional simulation setup. For this setup, the best MAEs are

achieved when the approach is followed by the SLE deconvolution and `1 regularization.
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Measured SM Sim. SM: 0.065 Cumsum: 0.108 SLE (`2): 0.111 SLE (`1): 0.100

Measured SM Sim. SM: 0.052 Cumsum: 0.057 SLE (`2): 0.090 SLE (`1): 0.065

Figure 12. 2D Reconstruction of the OpenMPIData. As the proposed approach

only allows for a reconstruction inside the DF-FOV all results are limited to this

section. The reconstruction using the measured system matrix (Measured SM)

is used as reference to compute the MAE. The value of the MAE of the other

reconstruction methods is specified below the reconstruction image. The compared

methods are the reconstruction using a simulated system matrix (Sim. SM), the

proposed method followed by the Cumsum deconvolution (Cumsum), the proposed

method followed by the SLE deconvolution using an `2 regularization (SLE-`2) and

using an `1 regularization (SLE-`1). Top: Reconstructions of the shape phantom.

Bottom: Reconstructions of the resolution phantom.

A reconstruction of real data for the two-dimensional setup is also possible. The

reconstructions of the real measured data show artifacts, but are comparable to the

results of the modeled system matrix reconstruction. Because both methods rely on the

same simplified model, the additional artifacts might be caused by the approximations

made in the derivation and by SPIOs outside the Lissajous trajectory. Since this method

can only reconstruct concentrations within the DF-FOV, values outside the trajectory

have a negative influence. Especially the resolution phantom partially sticks out of

this area which might lead to artifacts. Besides, for the proposed approach noise has a

particular effect at the boundaries of the image because the Chebyshev polynomials have

high values (approximately proportional to their order) at these positions. Since there

is always noise in the receive chain, this property of the Chebyshev polynomials might

lead to fluctuations at the boundaries. However, in this experiment with real data the

Cumsum deconvolution technique and the SLE-`1 deconvolution showed better results,

but achieved similar or worse MAE compared to the reconstruction with the simulated

system matrix. One should keep in mind that the comparison by means of the MAE

referrenced to the reconstruction obtained by using the measured system matrix can

only serve as an indicator, as the reference reconstruction itself contains atrifacts and

changes dependent on the choice of the regularization term and frequency selection. All

presented approaches based on physical models show worse image quality than obtained
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by using a measured system matrix. This is not surprising as both methods are based

on the same simplified equilibrium model. By estimating a transfer function, some

relaxation effects are indirectly incorporated into the model, but effects like the ones

seen in Fig. 7 cannot be compensated by the estimated transfer function. Besides,

inhomogeneities of the applied magnetic fields and the receive coils lead to further

deviations from the model. However, instead of a superior image quality the proposed

method is up to several factors faster than the system matrix reconstruction, no matter

if measured or simulated. The greater the grid size, the greater the speed advantage.

Even with a grid size of 31×31×31 the image reconstruction needs less than one second

while the Kaczmarz reconstruction needs 18 seconds for a single one. Besides, no system

matrix has to be stored. Unfortunately, a reconstruction of three-dimensional measured

data was not successfull with the proposed approach, while it worked fine on simulated

three-dimensional data.

As an adaption, models other than the Langevin model of paramagnetism are

possible, as long as the Fourier spectra behave similar, i.e., they are falling with

increasing frequency. It seems also possible to incorporate other ratios of the excitation

frequencies of the Lissajous trajectory, and to incorporate other trajectories into the

model by [17] via replacement of the FFP position function xFFP(t) in (3).

Due to its fast performance but limited image quality, a possible application could

be a fast, rough pre-location of an object to check its position. Of course, some further

measurements are still needed to estimate the transfer function, but much less than

for obtaining a system matrix - in the experiments 3.6% of the measurements for the

system matrix were sufficient for a good estimation of the transfer function. If the

transfer function is given, no measurements of the system function are required for

reconstruction. This is due to the fact that the orders of the Chebyshev polynomials

corresponding to the frequency components and the additional factors are known in

advance.

Compared to the proposed direct reconstruction by [16] that compresses a measured

system matrix to one coefficient per row, the proposed approach does not need any

system matrix because the degrees of the Chebyshev polynomials are known in forehand

due to the presented theoretical findings. Instead the estimation of the transfer function

is necessary. However, no complete system matrix is needed as this can be estimated

with very few individual measurements. Compared to the multi-dimensional direct

reconstruction method in X-space by [14], the proposed approach has been shown to

be capable of reconstructing real data. Besides, it works in the frequency domain and

needs no computationally demanding regridding.

In addition to the proposed reconstruction itself, the derivation of this method

provides insights into the mathematical theory of MPI. The observation that the system

functions in the case of two- and three-dimensional FFP Lissajous trajectory are similar

to tensor products of Chebyshev polynomials of second kind has been described by [7]

and [27]. In [21], it was mentioned that only few summands in the infinite series of (6)

contribute significantly to the sum in the two-dimensional case. In this work, this
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has been extended to the three-dimensional case, and the observations were linked to

properties of the Bessel functions and the Fourier transform of the Langevin function.

Certain frequency components exist which do not satisfy this regularity. Here it was

found that this is true in two cases. First, when multiple summands have a significant

impact, i.e. the frequeny component consists of the superposition of several Chebyshev

polynomials, and second, when the derived order of the Bessel function does not

correspond to a Chebyshev polynomial any more, i.e. the order of the Bessel function

is zero.

5. Conclusions and Outlook

For the first time, a direct MPI reconstruction in the frequency domain for two- and

three-dimensional Lissajous trajectory excitation was presented which works without a

system matrix except for the estimation of the transfer function. The method is based

on the Langevin model without relaxation effects. It could be shown that not only

simulated data but also real measured two-dimensional data can be reconstructed with

this method. The reconstruction is significantly faster than the standard Kaczmarz

method and is real-time capable for the presented grid sizes. However, both the

simplicity of the underlying model and tracers outside the DF-FOV potentially cause

artifacts in the reconstruction, mainly at the boundaries of the DF-FOV.

In a future work it could be investigated whether reconstruction is also possible

with Bessel functions as in one-dimensional MPI [18]. A big step to obtain better image

quality with this approach would be an extension of the model to include relaxation

effects. Simple descriptions of relaxation effects like the Debye relaxation process [28]

are already included indirectly by the transfer function, so that more complex models

like [10] would be necessary. However, it is questionable whether this is even possible.
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[13] M Grüttner, T Knopp, J Franke, M Heidenreich, J Rahmer, A Halkola, C Kaethner, J Borgert,

and T M Buzug. On the formulation of the image reconstruction problem in Magnetic Particle

Imaging. Biomedical Engineering/Biomedizinische Technik, 58(6):583–591, 2013.

[14] A A Özaslan, A Alacaoglu, O B Demirel, T Çukur, and E U Saritas. Fully automated gridding

reconstruction for non-cartesian x-space magnetic particle imaging. Physics in Medicine &

Biology, 64(16):165018, 2019.

[15] T Knopp, S Biederer, T F Sattel, J Rahmer, J Weizenecker, B Gleich, J Borgert, and T M Buzug.

2D model-based reconstruction for Magnetic Particle Imaging. Medical Physics, 37(2):485–491,

2010.
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