
9th IWMPI: 17-19 March 2019, New York University (NYU) Langone Health 

Multiresolution Magnetic Particle Imaging of 
Vessel Structures with Support Detection 
 

C. Droigka,*, M. Maassa, P. Kocha, A. Möllera, and A. Mertinsa 

 

a Institute for Signal Processing, Universität zu Lübeck, Lübeck, Germany 
* Corresponding author, email: droigk@isip.uni-luebeck.de 
 

Abstract:  In Magnetic Particle Imaging, the distribution of a tracer is measured. In most practical cases, the tracer is only present at few 

areas and most of the image consists of background. Therefore, it seems promising to detect the support of the tracer and include this 

knowledge in the reconstruction process. In this work, a method is proposed which performs support detection in a multiresolution 

analysis and includes certainty about the estimation via a weighting in the optimization process. The results show that this procedure 

improves the structural similarity index. 

 

I. Introduction 
Magnetic Particle Imaging (MPI) is a medical imaging 

method that measures the nonlinear magnetization of super-

paramagnetic iron-oxide particles (SPIOs), which are used 

as tracer [1]. As a tracer-based imaging method, it is 

promising for studying vessel structures. Due to the high 

spatial resolution of MPI, vessels can be detected even at a 

lower resolution level. Furthermore, vessel images contain a 

relatively high amount of background pixels, because the 

tracer is only located inside the vessels. In this work, we 

combine the multiresolution reconstruction based on 

wavelet decomposition from [2] with a level-wise tracer 

support detection, which serves as prior information for the 

next level. We estimate the probability with which a certain 

pixel belongs to the foreground on the basis of the 

reconstruction at the lower resolution and use this estimation 

as a weighting in the reconstruction process for the next 

level. There are a few works with similar ideas. In [3], the 

idea was formulated to exclude background in the 

reconstruction. Prior information was also used in [4] in the 

reconstruction, but it was obtained from magnetic resonance 

images. In [5], a joint reconstruction and segmentation was 

performed on positron emission tomography data without a 

multiresolution analysis.  

II. Material and Methods 

II.I Methods 
The standard method for MPI image reconstruction is the 

minimization of the objective function 
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‖𝑆𝑐 − 𝑢‖2

2 + 𝜆𝑅(𝑐), (1) 

where 𝑆 ∈ ℂ𝑁,𝑀 is the system matrix in the Fourier domain,  

𝑢 ∈ ℂ𝑀 contains the Fourier coefficients of the measured 

voltage signal,  𝑐 ∈ ℝ+
𝑁 denotes the SPIOs’ concentration, 

which shall be reconstructed, and 𝑅(𝑐) is a regularization 

term which is weighted with 𝜆 > 0. A common choice is the 

Tikhonov regularization 𝑅(𝑐) = ‖𝑐‖2
2. To include prior 

knowledge about the SPIO distribution, the regularization 

term is modified and the search space of the optimizer is 

restricted. With an estimation of the foreground probability 

for each pixel, we can formulate the problem as 

ĉ = arg minc  
1
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‖𝑆𝑐 − 𝑢‖2

2 + 𝜆‖𝑊𝑐‖2,
2    s. t. c  ∈ K (2) 

where 𝑊 ∈ ℝ𝑁,𝑁 is a diagonal matrix with  the weighting 

𝑤𝑖𝑖  of the concentration 𝑐𝑖. The 𝑤𝑖𝑖 can be chosen large at 

positions which are probably background pixels and low for  

foreground pixels. However, the 𝑤𝑖𝑖  should not become 

zero, because this could lead to unbounded values of 𝑐𝑖. If 

we have an estimation for the foreground probability 

𝑃𝑓𝑔 ∈ [0,1]𝑁 for every pixel, we can choose 𝐾 in (2) as 

𝐾 = {𝑐 ∈ ℝ+
𝑁: 𝑐𝑖 = 0, if 𝑃𝑖

𝑓𝑔
= 0}, which reduces the search 

space. Given the probability estimation 𝑃𝑓𝑔 we can set 

𝑤𝑖𝑖 = 1 + 𝐶(1 − 𝑃𝑖
𝑓𝑔

) with constant 𝐶 > 0 specifying the 

influence of the probability estimation. This choice ensures 

𝑤𝑖𝑖 > 0 for all 𝑖. To obtain an estimation of the foreground, 

a soft segmentation of the tracer concentration at a coarser 

level can be performed. This estimation can be resized to the 

actual size by bilinear interpolation and used as prior 

information. This can be repeated until the finest resolution 

level is reached. The procedure is visualized in Fig. 1. 

There are different methods for soft segmentation. Due to its 

simplicity, we chose a random walker (RW) segmentation 

algorithm [6]. For solving the problem (2) the fast iterative 

shrinkage threshold algorithm [7] is used. For the general 

step of the algorithm, the proximal operator for 𝑅(𝑐) =
𝜆‖𝑊𝑐‖2

2 with constraint c ∈ K is needed. With 𝑊 being a 

diagonal matrix and 𝟙𝐾  the indicator function of K, it yields 

prox𝑅(𝑐)(𝑥) = 𝟙𝐾(𝑥)
𝑥

1+2𝜆diag(𝑊2)
,   (3) 

where division is performed pointwise. 
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Figure 1: Reconstruction and support detection procedure. 
(a) Image reconstruction at level K. (b) Estimated foreground 

probability at level K. (c) Upsampled foreground estimation.  

(d) Image reconstruction at level K-1 using (c).  

II.II Simulation 
For evaluation, simulated data are used. The MPI scanner 

simulation uses the Langevin model of paramagnetism and a 

Lissajous FFP-trajectory with frequency ratio 𝑓𝑥/𝑓𝑦  =

32/33. The approach was tested on two vessel phantoms 

shown in Fig. 2 (left). The phantoms have a size of 250 × 

250 pixels with value 0 (black) at background and 1 (white) 

and 0.4 (dark gray) in the structures. We used a 9/7 wavelet 

decomposition in four levels.  The constant 𝐶 was set to 15. 

The algorithm needs foreground and background seeds, 

which were chosen automatically as the smallest 40 % of 

values for the background seed and the highest 20 % values 

for the foreground seed. For each phantom, a simulated 

voltage signal with signal-to-noise ratios (SNRs) between 5 

and 35 dB was used for reconstruction. A multilevel 

reconstruction without foreground detection was performed 

for comparison, which is referred to as baseline. The 

structural similarity index (SSIM) and the mean absolute 

error (MAE) of the reconstructions were computed. An 

SSIM near 1 indicates highly similar structures, while an 

MAE near to 0 means low errors in the concentration values.  

III. Results 
In Fig. 2, the reconstructed SPIO distributions for an SNR of 

5 dB for the two approaches are shown. The experiments 

reveal that the proposed method suppresses the noise in the 

background effectively. For Phantom A less blurred edges 

are observed. In Fig. 3, the SSIM and MAE for the different 

SNRs are shown. The parameter 𝜆 which produced the best 

result for SSIM or MAE among the tested values was 

chosen. The SSIM value of the level-wise segmentation 

method outperforms the baseline on all phantoms and for all 

SNRs. The MAE is better for low SNRs using the support 

detection approach. 

IV. Discussion 
The proposed multiresolution segmentation method 

improves the SSIM of the reconstructions. For low SNRs an 

improvement of the MAE can be seen as well. This is due to 

the deletion of noise in the background and a tendency to 

less blurring around the edges of the structures. Although 

some structures in phantom B have low intensities, they are 

detected as foreground. It is thinkable that small, isolated 

structures with low intensities could be removed by the 

method. For low SNRs those structures are hardly 

reconstructed by the baseline method either.  

V. Conclusions 
The multilevel segmentation method provides a recon-

struction with improved SSIM. Especially at signals with 

low SNR it can help to enhance image quality. The results 

are promising and let one expect that they might further 

improve with a more sophisticated segmentation method.  

 

Figure 2: Reconstructions of the phantoms (left) with best MAE 

value of the baseline method (middle) and the multilevel 

segmentation method (right) at an SNR of 5 dB. 

Figure 3: MAE (left) and SSIM (right) of the phantom 

reconstructions A (top) and B (bottom). 
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