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Abstract. Magnetic particle imaging is a tracer-based medical imaging
technology that is quite promising for the task of imaging vessel struc-
tures or blood flows. From this possible application it can be deduced
that significant areas of the image domain are related to background,
because the tracer material is only inside the vessels and not in the sur-
rounding tissue. From this fact alone it seems promising to detect the
background of the image in early stages of the reconstruction process.
This paper proposes a multiresolution and segmentation based recon-
struction, where the background is detected on a coarse level of the re-
construction with only few degrees of freedom by a Gaussian-mixture
model and transferred to finer reconstruction levels.

1 Introduction

Magnetic particle imaging (MPI) is a tracer-based medical imaging method
which was published in 2005 [1]. It is based on the nonlinear magnetization
behavior of super-paramagnetic iron-oxide particles (SPIOs). The goal is to as-
certain the SPIOs’ distribution inside a volume, e.g. the distribution inside the
vessel structure of a patient. Therefore, MPI scanners measure the induced volt-
age from the SPIOs’ distribution by their change of magnetization. Fortunately,
only SPIOs around the vicinity of the field free point (FFP) can significantly
contribute to the voltage signal due to the nonlinear magnetization of those [2].
The FFP is the position where the different magnetic fields cancel each other
out and this point is in MPI periodically moved, e.g. by a Lissajous trajectory,
over the field of view. However, for two- and three-dimensional MPI there is no
closed-form solution known so far for the system function, which relates the mea-
sured signal to the SPIOs distribution and vice versa [3]. This is the reason that
the system function is normally approximated by a linear model. The resulting
matrix models the spatio-temporal relationship and is called system matrix.

MPI offers a relatively high spatial and temporal resolution. To exploit the
full spatial resolution, the system matrix has to be large in size. Unfortunately,
solving the linear inverse problem becomes quite slow for dense system matrices.
To speed up the reconstruction process, different matrix compression strategies
were developed [4, 5]. The main idea is based on the usage of transforms, like
the discrete cosine transform (DCT), to compress the system matrix. Recently,
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a simultaneous compression and multiresolution formulation for the system ma-
trix was proposed. The authors also presented a multiresolution reconstruction
procedure based on this formulation [6].

With the new formulation of the system matrix, a level-wise background
segmentation and image reconstruction is proposed. The idea to exclude regions
without SPIOs inside the reconstruction is based on the work in [7]. A quite sim-
ilar idea was presented in [8], but there the background information was coming
from an additional magnetic resonance image scan and is used for structural
prior information. For the background segmentation a Gaussian mixture model
(GMM) is used, which has also been successfully applied in positron emission
tomography [9]. It will be shown that the background segmentation will help to
significantly improve the particle distribution reconstruction at finer resolution
levels.

2 Materials and methods

2.1 Multiresolution reconstruction

Due to page limitation the description is shortened to the necessary parts of the
multiresolution system matrix approach from [6]. Let S� ∈ C

M×K� be the low-
resolution system matrix (low-pass approximation on the (�− 1)-th level of the

discrete wavelet transform (DWT)) with K� =
⌈
Nx

2�

⌉
·
⌈
Ny

2�

⌉
where � ·� denotes

the ceiling operator and Nx, Ny are the numbers of pixels in x and y direction.
Then the transform matrix T � ∈ R

K�×K� denotes one stage of the DWT+DCT.
The DWT+DCT decomposition is mathematically described by S�

T = S�T �.
The level-wise particle distribution reconstruction is defined as follows

c� = argmin
c∈R

K�
+

‖S�
TT

−1
� c− f‖22 + λ2‖c‖22 (1)

where λ > 0 is the regularization factor f ∈ C
M defines the measured fre-

quency components, which are derived from the voltage signal T−1
� is the inverse

DWT+DCT and c� ∈ R
K�
+ denotes the unknown particle distribution on the res-

olution stage �. Preknowledge about the background pixels can be obtained by
a segmentation on the coarser level reconstruction and then transferred to the
finer resolution levels. Let B denote the set of background pixel indices and
P = {c ∈ R

K�
+ |∀i ∈ B : ci = 0} then the problem in (1) can be reformulated to

the easier problem

c� = argmin
c∈P

|S�
TT

−1
� c− f‖22 + λ2‖c‖22 (2)

This problem is solved by an iterative shrinkage thresholding algorithm [10].

2.2 Background detection

To separate foreground and background pixels a thresholding with a variable
threshold at each level is used. The threshold is obtained by estimating the
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probability density function of the foreground and background pixels with a
GMM. The obtained mask is postprocessed by some morphological operations.

It is assumed that both the reconstructed particle distribution of the back-
ground and the foreground pixels follow a Gaussian distribution. Mean, standard
deviation and mixture weights are estimated by a GMM. For the approximated
density follows p(x|θ) =

∑K
i=1 λif(x|μi, σi), with θ = (μ,σ) the parameter vec-

tor, f(x|μ, σ) the probability density function of the normal distribution with
mean μ and standard deviation σ, and K the number of components. In this
paper K = 2 is used under the assumption that contained structures share a
similar concentration of the tracer. The weights λi can be seen as the estimation
of the a-priori probability Pi. Then the threshold can be obtained by a maximum
a-posteriori estimation, which is a solution of P1f(x|μ1, σ1) = P2f(x|μ2, σ2). In
the case of two solutions, the one between μ1 and μ2 is the desired one. Now
the thresholding is performed and a binary mask is obtained. Small areas of
foreground are deleted by morphological operations and then the structures are
extended to preserve foreground. The obtained mask is used to set background
pixels to zero during the reconstruction process. This procedure is repeated at
each level and in this way the mask is refined step by step. After a successfull
masking the amount of background pixels that are not set to zero decreases. For
this reason only concentrations ck > 0 are used for the GMM estimation. Besides,
if the masking is nearly perfect, there only exists a single cluster of concentra-
tion values. This results for the GMM in two means which are close together.
For detection of this case, it was tested whether 2 ·min(μ1, μ2) < max(μ1, μ2) is
satisfied. If this is not fulfilled, no further thresholding is performed at this level.

2.3 Test setup

For the simulation of the MPI scanner the Langevin model of paramagnetism
was used. The simulated MPI scanner has the frequency ratio of fx/fy = 32/33
with fx = 25.25KHz for the acceleration fields. This ratio results in a Lissajous
FFP-trajectory with a repetition time of 1.27ms. For the gradient fields in both
spatial directions gradients up to a strength of 1.25Tm−1 were used. The simu-
lated system matrix was sampled for both receive channels up to a frequency of
1.3MHz, which corresponds to 2 × 817 frequency components for a real-valued
voltage signal. For the Langevin model a particle size of 30 nm and body tem-
perature was assumed. The field of view had a size of 5× 5 cm2.

The multiscale segmentation reconstruction algorithm was tested on different
concentration phantoms with different SNRs. In view of an application in the
field of visualization of the blood flow, vessel structures were used as phantoms.
Each phantom had a size of 250 × 250 pixels. The background had the value 0
while the concentration in the structures was 1.

For comparison purposes, also a reconstruction without foreground segmen-
tation was performed [6], which is referred to as the baseline. A variation, where
the thresholding method was used at the last level after completed reconstruc-
tion, is also included. The root mean square error (RMSE) and the structural
similarity index (SSIM) [11] are used as measurements for comparison.
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An RMSE near to zero shows a low difference in the concentration levels,
while an SSIM near to one shows highly similar structures. A 9/7 wavelet de-
composition in four levels was used.

3 Results

In Fig. 1 the ground truth concentrations and the reconstructed concentrations
for an SNR of 20 dB for all compared approaches are shown. It can be observed
that the proposed approach deletes background noise and delivers less blurring
around the edges of the vessels than the other reconstruction results.

Fig. 2 shows the results of RMSE and SSIM for the different phantoms and
methods in dependence of the SNR. The regularization parameter λ was chosen
to produce the best RMSE or SSIM, respectively. It can be observed that the
SSIM value of the proposed method is significantly higher for all phantoms and
all SNRs than the value of the baseline. For most SNRs, advantages can be
seen in comparison to the thresholded baseline method as well. The RMSE of
the postprocessed baseline is better than the original baseline results for all
phantoms and all SNRs. The results for the proposed method with regard to the

(a) Phantom A (b) (c) (d)

(e) Phantom B (f) (g) (h)

(i) Phantom C (j) (k) (l)

Fig. 1. Best reconstructions of the three phantoms for the tested methods and an SNR
of 20 dB. The left column shows the ground truth. In the middle, the reconstructions
of the baseline and the thresholded baseline are depicted. On the right the final results
of the proposed method are shown.
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RMSE for phantom B and C is equal or better than the other approaches. For
high SNRs and for phantom A a worsening can be seen.

4 Discussion

It could be observed that the proposed method provides a reconstruction with
improved SSIM compared to standard reconstruction and even to postprocessed
reconstructions. It works well for different structures and improves especially
the SSIM while delivering a similar RMSE in most cases. With increasing SNR
the RMSE value becomes unexpectedly worse. Fig. 3 shows the estimation of
the multilevel thresholded approach and the result for the baseline method. At
some areas at the borders of the vessels the foreground is underestimated and as
a consequence high estimations of the concentration appear at the border and
lead to a high RMSE value, though in the authors’ perception the quality of this
estimation is better. To avoid this phenomenon, the strong enhancement at the
mask boundaries could be used to detect mismasked areas and expand the mask
around these edges. The enhancement of the SSIM is due to the suppression of
the background noise in areas without tracer concentration and the generation
of sharp edges. This disembogues in a more homogenous concentration inside
the object. Our further research is directed towards a speeding up of the recon-
struction process using the obtained masks. Instead of setting the background
to zero in each step, the calculations at these positions are not neccessary and
could be skipped. This could result in a faster reconstruction.
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(c) RMSE for Phantom C
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(d) SSIM for Phantom A
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Fig. 2. RMSE and SSIM for the tested phantoms and different methods. The proposed
method with foreground segmentation is referred to as MR-T, the baseline is MR-NT,
and the postprocessed baseline is MR-ST. For each method and for each SNR the
regularization parameter with the best result among the tested values was used.
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Fig. 3. Particle distribution estimation of phantom B with an SNR of 40 dB with the
proposed method (a) and the baseline system (b).
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