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Abstract

In this work, we present a modification of an algorithm for
solving the permutation ambiguity in convolutive blind source
separation. A well known approach for separation of convolu-
tive mixtures is the transformation to the time-frequency do-
main, where the convolution becomes a multiplication. With
this approach it is possible to use well known instantaneous
ICA algorithms independently in each frequency bin. This
simplification leads to reduced computational costs and better
separation in each frequency bin. However, this simplification
has the major drawback of arbitrary permutation in each
frequency bin. Without a correction of this permutation
the restored time domain signals still remain mixed. An
often used approach for solving this permutation problem is
the dyadic sorting, where groups of bins are consecutively
depermuted. By recursively joining growing groups all bins
gets sorted. In recent works we presented a criterion for
the depermutation, which was based on sparsity in the time
domain of the restored subband signals. In this work we
modify this approach to use a curtosis based criterion which is
an alternative measurement for the non-gaussianity of speech
signals.

Introduction

Blind Source Separation (BSS) of linear and instantaneous
mixtures can be performed using the Independent Component
Analysis (ICA). For this case, numerous algorithms have been
proposed [1, 2].

When dealing with real-world recordings of speech, this sim-
ple approach is not effective anymore. As the signals arrive
multiple times with different delays, the mixing procedure
becomes convolutive. These characteristics can be modeled
using FIR filters. In this case, the separation is only possible
when the unmixing system is again a set of FIR filters.

As the direct calculation of the unmixing fitlers in time
domain is very demanding, time-frequency approaches are
often used. Here, the convolution becomes a multiplication
and each frequency bin can be separatated using an instan-
taneous method. However, this simplification has a major
disadvantage. The separated signals usually have arbitrary
scaling and are randomly permuted across the frequency bins.
Without the correction of the scaling, only filtered versions of
the signals are restored. This ambiguity is often solved using
the minimal distortion principle [4]. This method accepts
the filtering done by the mixing system without adding new
distortions.

The random permutation of the single frequency bins has an
even bigger impact. Without a correct alignment, different
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signals appear in the single outputs and the whole process
fails.

Many different approaches for solving this problem have
been proposed. Often, the time structure of the separated
bins is used and the assumption of high correlation between
neighboring bins is utilized. This has been used for example
in [3] and [8]. Other approaches include a statistical modeling
of the single bins using the generalized Gaussian distribution.
Small differences of the parameters lead to a depermutation
criterion in [5] and [6].

The method from [8] introduced the so called dyadic sorting,
where in every stage growing sets of bins are depermuted
using the correlation method. Using multiple bins for com-
parison resulted in a more robust criterion. This approach has
been extended in [7], where time domain signals for the sets of
bins have been used. This modification allows for a even more
robust criterion, as only one coefficient has to be considered
for the depermutation. Additionally, in [7] a sparsity based
criterion has been introduced.

In this work we modify this approach. The calculation of the
sparsity of the time domain signals can be interpreded as an
measurement of non-gaussianity. Here, we propose to use a
kurtosis based criterion which is an alternative measurement
for the non-gaussianity.

BSS for instantaneous mixtures
The instantaneous mixing process of N sources into N
observations is modeled by an N x N matrix A. With

the source vector s(n) = [s1(n),...,sy(n)]? and negli-
gible measurement noise, the observation signals x(n) =
[#1(n),...,2n(n)]T are given by

x(n) = A - s(n). (1)

The separation is again a multiplication with a matrix B:

y(n) =B z(n) )

with y(n) = [yi(n),...,yn(n)]’. The single source of
information for the estimation of B is the observed process
x(n). The separation is successful when B can be estimated
so that BA = DII with IT being a permutation matrix and D
being an arbitrary diagonal matrix. These two matrices stand
for the two ambiguities of BSS. The signals may appear in any
order and can be arbitrarily scaled.

For the separation we use the well known gradient-based
update rule [1]

Bi+1 = Br + ABy, 3)
with

AB = (I — E{g(y)y" })Bs. (4)



The term g(y) = (91(y1),-..9n(yn)) is a component-
wise vector function of nonlinear score functions
gi(si) = —pl(s;)/pi(s;) where p;(s;) are the assumed

source probability densities.

Convolutive mixtures
When dealing with real-world acoustic scenarios it is neces-

sary to consider reverberation. The mixing system can be
modeled by FIR filters of length L:

L—-1
z(n) =H(n) xs(n) = > H(l)s(n -1 (5)
=0

where H(n) is a sequence of N x N matrices containing the
impulse responses of the mixing channels. For the separation
we use FIR filters of length M and obtain

yn) = Win)sa(n) = 3. Wz —1)  (©)
=0

with W (n) containing the unmixing coefficients.

Using the short-time Fourier transform (STFT), the signals
can be transformed to the time-frequency domain, where the
convolution approximately becomes a multiplication:

Y(wkaT):W(wk)X(wva)v k:()alv"'vKila (7)

where K is the FFT length. The major benefit of this approach
is the possibility to estimate the unmixing matrices for each
frequency independently, however, at the price of possible
permutation and scaling in each frequency bin:

D(wp) I (wy)S (wg, T)

(®)
where IT(w) is a frequency-dependent permutation matrix and
D(w) an arbitrary diagonal scaling matrix.

Y (wi, 7) = W (wi) X (wg, 7) =

The scaling can be solved the minimal distortion principle
[4]. A modified approach for the permutation problem will
be shown in the next section.

Depermutation Algorithm

The method from [7] extends the ideas of [8]. The basis
is the dyadic sorting, where at the first step, only pairs of
bins are depermuted. In the second step, these pairs are
aligned, and then the resulting quadruples are depermuted.
This scheme is continued until all bins are processed. Within
this procedure, single wrong permuted bins at the early stages
do not outbalance the majority.

In the original work, the comparison was based on correlation
of the single bins. In [7] the sparsity of time domain
representation of the sets of bins has been used. With
z(wap, ) being the time-domain representation of the bins
in the frequency range [a,b] of Y (w,7) and the sparsity
measurement of the sum of two sets of bins

Oqp(Whs,wit) = || 2q(wrs, 1) + 2p(wie, n)|le, )
using the ¢, pseudo norm
1
N—-1 P
llle, = (Z |x<z'>|”> (10)
i=0

188

AIA-DAGA 2013 Merano

with 0 < p < 1, the depermutation is computed an the basis
of the ratio

Opp (wk87 wlt) + 0qq (wks; Wlt)
Opq (Wksv Wlt) + Ogp (Wksa Wlt)

Tkl,st =

an

With 74 ¢ > 1 ranges [k, s] and [[, t] of the separated signals
q and p are correctly aligned among each other. Otherwise
they are permuted.

Here, we propose to use kurtosis for the measurement of the
non-gaussianity instead of the sparsity. With

Ogp(Whs,wit) = kurt(zq(wks, n) + zp(wi, n)) (12)
and il
kurt(z) = % -3 (13)

the permutation of the ranges [k, s] and [l,t] can be again
determined using equation (11). With this modification the
meaning of ry; s is inverted. Now, with 7, ¢ > 1 the
sets are permuted and otherwise correctly aligned. The
remaining algorithm, as proposed in [7], can be used without
modification.

Preliminary tests show simmilar performance on real-world
data sets.

Conclusions

In this work, we presented a modification of an algorithm for
solving the permutation ambiguity in convolutive blind source
separation. It is based on the kurtosis as a measurement of
non-gaussianity of time domain representation of groups of
bins.

References

[1] S.-I. Amari, A. Cichocki, and H. H. Yang. A new learning
algorithm for blind signal separation. In Advances in
Neural Information Processing Systems, volume 8, MIT Press,
Cambridge, MA, 1996.

A. Hyviérinen and E. Oja. A fast fixed-point algorithm for
independent component analysis. Neural Computation, 9:1483—
1492, 1997.

S. Ikeda and N. Murata. A method of blind separation based
on temporal structure of signals. In Proc. Int. Conf. on Neural
Information Processing, pages 737-742, 1998.

K. Matsuoka. Minimal distortion principle for blind source
separation. In Proceedings of the 41st SICE Annual Conference,
volume 4, pages 2138-2143, 5-7 Aug. 2002.

R. Mazur and A. Mertins. An approach for solving the
permutation problem of convolutive blind source separation
based on statistical signal models. /EEE Trans. Audio, Speech,
and Language Processing, 17(1):117-126, Jan. 2009.

R. Mazur and A. Mertins.  Simplified formulation of a
depermutation criterion in convolutive blind source separation.
In Proc. European Signal Processing Conference, pages 1467—
1470, Glasgow, Scotland, Aug 20009.

R. Mazur and A. Mertins. A sparsity based criterion for
solving the permutation ambiguity in convolutive blind source
separation. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal
Processing, pages 1996-1999, Prague, Czech Republic, May
2011.

K. Rahbar and J. P. Reilly. A frequency domain method for blind
source separation of convolutive audio mixtures. /EEE Trans.
Speech and Audio Processing, 13(5):832—-844, Sept. 2005.

(2]

(3]

(7]

(8]



