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Abstract

Domain adaptation techniques enable the re-use and
transfer of existing labeled datasets from a source to a
target domain in which little or no labeled data exists.
Recently, image-level domain adaptation approaches have
demonstrated impressive results in adapting from synthetic
to real-world environments by translating source images to
the style of a target domain. However, the domain gap be-
tween source and target may not only be caused by a dif-
ferent style but also by a change in viewpoint. This case
necessitates a semantically consistent translation of source
images and labels to the style and viewpoint of the target do-
main. In this work, we propose the Novel Viewpoint Adapta-
tion (NoVA) model, which enables unsupervised adaptation
to a novel viewpoint in a target domain for which no labeled
data is available. NoVA utilizes an explicit representation
of the 3D scene geometry to translate source view images
and labels to the target view. Experiments on adaptation to
synthetic and real-world datasets show the benefit of NoVA
compared to state-of-the-art domain adaptation approaches
on the task of semantic segmentation.

1. Introduction
Deep neural networks for semantic segmentation require

huge labeled datasets. However, as labeling is expensive
and time-consuming, the re-use and transfer of existing la-
beled datasets is desirable whenever possible. Yet, in many
cases available datasets do not exactly match the setup of
the problem we are interested in but instead differ in style
(e.g. simulation vs. reality), camera model (e.g. rectilinear
vs. omnidirectional) or in camera viewpoint.

While the adaptation to a different image style has been
extensively addressed in previous domain adaptation work
[1,19,31,36], viewpoint adaptation has not yet been widely
considered. However, as demonstrated by our experiments,
such a change in viewpoint can lead to a dramatic perfor-
mance drop. Thus, we formally introduce the challenge
of domain and viewpoint adaptation and propose the Novel
Viewpoint Adaptation (NoVA) model. NoVA enables the
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Figure 1: NoVA enables the adaptation from a source do-
main view to a novel viewpoint in a target domain. It per-
forms a geometry-aware image and label translation from a
source (left) to a target (right) view, in which no labels exist.

adaptation of source domain data to the view and style of a
target domain in which no labeled data is available.

Specifically, we investigate the adaptation of a semantic
segmentation model for the task of autonomous driving. In
this field of autonomous driving, large labeled datasets exist
[7, 15]. However, most of them are recorded from similar
viewpoints, hindering their application to novel viewpoints.
Here, NoVA enables the re-use and adaptation of datasets to
the novel viewpoints of autonomous buses, trucks or drones.

State-of-the-art domain adaptation approaches perform
an image-level adaptation to translate source images to the
style of the target domain [19, 36]. Yet, these approaches
struggle when faced with performing a semantically consis-
tent translation from the source domain to the novel view-
point of the target domain, as evidenced in our experiments.
A further limitation of current domain adaptation models is
that they do not take a translation of the source view seg-
mentation labels into consideration. This is problematic as
the translated source images are no longer compatible with
the original source labels. In contrast, NoVA adopts ideas
from the field of novel view synthesis by proposing an adap-
tation pipeline that features an explicit representation of the
scene geometry, which enables to translate both the source
view images and the source view labels to the target domain.

Our NoVA pipeline is split into four stages, which can
be trained jointly or independently. First, we estimate the
scene geometry by predicting a depth map from a source



view image. Next, we utilize the predicted depth map as
well as prior knowledge about the transformation between
the two viewpoints, which we assume to be given, to for-
ward warp the source image and source label to the target
viewpoint. A refinement network then performs inpainting
of occluded image areas and stylizes the warped image in
the style of the target domain. Finally, we train a target seg-
mentation network with the translated source domain data.

Thereby, NoVA effectively reduces the domain and
viewpoint adaptation task to the well-studied problems of
depth estimation [10,17,45] and image inpainting [28,40] /
stylization [19,36], for which deep neural networks have al-
ready demonstrated remarkable performance. While NoVA
builds on recent advances in supervised and self-supervised
depth estimation, it utilizes a novel residual refinement net-
work which enables the model to focus on filling in oc-
cluded image areas and updating the overall image style
without having to synthesize a new image from scratch.

Compared to current image-level domain adaptation ap-
proaches, which focus on directly translating the source im-
ages to the target domain with a single generative model,
NoVA uses a modular architecture that utilizes an explicit
representation of the scene geometry. This enables NoVA
to perform a geometry-aware translation of both source im-
ages and labels to the target domain viewpoint. In addition,
it makes it possible to efficiently utilize information about
how the source and target domain viewpoints are related.
This prior knowledge is commonly available yet not used
by current state-of-the-art domain adaptation models that
are designed to mainly account for a change in image style.

We demonstrate the benefit of using NoVA over exist-
ing domain adaptation approaches for adapting to a novel
viewpoint within a simulation environment as well as for
adapting from simulation to a complex real-world dataset.
In summary, this paper makes the following contributions:

• We introduce the task of domain and viewpoint adapta-
tion, a variant of the domain adaptation task for which
the domains do not only differ in style but also corre-
spond to different viewpoints. In particular, we con-
sider the unsupervised adaptation task, in which no la-
bels are available in the target domain viewpoint.

• We improve upon current domain adaptation models
by using an explicit representation of the scene geom-
etry that enables NoVA to forward warp source view
images and labels to the target domain. Thereby, the
viewpoint change itself no longer has to be learned and
instead the task is reduced to the well-studied problems
of depth estimation and image inpainting/stylization.

• We demonstrate improved performance compared to
state-of-the-art domain adaptation models on synthetic
and challenging real-world datasets.

2. Related Work
This work relates to domain adaptation approaches and

novel view synthesis methods. In this section, we briefly
review the most related works.

Domain Adaptation. The simplest domain adaptation
approach is to fine-tune a model, which has been pre-trained
on source data, on labeled target samples [16,26]. However,
this approach is not applicable to the unsupervised scenario
where no target labels are available and may result in over-
fitting when only limited target labels are available.

Alternatively, feature-level adaptation aims at learning
domain invariant features by aligning the feature distribu-
tions of the source and target domain via an additional loss
term such as a domain confusion loss [24, 25, 39] or via
domain-adversarial training [12, 13, 37, 38]. However, en-
forcing domain invariance via feature-level adaptation may
be detrimental with respect to the model’s discriminative
power [29] and may fail due to not enforcing semantic con-
sistency between the source and the target image.

A third class of domain adaptation approaches thus con-
sider image-level adaptation [1, 19, 31]. Here, the distribu-
tion alignment between the source and target domain are not
performed in feature space but in image space by translat-
ing source images to the target domain, commonly with a
variant of Generative Adversarial Networks (GANs) [18].

In this context, Hoffman et al. [19] proposed CyCADA,
an image-to-image translation framework based on Cycle-
Consistent Adversarial Networks (CycleGANs) [47] where
consistency between the source and synthesized target im-
age is enforced with a cycle-consistency loss. Recently,
Tzeng et al. [36] have demonstrated that a more efficient
cycle-free semantic consistency loss that exploits seman-
tic labels from the source domain can also ensure consis-
tency between the semantics of source images and trans-
lated source images. While current state-of-the-art image-
to-image translation approaches work well for changes in
image style [19,36], they struggle with changes that require
an understanding of the scene geometry such as a change of
viewpoint, as evidenced in our experimental results.

Recent image-translation works that utilize a depth rep-
resentation use it to simulate synthetic foggy images [30]
or to preserve semantic information during image transla-
tion [4]. In contrast, in this work, we exploit depth cues for
adapting to a novel viewpoint.

The adaptation to a different camera is considered in
some recent works but is limited to an adaptation to a differ-
ent camera style [43, 44] or to novel camera intrinsics [11].
With regards to adapting to a different viewpoint, Di Mauro
et al. [8] consider the adaptation to a single novel camera
view. They do not perform image translation but instead
propose an encoder-decoder model in which the latent code
corresponds to a semantic segmentation map of the input.
It is trained with a segmentation loss (source images only),
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Figure 2: NoVA Pipeline. A depth estimation model fD estimates d̂S given a source image xS . Based on d̂S , the image xS
and corresponding label yS are warped by a differentiable rendering operatorR to the target view. The warped image xS→T

is refined by a residual refinement network fR to create x̃S→T . A discriminator DT ensures the realism of refined images,
while a photometric consistency loss Lpho ensures consistency between warped and refined images. A segmentation model
fT that predicts ŷS→T is trained with a task loss Ltask on refined images x̃S→T and warped labels yS→T . During training
of fT , a feature-level discriminator Dft ensures alignment between features of refined images x̃S→T and target images xT .

a reconstruction loss and an adversarial loss. Thus, unlike
NoVA, their model is not able to provide any task super-
vision in the target domain. Our experiments confirm that
NoVA compares favorably to their SceneAdapt method.

In very recent work, Tran et al. [33] propose a domain
adaptation approach which, similarly to NoVA, draws on
ideas from novel view synthesis. They utilize a keypoint-
based appearance flow for a perspective transformation of
source images to a novel viewpoint and perform a pho-
tometric refinement using a CycleGAN. However, unlike
NoVA, they do not utilize a dense depth estimation but in-
stead use a sparse representation of a small number (i.e.
36) of 2D object keypoints. In contrast to NoVA, which is
able to utilize self-supervision for its depth estimators and
supports depth estimation for complex multi-object scenes,
their keypoint localization network requires ground truth
depth for training and only supports the localization of key-
points for a single foreground object.

Novel View Synthesis. Several models have been pro-
posed for generating novel views from a single input image.

While some directly predict a novel view using an
encoder-decoder architecture [21, 32, 41] or generative ad-
versarial network [34, 42], others utilize the appearance
flow, a dense flow field that specifies how to warp the input
to the target view [27, 46]. However, flow-based warping
can lead to the distortion of local structures in the output.

Liu et al. [22] demonstrated that an explicit representa-
tion of the 3D geometry of a scene improves upon flow-
based view synthesis. The benefit of an explicit depth rep-
resentation has also been confirmed in other recent novel
view synthesis works [3, 5]. NoVA builds on this insight
but extends the geometry-aware image warping to unsuper-
vised depth estimation models [17,45] and integrates it into
a framework for domain and viewpoint adaptation.

3. Novel View Adaptation
This section introduces our Novel Viewpoint Adapta-

tion (NoVA) framework. NoVA performs a geometry-aware
translation of the source domain data to the target domain. It
is an unsupervised and unpaired method, requiring no anno-
tations in the target domain nor corresponding image pairs.

The NoVA pipeline is split into four stages (see Fig. 2).
In a first step, a depth map is estimated from a given source
domain image. Next, the source image and label are for-
ward warped to the viewpoint of the target domain. Af-
terwards, occluded areas are inpainted and the style of the
warped image is adapted to the style of the target domain
by a refinement network. Finally, the translated images and
labels are utilized to train a target segmentation network.

Problem Setup. We consider the challenging problem
of domain and viewpoint adaptation for the task of seman-
tic segmentation. More precisely, we consider unsupervised
adaptation, where we are provided with a set of images XS

and labels YS in the source domain and with unpaired im-
ages XT and no labels in the target domain. In addition, we
assume to know the transformation between the source and
target viewpoint VS→T = (KS ,KT , RS→T , tS→T ), where
KS ,KT are the camera intrinsics and RS→T , tS→T is the
transformation between source and target view. Based on
the source dataset (XS , YS) we can train a source segmen-
tation model fS , parameterized by a CNN with weights θs,
for K-way classification using a cross-entropy loss:

Ltask(fS , XS , YS) =

− E(xS ,yS)∼(XS ,YS)

K∑
k=1

1k=yS
log
(
σ(f

(k)
S (xS |θs))

)
(1)

where σ is the softmax function.



However, the source model will not perform well on im-
ages from the target viewpoint, as evidenced in our exper-
iments (see Section 4). Thus, we aim to train a target net-
work fT that is optimized for target domain images.

Depth Estimation. In order to utilize the knowledge
about the transformation between the source and target
viewpoints, which is encapsulated in VS→T , we utilize an
explicit depth representation of the scene. In addition, this
enables us to not only translate the source images but also
the source labels. Given a source view image xS ∼ XS ,
a depth estimation network fD, parameterized by a CNN
with weights θd, estimates a depth map d̂S = fD(xS |θd).

Rendering. Given a predicted source view depth map
d̂S , we warp the source view image xS as well as the cor-
responding source view label yS ∼ YS to the target view.
Using a differentiable rendering operator R we generate a
target view image xS→T = R(xS , d̂S , VS→T ) and target
view label yS→T = R(yS , d̂S , VS→T ) according to VS→T .
While we allow backpropagation throughR for warping the
source images xS , we stop the gradients from backpropgat-
ing throughR when warping the source labels yS .

While self-supervised monocular depth estimation meth-
ods utilize inverse warping to provide supervision via view
synthesis [14, 45], our problem setup, which considers un-
paired images, necessitates the use of forward warping. As
in [35], we utilize a forward-splatting approach. We first
perform a forward projection of each pixel pS in the source
image to the pixels in the target frame pT using the inverse
predicted depth d̂−1S , the camera intrinsics KS ,KT and the
transformation between the views RS→T , tS→T :

pxT
pyT
1

d̂−1T

 ∼ [KT 0̂

0̂ 1

] [
RS→T tS→T

0̂ 1

] [
K−1S 0̂

0̂ 1

]
pxS
pyS
1

d̂−1S


(2)

The target image is initialized with an empty canvas
onto which the projected source pixels are splatted. Sev-
eral source pixels may map to the same target pixel, thus
we require the use of z-buffering to deal with occlusions.
For this, we use a differentiable soft z-buffer where the con-
tribution of each source pixel to a target pixel is weighted
according to its inverse depth in the target view d̂−1T . Fi-
nally, the image is normalized by a weighted average of the
contributions of points which splat to a given target pixel.
For more details, we refer the reader to [35].

Target View Refinement. As the target view may con-
tain new scene content, which was occluded or outside of
the camera frame in the source view image, we refine the
warped image xS→T by inpainting blank image areas and
stylizing the image in the target domain style. This task is
performed by a refinement network fR, which is parameter-
ized by a CNN with weights θr. This network is not tasked

with synthesizing an image from scratch but instead only
needs to output a residual r which is added to the warped
source image xS→T before the hyperbolic tangent activa-
tion in the network’s last layer to create the refined image
x̃S→T = tanh(xS→T + r). By modeling the refinement
with a residual connection, we make the inpainting task eas-
ier to learn and encourage the network to keep the overall
image structure of the warped image in the refined image.

The supervision for training the refinement network is
provided by a discriminator networkDT that is trained with
an adversarial loss LGAN :

LGAN (G̃S→T , DT , XT , XS)

= ExT∼XT
[logDT (xT )]

+ ExS∼XS
[log(1−DT (G̃S→T (xS)))]

(3)

where the depth estimation, forward rendering and refine-
ment steps are encapsulated into a single virtual generator
step G̃S→T = fR(R(xS , fD(xS |θd), VS→T )|θr).

As we do not have any target labels available, we can-
not apply the same unsupervised refinement approach to the
warped source labels ŷS→T . Instead, we use the warped
source labels without refinement to provide a sparse super-
vision signal for training the target network fT , in which the
task loss is only applied in regions with label information.

Enforcing Photometric Refinement Consistency. An
important aspect of the refinement step is that the origi-
nal scene structure and content of the warped source im-
age should be preserved. In order to enforce consistency
between the warped and the refined image, we propose a
lightweight photometric refinement loss that penalizes dif-
ferences between the warped and the refined source pixels:

Lpho(GS→T , G̃S→T , XS) =

wpho ExS∼XS
[||GS→T (xS)− G̃S→T (xS)||1]

(4)

where GS→T = R(xS , fD(xS |θd), VS→T ) and wpho is a
binary pixel-wise mask. The weight wpho is 0 for empty
pixels in the warped image xS→T , onto which no source
pixel was mapped, and 1 for all non-empty pixels.

While the refinement network has the freedom to change
any warped source pixel if desired, Lpho encourages the re-
finement network to effectively act as an inpainting model.
However, even when the source and target domains do not
only differ in viewpoint but also in their overall image style,
we find the photometric refinement loss to be an effective
alternative to a semantic [36] or cycle consistency loss [19].

Target Network Training. The target task network fT ,
which is parameterized by a CNN with weights θt, is trained
with the translated source domain data. Let us denote the
translated source view dataset as (X̃S→T , YS→T ) where
X̃S→T = {fR(R(xS , fD(xS |θd), VS→T )|θr)|xS ∈ XS},
YS→T = {R(yS , fD(xS |θd), VS→T )|xS ∈ XS , yS ∈ YS}.



For training fT we again utilize the cross-entropy loss:

Ltask(fT , X̃S→T , YS→T ) =

− E(x̃S→T ,yS→T )∼(X̃S→T ,YS→T )

K∑
k=1

1k=yS→T
log
(
σ(f

(k)
T (x̃S→T |θt))

) (5)

In addition, we perform feature-level alignment of fT
between the the target images XT and the refined images
X̃S→T . For this, we add a discriminator Dft to distinguish
between features of target images and refined images:

LGAN (fT , Dft, fT (X̃S→T |θt), XT ) =

Ex̃S→T∼X̃S→T
[logDft(fT (x̃S→T |θt))]+

ExT∼XT
[log(1−Dft(fT (xT |θt)))]

(6)

Overall Learning Objective. Our complete learning
objective encapsulates the above losses, which optimize for
target view segmentation (Ltask, see Eq. (5)), image refine-
ment (LGAN , see Eq. (3)), photometric consistency (Lpho,
see Eq. (4)) and feature alignment (LGAN , see Eq. (6)):

LNoV A(fT , G̃S→T , DT , Dft, XS , XT , YS)

= Ltask(fT , X̃S→T , YS→T )

+ LGAN (G̃S→T , DT , XT , XS)

+ Lpho(GS→T , G̃S→T , XS)

+ LGAN (fT , Dft, fT (X̃S→T |θt), XT )

(7)

4. Experiments
In order to demonstrate the effectiveness of NoVA, we

perform experiments to adapt to a novel viewpoint within
a simulation environment (see Section 4.2) as well as from
simulation to a complex real environment (see Section 4.3).
Section 4.1 gives an overview of our experimental setup.

4.1. Experimental Setup

Datasets We utilize synthetic data generated in CARLA
[9] as well as the real-world dataset CityScapes [7].

In the CARLA simulation framework, we generate data
from a car and a truck viewpoint. For both views we gen-
erate 30 train, 15 test and 5 validation sequences of 1, 000
frames each, where every frame consists of a stereo RGB
image pair, a semantic segmentation label and a depth map
of resolution 2048 × 1024. In CityScapes, we use 2975
train and 500 test frames with fine annotations. Please see
the supplementary material for more details, including the
camera intrinsic and extrinsic parameters of both datasets.

Baselines. The naı̈ve baseline for all of our experiments
is to train a segmentation model fS on source data only.

In addition, we use two state-of-the-art image-level do-
main adaptation models, CyCADA [19] and SPLAT [36], as

well as the SceneAdapt model by Maura et al. [8]. It should
be noted that CyCADA and SPLAT have been proposed for
general domain adaptation and not viewpoint adaptation.

For CyCADA, we follow the generator and discrimina-
tor architectures of [47]. The input to both networks is re-
sized to 512×256. We train CyCADA with the Adam opti-
mizer, single image batches and a learning rate of 0.0002 for
20 epochs after which the learning rate is linearly decayed
to zero over the course of the next 20 epochs. We adopt
the same training scheme for SPLAT but replace the cycle-
consistency with a semantic-consistency loss that uses a
segmentation network pre-trained on the source dataset.

The SceneAdapt model is constructed from an encoder
based on our base segmentation network (see below) and a
decoder that uses the architecture of the generator models of
CyCADA and SPLAT. The discriminator architecture and
training scheme are consistent with CyCADA and SPLAT.

NoVA. While our differentiable rendering formulation
enables a joint end-to-end training of the complete NoVA
pipeline, we found it beneficial to train NoVA in stages.

For depth estimation, we evaluate three classes of esti-
mators: A self-supervised, monocular approach [17], a su-
pervised monocular approach [20] and a supervised stereo
approach [2]. Each approach is trained on source images of
resolution 512× 256 as outlined in the respective paper.

For rendering, we bilinearly upsample the predicted
depth maps to match the source resolution of 2048× 1024.
In order to avoid empty pixels in the warped output, the
rendering operator R outputs images and labels which are
downscaled by a factor of 4 to a resolution of 512× 256.

The forward warped images are refined by a residual re-
finement network fR that is based on the CyCADA genera-
tor architecture which is modified to include a residual con-
nection. The overall training scheme remains unchanged.

Segmentation Model. For the segmentation model we
use a VGG16-FCN8s [23]. We train it for 100, 000 steps
with batches of size 4 using a learning rate of 1e − 3 with
stochastic gradient descent and momentum of 0.9. Feature-
level adaptation is performed as described in [19].

Evaluation Metrics. We consider the metrics of
mean intersection-over-union (mIoU), frequency-weighted
intersection-over-union (fwIoU) and pixel accuracy:

mIoU =
1

N
·

∑
i nii

ti +
∑

j nji − nii
(8)

fwIoU =
1∑
k tk
·

∑
i nii

ti +
∑

j nji − nii
(9)

pixAcc =

∑
i nii∑
i ti

(10)

where N is the number of segmentation classes, nij is the
number of pixels of class i predicted as class j and ti =∑

j nij is the total number of pixels of class i.



4.2. Sim2Sim

For a first set of experiments, we aim to evaluate the task
of viewpoint adaptation only. To this effect, we select two
domains which only differ in viewpoint but not in style.

Table 1 presents the results for adapting from a car to a
truck viewpoint in the CARLA simulation [9]. It shows that
NoVA outperforms the scene and domain adaptation base-
lines by a large margin on the task of viewpoint adaptation.

In fact, given ground truth depth, NoVA is able to get
very close to reaching the performance of a target oracle
model, which is trained on the target images and labels.
For predicted depth estimation, we find that all variants of
NoVA still perform significantly better than the baselines.
Here, the supervised stereo model (stereo-sup) outperforms
the monocular self-supervised (mono-self ) and the monoc-
ular supervised (mono-sup) approach.

For SceneAdapt, we find that it improves over the source
segmentation model for the viewpoint adaptation task. As
for CyCADA and SPLAT, we find that both struggle with
the task. Because they are designed for domain adaptation
and not for viewpoint adaptation, they do not take a trans-
lation of the source labels to the target viewpoint into con-
sideration. This leads to a mismatch between the translated
source images and the original source labels. Indeed, we
see that the performances of CyCADA and SPLAT improve
when we combine their translated images with the actual
target labels. However, even when using target view labels,
their performances do not reach the level of NoVA. This
indicates that NoVA’s image translation pipeline is overall
better adapted to the task of viewpoint adaptation.

When inspecting the translated images of CyCADA and
SPLAT (see Fig. 5), we find that a shortcoming for both
models is that the semantics of translated images are not al-
ways consistent with the semantics of the source images. In-
terestingly, we find that CyCADA is nonetheless able to re-
construct the source from the translated image well, which
suggests that it has learned to encode some of the source se-
mantics in the noise of the translated image (see Fig. 9) [6].

On the other hand, qualitative results for NoVA (see
Fig. 3 and Fig. 4) demonstrate that NoVA is effective in
retaining the source image semantics in the refined images.
As shown by the ablation study in Table 2, training with
forward warped image-label pairs (xS→T , yS→T ) already
results in a large performance gain in comparison to the
source segmentation model. NoVA’s residual refinement
further improve NoVA’s performance over a default refine-
ment model that synthesizes its output image from scratch.

4.3. Sim2Real

In a second set of experiments we investigate the adap-
tation to a novel viewpoint and domain. For this, we aim to
adapt from a truck viewpoint in CARLA [9] to a car view-
point in the complex real-world dataset of CityScapes [7].

Method mIoU fwIoU pixAcc

Source Only 26.54 43.56 55.82
SceneAdapt [8] 26.63 54.65 68.15
CyCADA [19] 10.57 21.44 30.36
CyCADA [19] + trgt-labels 16.31 45.89 62.55
SPLAT [36] 13.63 22.77 32.26
SPLAT [36] + trgt-labels 18.81 45.12 59.29

NoVAmono−self 42.54 69.99 79.99
NoVAmono−sup 45.27 71.20 80.49
NoVAstereo−sup 49.67 76.44 84.97
NoVAGT 51.89 78.66 86.69

Target Oracle 52.72 79.96 87.81

Table 1: Results for Viewpoint Adaptation on Sim2Sim.
When tasked with adapting a semantic segmentation model
from a car to a truck viewpoint, in which no labels are avail-
able, NoVA outperforms current state-of-the-art domain and
scene adaptation baselines and closes the gap to a target or-
acle model, which is trained on labeled target data.

Method mIoU fwIoU pixAcc

Source Only 26.54 43.56 55.82

+ Forward Warping 47.81 75.74 84.11

+ Default Refinement 49.24 76.91 85.08
+ Residual Refinement 51.89 78.66 86.69

Table 2: Ablation Study for NoVAGT on Sim2Sim. When
the source and the target domain are separated by a change
in viewpoint only, NoVA’s forward warping of source im-
ages and labels to the target domain yields the largest per-
formance improvement over training with source data only.
A residual refinement, which inpaints occluded areas in the
forward warped images, improves over a default refinement,
that needs to synthesize a complete new image from scratch.

In this setup, the domain gap is now not only caused by a
change in viewpoint but also by a change in image style.

For this experiment, we restrict our evaluation to the sub-
set of CityScapes classes which are present in CARLA.

Table 3 demonstrates that NoVA also improves upon the
baseline methods in closing the domain gap from a synthetic
source domain to the novel viewpoint of a challenging real-
world target domain. Unlike for the viewpoint adaptation
experiments, SceneAdapt now yields no performance im-
provements over training a segmentation model with source
data only. This suggests that the SceneAdapt model is bet-
ter suited for the viewpoint adaptation task than for the joint
domain and viewpoint adaptation task.



Source Image Forward Warped Image Refined Warped Image Forward Warped Label

Figure 3: NoVAGT Performance on Sim2Sim. Given a source view frame, NoVA forward warps the source image and label
to the target viewpoint and refines the warped image by inpainting occluded image areas with a residual refinement network.

NoVAmono−self NoVAmono−sup NoVAstereo−sup NoVAGT

Figure 4: NoVA Performance for Different Depth Estimators. NoVA can utilize self-supervised and supervised monocular
or stereo depth estimation models as well as ground truth depth maps (top row: predicted depth, bottom row: refined images).

Source Image CyCADA [19] SPLAT [36] NoVAGT

Figure 5: Qualitative Comparison of NoVAGT to the Baselines on Sim2Sim. In contrast to NoVA, the CyCADA and
SPLAT baseline models do not ensure a semantic consistency between the source image and the translated source image.

Source Image Forward Warped Image Refined Warped Image Forward Warped Label

Figure 6: NoVAGT Performance on Sim2Real. NoVA is able to adapt to the novel viewpoint and style of the CityScapes
dataset by forward warping to the target view and refining the warped images in the style of the target domain.

Source Image CyCADA [19] SPLAT [36] NoVAGT

Figure 7: Qualitative Comparison of NoVAGT to the Baselines on Sim2Real. In contrast to NoVA, the CyCADA and
SPLAT baseline models fail to correctly adapt semantic objects (e.g. cars) from the source to the target domain viewpoint.



Method mIoU fwIoU pixAcc

Source Only 18.84 37.34 47.59
SceneAdapt [8] 11.54 30.65 37.23
CyCADA [19] 19.26 43.90 56.43
SPLAT [36] 21.01 49.42 60.99

NoVAmono−self 30.23 60.32 72.09
NoVAmono−sup 34.36 66.83 78.25
NoVAstereo−sup 32.96 63.95 75.09
NoVAGT 35.91 69.52 80.84

Target Oracle 51.30 79.82 88.36

Table 3: Results for Domain and Viewpoint Adaptation
on Sim2Real. When the source and target domain differ in
both viewpoint and style, NoVA again significantly outper-
forms the state-of-the-art adaptation baseline models.

CyCADA and SPLAT demonstrate performance im-
provements with respect to the source model on the
Sim2Real task. However, they still perform worse than all
NoVA variants and a qualitative comparison to NoVA (see
Fig. 7) reveals that they struggle to correctly warp the ap-
pearance of semantic objects (e.g. cars) to the viewpoint of
the target domain. In the case of SPLAT, this can be ex-
plained by its semantic consistency loss, which encourages
semantic objects to reappear in the translated image at the
same spatial location as in the original source image.

Despite not using a cycle or semantic consistency loss,
qualitative results in Fig. 6 and Fig. 7 confirm that NoVA
preserves the scene semantics well even when adapting to
a different domain. This suggests that NoVA’s explicit for-
ward warping in combination with its residual refinement
and photometric refinement loss offer a lightweight but ef-
fective alternative for ensuring the semantic consistency be-
tween source images and translated source images.

In a second ablation study (see Table 4), we find NoVA’s
forward warping component again to be highly beneficial.
However, compared to Sim2Sim, the residual refinement
now improves upon the forward warping significantly, as
the domains are now also separated by a change in style.

As opposed to the results on the Sim2Sim task, NoVA is
now unable to fully close the gap to the target oracle model
that is trained on the labeled target data. We suspect this
may be due to CARLA lacking CityScapes’ overall diver-
sity. Here, semi-supervised adaptation with a limited num-
ber of labeled CityScapes examples can further improve
NoVA’s performance and help to close the gap to the target
oracle model. As Fig. 8 visualizes, combining NT = 300
labeled CityScapes frames with NoVA’s NS = 30, 000
translated source frames can already boost NoVA’s mIoU-
performance by about 5% wrt. an unsupervised adaptation.

Method mIoU fwIoU pixAcc

Source Only 18.84 37.34 47.59

+ Forward Warping 26.95 55.23 69.72

+ Default Refinement 30.41 58.30 68.97
+ Residual Refinement 35.91 69.52 80.84

Table 4: Ablation Study for NoVAGT on Sim2Real.
While we again find forward warping to be highly bene-
ficial, residual refinement now yields a large improvement
over training with the forward warped data as the refinement
adapts the warped images to the style of the target domain.

100 300 1000 2975
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Figure 8: Semi-Supervised Adaptation on Sim2Real.
Performance improves when we combine NoVAGT ’s trans-
lated source domain dataset of sizeNS = 30, 000 with a set
of labeled target examples from CityScapes of size NT .

Source Translated Reconstructed

Figure 9: CyCADA on Sim2Sim. CyCADA learns to en-
code some of the source image semantics in the noise of the
translated image for the reconstruction of the source image.

5. Conclusion and Future Work

In this paper, we introduced NoVA, a new model for
adapting to novel viewpoints and domains. NoVA performs
a geometry-aware translation of source domain images and
labels to a target domain, in which no labeled examples are
available. Our experiments on the task of semantic segmen-
tation demonstrate that NoVA significantly improves over
state-of-the-art domain adaptation models for adapting to
novel views in simulation and complex real world datasets.

In the future, the NoVA framework could be extended
to additionally utilize temporal information to enable the
model to better reason about occluded image areas.



References
[1] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-

ishnan. Unsupervised pixel-level domain adaptation with
generative adversarial networks. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[2] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching net-
work. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[3] X. Chen, J. Song, and O. Hilliges. NVS machines: Learn-
ing novel view synthesis with fine-grained view control.
arXiv.org, 1901.01880, 2019.

[4] Y. Chen, W. Li, X. Chen, and L. V. Gool. Learning semantic
segmentation from synthetic data: A geometrically guided
input-output adaptation approach. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[5] I. Choi, O. Gallo, A. J. Troccoli, M. H. Kim, and J. Kautz.
Extreme view synthesis. arXiv.org, 1812.04777, 2018.

[6] C. Chu, A. Zhmoginov, and M. Sandler. Cyclegan, a master
of steganography. In Advances in Neural Information Pro-
cessing Systems (NIPS) Workshops, 2017.

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[8] D. Di Mauro, A. Furnari, G. Patanè, S. Battiato, and G. M.
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