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Preface

This work has at least a threefold purpose. It is intended as fulfillment of a requirement on
my path towards obtaining the academic degree of a lecturer. It is also intended as a detailed
description of some new signal-analysis methods that resulted form my research from the last
five years that have passed since achieving my PhD. This description is as detailed as I thought
needed to allow the dissemination of these methods in the community, beyond the space-limited
contributions to various journals and conferences. Finally, and in my opinion very important,
this work is intended as a clear description of some signal-analysis related topics that I have
encountered until now during my research and for which I have found no unified explanation,
having to combine a large set of sources to "get the idea" before being able to implement in
software and therefore use such methods. I hope this description will allow my students to
better follow me during my lectures, meeting their (justified) complains about my calligraphy
at the blackboard.

This work has evolved naturally from my old and constant interest in security applications.
After concentrating on medical image analysis during my PhD, I felt the time was right to get
back to one of the reasons why I got into image analysis and pattern recognition in the first
place. For the record, I am not obsessed with big brother, I just find such applications extremely
interesting and challenging and fun. Similar methods can be used as well to improve the welfare
of elderly persons or the quality of medical services. Therefore I name the main practical
purpose of this work for what it is: security applications, with a focus on person identification
and event detection. Changing the focus of my research from medical to security applications
was more difficult that I’ve imagined and easier than I’ve been told. The reason for this rather
contradictory statement resides in the overlap in methods aimed at these two application fields.
In my experience, working on interesting medical-related topics simply evolved into working
on even more interesting security-related topics, therefore, here, in a way there is an increased
focus, but definitely also a broader perspective.

This work is structured into four main parts. I have tried to organize each part as didactically
sound as possible, going from general simple concepts to more difficult ones in small steps,
keeping an eye on the way these methods evolved from a historical perspective. The first part
contains an overview of the used methods. It includes explanations on various standard methods
used in later chapters as well as connections between them. The next three parts are structured
along the lines of a real-world pattern recognition system and represent the fruits of my research
in: feature extraction, in the form of the Gaussianization transform, classifier design in the form
of the hysteresis classifier – a topic that I have started during my PhD. and completed here – and,
finally, the adaptation of various methods, like the sparse classifier or the conditional random
fields, to specific security-related problems, like person identification and event detection.

At this point I would like to thank particularly Prof. Alfred Mertins for the constant support
he has shown me, for the liberty he gave me into following my own research topics in his



institute and for the fruitful collaboration that we continue to enjoy.
I would also like to thank my colleagues and friends at the University of Lübeck: Prof. Er-

hardt Barth, MSc. Ole Jungmann, Prof. Ulrich Hofmann, Prof. Thomas Martinetz, M.Sc. Dierck
Mattern, Dr. Radoslaw Mazur, Dipl.-Inf Florian Müller and MSc. Matthias Pohl for being there
with me and for me in these last years. This work has been possible due to two great teachers
that tragically, both passed away well ahead of their time: Prof. Vasile Buzuloiu and Prof. Til
Aach. In memoriam.

I am grateful to my parents Anca and Şerban Condurache for emboldening me to follow my
dreams and supporting me while I did this. I particularly cherish the memory of my father who
regretfully also passed away far to soon. His sharp wits, love, care and his open, balanced and
trustworthy demeanor molded me into what I am today, so he was, is and will remain part of
me.

Last, but by no means least, my gratitude and all my love goes to my children, Iulia and
Flavius and my wife Andreea. They are the reason for me being me and doing anything.

To my Family

Renningen, 01 November 2017
Alexandru Paul Condurache
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Chapter 1

Introduction

Our ability as humans to recognize patterns has constituted an advantage, and as such we excel
at recognizing patterns. Therefore, many of our activities imply per default the recognition
of patterns. The advent of computers, with their unique abilities and possibilities to help and
support us in our activities, has brought with it the interest into teaching them how to recognize
patterns. On the way from the “possibility” to support us to the “ability” to support us, we need
to teach a computer to recognize patterns as well. Pattern recognition, as a computer science
discipline, is instrumental on this path.

Pattern recognition is a broadly defined term. A pattern can mean an object, like for ex-
ample a cup (i.e., a receptacle with holder), but it also can be the way a person behaves, or
some configuration of amplitude values in a signal recorded by some sensor. An instance is an
individual reproduction of a pattern, like for example a blue cup, seven centimeters high and
five centimeters in diameter. In general, one can say that the purpose of pattern recognition is
to find an interesting pattern in a collection of patterns. In practice, each pattern exhibits certain
properties that can be measured and translated into numerical features. Each pattern is then
described by a set of features that have similar values for various instances of the same pattern.
Then, given an unknown instance, the problem of pattern recognition is the problem of finding
in a collection pf patterns the pattern whose expression the investigated instance is. After doing
this, a pattern label may be assigned to the unknown instance, i.e., the instance is labeled as
belonging to that pattern. Thus, the problem of pattern recognition becomes the problem of
assigning labels to feature vectors. This problem can be described mathematically with relative
ease as the problem of partitioning a vector space into regions. The mathematical method that
yields such a partition is called a classifier, where a class corresponds to a region of the feature
space. The classifier shatters the feature space and to do this it needs some information about
the feature space. The standard way to obtain this information is with the help of a set of feature
vectors that are representative for the targeted feature space. This sample from the feature space
is called training set, as the classifier will learn how to separate the target feature space from this
representation. In the case of a supervised classifier, the training set is already labeled, while
for the unsupervised classifier, the training set is not labeled. There are also semi-supervised
classifiers, where the training set contains a small set of labeled examples and a far larger one
of unlabeled ones. The ability of a classifier to correctly label previously unseen feature vectors
is called generalization and it represents a major performance measure.

Feature extraction represents the process that allows us to compute features for each instance
of a pattern. The simplest features are direct measures of pattern characteristics that are called
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raw features. These raw features are usually pledged by various problems that lead to poor per-
formance for a classifier designed with their help. Here, feature extraction is the transformation
that corrects (at least some of) the problems associated with raw features.

There is a myriad of classifiers available in the literature, each purposefully designed for a
certain practical problem, as there is no single classifier to constantly perform optimally over all
possible problems. For our purposes we will differentiate next between multi-class, binary and
one-class classifiers. A multi-class classifier is able to directly assign three or more labels. A
binary classifier can assign only two labels and a one-class classifier can assign only one label.
Collections of binary classifiers may be used to shatter more than two classes. On the other hand
a one-class classifier can be seen as a binary classifier separating one class from the rest. The
difference between a one-class and a binary classifier consists in the way training is conducted.
For the binary classifier the training set includes both classes, while for the one-class classifier
it includes only the one class.

The dichotomy between one class and binary classifiers is emphasized here such as to un-
derline the specifics and importance of the application areas that require the one-class classifier.
The one-class classifier originates in significance testing and its main application area is novelty
detection. In the case of novelty detection, we have a set of patterns that we know, and if an in-
stance cannot be assigned to any of the known patterns, we assume we have detected something
new. In such a setup, the training set includes only instances of the known patterns, and a classi-
fier needs to be designed to decide whether some instance is so different from any of the known
patterns that it must be the instantiation of an unknown, previously unseen, pattern. Some very
important security applications, like for example event detection, fit into this framework. In the
case of event detection, there is knowledge of the normal case and only of the normal case. An
event represents something not normal and the event label is assigned when we are reasonably
uncertain that it is normal.

There are several approaches to the design of classifiers, like, for example, syntactical pat-
tern recognition where rules and sets of rules in the form of grammars are used to decide what
label should we assign to a test feature vector. Many of these approaches however, are somewhat
limited in the number of different types of pattern recognition problems they can accommodate,
or in the way additional information about the problem at hand can be incorporated to improve
the classification result. This is not the case for statistical pattern recognition, which is the main
topic here. In this case, some probability relating label and feature vector is computed and then
a label is assigned to the feature vector such as to maximize this probability. Usually, either
the probability of a label given an observed feature vector or that of a feature vector given a
label is used. To enable this procedure, a probability space1 is defined over the feature space
and an observed feature vector is considered as the realization of a random variable. A random
variable is defined for each pattern or collection of patterns of interest and during training the
underlying densities are estimated.

Intuitively, given an observed feature vector x, we would like to compute the probabilities
p(ωi|x) of the labels ωi, i = 1, . . . , NC and assign the observation to one of the NC classes
such as to maximize this probability. Computing this a-posteriori probability directly is usually

1The probability space includes a set of outcomes, a sigma-algebra defined with the help of the outcomes and
a probability measure.



1. INTRODUCTION 3

difficult and therefore we use the Bayes formula to express it as

p(ωi|x) = P (ωi)p(x|ωi)
p(x) ,

using the probability p(x|ωi) of observation given label that can be easily estimated from the
training set, the prior P (ωi) and the evidence p(x). This strategy is known under the name of
Bayesian classification, but to enable it, the prior needs to be known. In theory, this prior has to
be made available before starting the classification and it should incorporate knowledge about
the problem at hand. In practice the prior is estimated from the training data. However this
estimate can be widely inaccurate and/or not reflect the true essence of the tackled problem,
in which case, even if, numerically, the classification is conducted with maximal a posteriori
probability, in reality we do a poor classification job.

When working with feature vectors, the relationship among various features needs to be
taken into consideration as well. The features may either be dependent or independent. Making
the independence assumption is advantageous mathematically, but if untrue it may decrease the
performance of the designed classifier. Bayesian classification with the independence assump-
tion is called naïve Bayes.

To conduct classification within the statistical framework, we need to compute various types
of conditional probabilities, or in other words conduct inference. The analytical approach to
this problem involves complicated mathematical computations. To ease up this task, graphical
models have been introduced, where conditional dependence and independence relationships
are apparent after a simple optical inspection instead of cumbersome computations. A major
type of graphical models are the Bayes networks that are going to use intensively within this
work to conduct classification in particular for time series recorded within the context of event
detection.

A classification system includes the following two major steps: feature extraction and clas-
sifier design. A classification system can not be conceived outside its application domain and
both these steps need to be adapted to a certain problem or class of practical problems or appli-
cations. Therefore, the purpose followed here can be stated as:

to introduce novel, statistical methods for both feature extraction and classification, while con-
centrating on security applications, in principal person identification and event detection.

Accordingly, the three main topics and the novel contributions contained within the pages of
this book are:

(i) feature extraction where a novel nonlinear feature-extraction transform called multiclass
Gaussianization will be discussed.

(ii) classification where a new type of classifier, the relative hysteresis classifier, is described
within the hysteresis classification paradigm.

(iii) person identification and event detection in which context the sparse classifier is intro-
duced for such applications and also new stochastic-signal analysis algorithms are dis-
cussed and some established ones are adapted for event detection.

The rest of this chapter offers in Sections 1.1, 1.2 and 1.3 a short and focused description
of these three main topics that are afterwards detailed in the main body. At this stage, they are
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also placed in the proper context and the basis and the intuition on which they lay is underlined.
Finally, Section 1.4 concludes this introductory chapter by showing how this topics fit together,
but this time from a historical-conceptual point of view.

Organization of this book

After establishing in Chapter 2 a theoretical basis, Chapter 3 describes the multiclass Gaus-
sianization feature extraction transform that is supposed to compensate for hidden assumptions
of Gaussianity with respect to the densities of various random variables. Chapter 4 contains
the hysteresis paradigm, which offers new ways to introduce prior knowledge into classifier
design for improved results. The relative hysteresis classifier is a new development within this
framework and improves upon available hysteresis classifiers. Finally, in Chapter 5, complete
classification systems are described, including both purposefully designed feature extraction
methods and classification algorithms. Concepts described in the previous chapters are put to
use and also various other methods are adapted or introduce for the first time to security-related
applications, mainly biometric person identification and event detection.

1.1 The Gaussian assumption
Generally, algorithm design is based on some intuitive insight of the designer in the problem at
hand. This intuition usually comes from the way the designer perceives the reality surrounding
him. In the case of signal-analysis algorithm design, this sort of intuition leads more often
than wanted to poor solutions, because it does not correspond to the underlying reality of the
analyzed problem. One major example in this direction is the intuition that change is not sudden
and strong, but rather slow and small. We have this intuition, because it helps us infer from some
examples what is going to happen next, we thus know what to expect and get prepared. We are
accustomed to reason this way.

We can apply this intuition to a multitude of cases including observations from a random
variable whose true distribution is not known, in which case we expect differences between
consecutive observations to be small. In the case of pattern recognition, this small-change as-
sumption is equivalent to assuming that instantiations of the same pattern differ by a small
amount, and equivalently the classes cluster around a center in the feature space. If we decide
to model this intuition statistically, then we usually do this by means of the Gaussian assump-
tion, which amounts to assuming that the underlying statistic in the respective case is Gaussian.
If we make the Gaussian assumption, then we expect a certain thing to happen or some small
variations of that thing, but not large variations, or equivalently, we expect that any two con-
secutive observations from such a distribution are very similar to each other. Conversely, large
variations are possible, but their probability is small and decreases the larger the variation.

Even though the intuition about small change is correct in many cases it is by far not always
correct. It has nevertheless led, together with other factors, to the development of a myriad of
methods spanning the entire signal-processing and analysis spectrum, which are optimal only
under the Gaussian assumption, when this intuition is correct. These methods are in general
characterized as elegant from a mathematical point of view and, as discussed before, intuitive,
which has contributed strongly to making them ubiquitous.

Here the question is addressed of what can be done if the data we analyze does not support
the Gaussian assumption? There are three possible answers to this question: (i) we can come
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up with new analysis methods, not related to this assumption, or (ii) we can try to make the
data Gaussian before applying the Gaussian-methods, or (iii) we could ignore the underlying
assumption of the Gaussian-methods and simply apply them to the data. In the latter case, we are
either hoping that the Gaussian methods will behave at least satisfactory, or we are considering
that their limitations are unimportant for the problem at hand. The path followed here is the
second one, new means being introduced to make the data more Gaussian [44], or equivalently
to conduct Gaussianization. The concept of "Gaussianization" implies thus a transformation to
change the distribution of the input variable to Gaussian.

Gaussianization is conducted in this case for pattern recognition purposes, thus the aim
is to transform the analyzed data such that it follows for each class a Gaussian distribution,
while at the same time keeping its informative power. At this stage it is intuitively clear that our
multiclass Gaussianization transform should modify the data at a level that can be achieved only
be nonlinear transformations. As discussed in more detail in Chapter 3, a nonlinear transform
has virtually complete control over the input data, the challenge in this case being to compute
the parameters of this transformation such that the original information available in the data is
still present after applying the transform. A regularizing term is instrumental on this path.

Next we dwell into the Gaussian assumption and discuss some major application areas
where this is encountered in Section 1.1.1. Afterwards, in Section 1.1.2 it is briefly described
what can be done when the assumption is not valid, thus paving the way for introducing the
Gaussianization transform in Chapter 3.

1.1.1 Gaussian signal analysis
As long as the input data is really Gaussian, the Gaussian assumption is valid and we can enjoy
all its advantages. Besides the relationship between human intuition and Gaussian assumption,
there are also other reasons that make this assumption appealing. One example is related to
the statistical properties of this distribution. These give us the possibility to investigate complex
statistical relationships by relatively simple mathematical means, like for example independence
relationships considering only moments up to the second order.

Next we discuss in more detail some major areas of application where the Gaussian assump-
tion has a large impact, like Mean Square Error (MSE) approximations and various classifica-
tion and feature extraction methods. The purpose here is not to present an exhaustive list, but
rather to show that a thorough analysis of the Gaussian assumption is justified by the number
and importance of the signal-analysis domains it is encountered. During this entire contribu-
tion the Gaussian assumption will be pointed out and discussed, as for example in the cases of
parameter estimation and dynamic Bayes networks in Chapter 2.

Mean square error approximations

Perhaps the most often encountered example of the implicit Gaussian assumption is that of the
Mean Square Error (MSE) approximations. By MSE approximations we understand the class
of problems where we would like to find the optimal representation of some data in terms of
some procedure, where the degree of success is measured by the MSE between the data and the
output of the procedure.

Here it is argued that the MSE approximations are related to the Gaussian assumption be-
cause they represent the optimal solution only when the approximation error is Gauss distributed
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typically with zero mean. This means that for each observation we expect the error to be zero
with equally probable positive or negative deviations and this expectation is well estimated by
the mean of the error distribution. If the approximation error has for example a skewed distri-
bution, and thus the mean does not represent the best estimate for what to expect2, the MSE
criterion will lead to methods that concentrate on reducing large low-probability errors and
thereby loose sight of smaller high-probability errors. The total error would be minimized, but
depending on the application this may not lead to the desired result. In such cases other ob-
jective functions are needed, like the one used in the case of the sparse PCA in Section 1.1.2.
Indeed only under the Gaussian assumption do a large number of cost functions, including the
MSE, lead to the same optimal result (see also the Paragraph Parameter estimation and the
Gaussian assumption. in Section 2.1.1).

In this context, the Gaussian assumption and implicitly its consequences are often simply
ignored, not because the Gaussian assumption holds, but because these consequences are either
not important for the problem at hand or they are offset by the advantages of working in a
Gaussian environment. Next we will discuss shortly the statistics of MSE approximations and
their link to other objective functions in relation with the Gaussian assumption. We will then
discuss some examples that illustrate the relationship between this type of approximations and
the Gaussian assumption.

Approximations in a Gaussian environment. We assume we have several noisy observa-
tions x = x̂ + n of some true measurement vector x̂, with n some random noise. We would
like to use the observations to compute a good estimate x̃ of the true measurement vector. We
measure the quality of the estimate by means of a cost function C(x, x̃) and we choose the
approximation that minimizes the expectation of the cost function:

E {C(x, x̃)} =
∫
C(x, x̃)p(x)dx.

If we take the cost function to be C(x, x̃) = (x̃− x)2, we obtain a MSE type of approximation.
The solution of the minimization problem is obtained by setting the corresponding derivative
over the minimization variable to zero, obtaining thus:

x̃ =
∫

xp(x)dx.

The sought estimate is therefore given by the mean of the density of the observations [174].
Various cost functions lead to different estimates. For example taking the cost function to be

C(x, x̃) = |x̃− x| we obtain an estimate that is the median of the density of the observations
[114]. If instead we take an uniform cost function defined as

C(x, x̃) =

0 for |x̃− x| ≤ δ

1 otherwise
,

which is minimized when the maximum error is minimal, we obtain an estimate that is given
by the maximum of the density of the observations [174].

If the density of the observations is Gaussian (or equivalently the density of the noise is
Gaussian with zero mean), all cost functions from above lead to the same estimate, because the

2The median would represent in such a case a better estimate for our expectation.
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mean, the median and the maximum of a Gaussian density are all at the same position. As a
matter of fact it can be shown that if this density is symmetric about its mean, as in the case of
the Gaussian density, then any cost function that is a convex function of the distance |x̃ − x|
leads to the same estimate [176]. Therefore, the MSE estimate represents the optimal estimate
returned by a large number of cost functions only under the Gaussian assumption, otherwise, it
is the best quadratic estimate and depending on the application it may not be the best estimate
to use.

The Principal Components Analysis. The purpose of Principal Component Analysis (PCA),
as a feature extraction tool, is to provide an optimal dimensionality-reduced representation of
some data. For this purpose we seek a transformation between the original and the reduced
feature space such that structure (i.e., information) available in the original feature space is kept
in the transformed feature space as well. As a loss function, we use the MSE between the data
in the original space and the reconstruction of the data from the transformed space. In other
words, we search for a transformation such as to be able to successfully predict/estimate the
original data from the reduced data, or equivalently, we look for the best data approximation
method, where we use the MSE to measure the quality of the approximation. The PCA is a
supervised method, i.e., it yields a data-dependent transformation.

In the case of the PCA we have a set of observations X = {x1, . . . ,xL} and we would like
to approximate each xl ∈ Rn by x̃l = ∑m

i=1 αiui, with m < n, such that the MSE computed as
E = E{‖ε‖2}, with ε = x−x̃ is as small as possible. A shown in detail in Appendix B, it results
that the orthonormal basis vectors ui, i = 1, . . . ,m are the eigenvectors of the correlation
matrix of x. The components αi = 〈x,ui〉 of the representation of x with respect to this basis
are uncorrelated.

It appears that selecting orthonormal components for data approximation represents the best
solution. However, this is not always true, as it can be seen in countless examples. Selecting
orthonormal components for data approximation represents the best solution for the specific
loss function we have used, i.e, the mean squared error. However, this loss function does not
optimally accommodate the structure of the data, except for one particular case. To optimally
accommodate the structure of the data means to reveal all dependencies between the various
components of the data. This means that in the optimal feature space, where our data truly lives,
the components are independent of one another. The PCA however, offers only decorrelation,
which is sufficient for independence only under the Gaussian assumption. From here we infer
that the mean squared error does a good job at measuring how far we really are from an optimal
approximation only if the approximation error is Gaussian distributed.

Yet another way of looking at the connection between PCA, MSE approximations and the
Gaussian assumption is by means of the intuition about small and slow change. Given an input
representing a distorted representation of some true item, the PCA returns, by the nature of
its MSE objective function, an approximation of the true item under the assumption that the
differences (or equivalently the change) between the true item and the distorted representation
taken as input are overall small. For example, in the case of pattern recognition, when the item
is actually a vector containing characteristics of some object, starting from a distorted input
vector, the PCA will return an approximation vector under the assumption that the absolute
differences from each and every input component to its true value are small. In other words,
with PCA, for any observation, one would expect that these differences are zero or very close
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to zero. The appropriate statistical model for such a setup is the Gaussian distribution3.

Other estimates and estimation methods. In a linear setup, where the observations and the
vector to be estimated a are related in a linear manner, such that r = Sa+n (see Section 2.1.2),
the least squares estimate â = Ar is the most efficient estimate when the noise n is white and
Gaussian. To show this, consider that the covariance matrix of the least-squares estimate is

cov[â] = E
{

(â − a)(â − a)H
}

= E
{

(Ar− a)(Ar− a)H
}

= E
{
AnnHAH

}
= E

{
(SHS)−1SHnnHS(SHS)−1

}
= (SHS)−1SHE

{
nnH

}
S(SHS)−1, (1.1)

with A = (SHS)−1SH . As the error process is white, we have that

E
{
nnH

}
= σ2I,

thus, equation 1.1 may be rewritten as:

cov[â] = σ2(SHS)−1SHS(SHS)−1

= σ2(SHS)−1

= σ2Φ−1. (1.2)

Because the error process is Gaussian, the elements of n being uncorrelated are also indepen-
dent, and their joint probability density function is a product of scalar component densities. The
Fisher information matrix (see Appendix A) can then be computed as [92]

J = 1
σ4E

{
SHnnHS

}
= 1
σ4 SHE

{
nnH

}
S

= 1
σ2 SHS

= 1
σ2Φ,

and therefore
J−1 = σ2Φ−1.

From equation (1.2) we can see that that σ2Φ−1 is the covariance matrix of the least-squares
estimate â, and thus:

cov[â] = J−1. (1.3)

Conversely, the least-squares estimate is unbiased, and for any unbiased estimate ã we have the
Cramér-Rao bound defined as:

cov[ã] ≥ J−1. (1.4)

From equations (1.3) and (1.4) we can see that, â verifies the Cramér-Rao bound with equality
and it is thus the most efficient estimate, with the smallest possible variance.

3The small-change model in this case implies isotropic Gaussian noise with zero mean.
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Classifiers

A very popular statistical nonlinear classifier is the quadratic classifier. For a quadratic classifier,
the separation function is a quadratic function of the inputs. The usual way to compute the
parameters of a quadratic classifier implies assuming that the class-conditional densities are
Gaussian. In the simplest case, for a binary classification problem, the quadratic classifier stems
directly from the likelihood ratio test under the Gaussian assumption.

With the likelihood ratio

l(y) = p(y|ω1)
p(y|ω2)

the decision rule is:

assign y to

ω1 for l(y) ≥ λ

ω2 for l(y) < λ
.

Under the Gaussian assumption, and defining

h(y) = −2 log(l(y))

= (y− µ1)TΣ−1
1 (y− µ1)− (y− µ2)TΣ−1

2 (y− µ2) + log
(
|Σ1|
|Σ2|

)

= yT (Σ−1
1 −Σ−1

2 )y + 2(Σ−1
2 µ2 −Σ−1

1 µ1)Ty + µT1Σ−1
1 µ1 − µT2Σ−1

2 µ2 + log
(
|Σ1|
|Σ2|

)
,

(1.5)

the decision becomes

assign y to

ω1 for h(y) ≤ T

ω2 for h(y) > T
,

with T = −2 log(λ). By inspecting equation (1.5) we observe that it is a quadratic function

h(y) = yTAy + bTy + c,

with

A = Σ−1
1 −Σ−1

2

b = 2(Σ−1
2 µ2 −Σ−1

1 µ1)

c = µT1Σ
−1
1 µ1 − µT2Σ−1

2 µ2 + log
(
|Σ1|
|Σ2|

)
.

The decision boundary h(y) = T is a quadratic surface. If we now continue on our path of mak-
ing stronger assumptions, we obtain a linear classifier if we assume that the class-conditional
densities have equal covariances and the nearest mean classifier, if we further assume that the
covariance matrices equal the identity matrix.

Feature extraction methods

Many feature extraction methods make at some point the Gaussian assumption, with which
assumption they either live or explicitly try to overcome. Again the best known example is the
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PCA4 that, as already pointed out, works under the Gaussian assumption. Yet another widely
used example is the Linear Discriminant Analysis (LDA), whose purpose is to reach a separable
feature space. Although best known as conducted with the help of the Fisher discriminant, the
LDA has at its roots the Gaussian assumption. It can be shown that when modeling the data with
Gaussian distributions, irrespective of the number of classes, the search for a linear transform
under the constraints that the covariances are equal and the means have reduced rank leads to
LDA [82].

In the previous section we have discussed Gaussian classifiers for binary classification prob-
lems. If we would like to shatter more than two classes, within the same framework, we define
for each class discriminant functions gi(·), i = 1, . . . , Nω, with Nω the number of classes, and
decide as:

assign y to ωi when gi(y) = max
k

gk(y).

Each discriminant function is computed as the class conditional a posteriori probability under
the Gaussian assumption:

gk(y) = p(y|ωk)P (ωk)

= P (ωk)
(2π)m2 |Σk|

1
2

exp
[
−1

2(y− µk)TΣ−1
k (y− µk)

]
.

The entire classification procedure can be considered now a type of discriminant analysis, i.e.,
an analysis of the feature space with the help of discriminant functions. Assuming further that
the class-conditional covariances are equal, in which case the discriminant functions are linear
in their input, it follows that in this case we are conducting a linear discriminant analysis.

Further insight may be gained by returning to the linear binary classification case, where
Nω = 2. With equal class-conditional covariance matricesΣ1 = Σ2 = Σ, we have:

A = 0
b = 2Σ−1 (µ2 − µ1)
c = µT1Σ

−1µ1 − µT2Σ−1µ2.

The decision is reached by comparing h(y) = bTy + c with T , or equivalently

bTy
ω2
>
<
ω1
T − c. (1.6)

Looking carefully at (1.6) we notice that what we actually do is to transform y with the help
of b, and then conduct the classification in the transformed space x = bTy. We notice that
the dimension of the transformed space equals one, i.e., the number of classes minus one, and
the transformation reaches a subspace of the original feature space where the classes are highly
separable.

Now, going the other way around, we may ask ourselves what is the optimal linear trans-
formation to reach a highly separable subspace of the original feature space. To answer this
question, we define a criterion function to describe separability, that we optimize over the pa-
rameters of the transform. Intuitively, and this intuition is in itself related to the small-change

4Here, in comparison to the previous section, the PCA is used as a feature extraction transform that is supposed
to reach a feature space where the vector components are decorrelated.
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assumption and the “Gaussian” way of thought, two classes are separable if their means are
well apart and their standard deviations are by comparison to the distance between the means
small. Notice that our intuition considers only moments up to the second order. Separability-
related relationships above the second-order moments are neglected. Conversely, relationships
involving moments larger that two are interesting only in a non-Gaussian environment. This
means that our intuition works as intended only in a Gaussian feature space. For two classes,
with equal prior probabilities and x = wTy, the criterion function coming out of this intuition
is

J(w) = (µx1 − µx2)2

Σx
1 +Σx

2

= (wTµy
1 −wTµy

2 )2

wTΣy
1w + wTΣy

2w

= wT (µy
1 − µ

y
2 )(µy

1 − µ
y
2 )Tw

wT (Σy
1 +Σy

2 )w

= wTSBw
wTSWw

, (1.7)

with Σx
i , i = 1, 2 the variances in the transformed space, SB = ∑2

i=1(µy
i − µ̄y)(µy

i − µ̄y)T
the between-class scatter matrix and SW = ∑2

i=1Σ
y
i the within-class scatter matrix, while

µ̄y = ∑2
i=1µ

y
i . Equation (1.7) represents the well known Fisher discriminant for two classes5.

To find the maximum of the Fisher discriminant criterion, we set its derivative to zero and obtain

0 = d

dw
J(w)

= (wTSWw)dw
TSBw
dw

− (wTSBw)dw
TSWw
dw

= (wTSWw)2SBw− (wTSBw)2SWw.

With w , 0 we have that

(wTSWw)2SBw− (wTSBw)2SWw = 0⇔(
wTSWw
wTSWw

)
SBw−

(
wTSBw
wTSWw

)
SWw = 0,

which taking into account equation (1.7) leads to:

SBw− JSWw = 0.

To solve this generalized eigenvalue problem we premultiply S−1
W to obtain

S−1
W SBw− Jw = 0,

and thus the standard eigenvalue problem S−1
W SBw = Jw that yields then

woptim = arg max
w

wTSBw
wTSWw

= S−1
W (µ1 − µ2),

5The extension to more than two classes is straightforward, as shown in Appendix A.
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which is equivalent (up to a constant) to b from equation (1.6), if we approximate the common
class-conditional covariance matrix in the usual way, as:

Σ = P (ω1)Σ1 + P (ω2)Σ2.

As pointed out before, the LDA does not only make the Gaussian assumption, but it im-
plicitly considers also the class-covariances to be equal. This latter assumption is renounced in
the case of the Heteroscedastic Discriminant Analysis (HDA) [158, 124]. The quest for sep-
arability criteria and the corresponding dimensionality reducing transforms that work without
the Gaussian assumption has ignited a lot of research. Nevertheless, many of these methods
have their origin in the theory reviewed here and therefore in an intuition linked to the Gaussian
assumption.

1.1.2 Alternative formulations for non-Gaussian data
What can we do when our (Gaussianity-related) intuition does not suit the problem at hand? As
previously discussed, we have three possible options. However, if we really need to do some-
thing about it, we have only two real options: we can either try to come up with new methods
that work without the Gaussian assumption, thus effectively forgetting about Gaussianity, or we
could make our data Gaussian and proceed with the familiar methods, thus imposing Gaussian-
ity. Clearly the lion’s share in this dichotomy is taken by the former approach. Nevertheless,
there are practical applications where the latter approach is used as well, many of them related
to speech processing [157, 56]. Next we are going to discuss in more detail some methods that
work without the Gaussian assumption. Imposing Gaussianity is one of the main contributions
of this work, being detailed in Chapter 3. In this section, its principle is only briefly described.

Forget about Gaussianity

In principle there are two ways to forget about Gaussianity: (i) take some Gaussian method and
modify it such that it works without the Gaussian assumption and (ii) design a completely new
method, that has nothing to do with the Gaussian assumption from the start. Both approaches
are encountered in the literature, the former perhaps a bit more often, as it seems more easy
to go in small steps, i.e, concentrate on overcoming limitations of existing methods rather than
breaking with the past and come up with an all together new method. Nevertheless, completely
new methods bring the largest improvements. An example in this direction is the path from
the Kalman filter to the Particle Filter in the analysis of random signals. Next we are going to
discuss both possibilities with the help of a few examples.

Robust Gaussian methods. For our purposes here, a good example of Gaussian methods
adapted to non-Gaussian environments is the kernel PCA [159]. In essence the kernel PCA has
two steps: a nonlinear transform to a high-dimensional space followed by applying the PCA in
the transformed space. The main idea being that in the high-dimensional space, our data lives in
an linear subspace that can be found by PCA. Once we have found it, we can start enjoying all
advantages of a feature space whose main variance modes are linear (i.e., data that spreads along
lines rather than other curves). One such advantage is the increased probability (particularly if
we select the optimal variation modes in the new representation) that a linear classifier could
successfully shatter this space.
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Yet another related example is that of the sparse PCA [186, 24] (see also Section 2.3).
The sparse (also robust) PCA considers the problem of estimating some true data from corrupt
instances. With respect to equation (B.2) from Appendix B, the observed data is x, the true
data x̃ and the corruption is ε, we have therefore x = x̃ + ε. Assuming the noise ε is densely
supported6 and Gaussian, the standard PCA does a very good job. In the case of the sparse PCA,
however, we discuss the case when the noise is sparsely supported and arbitrarily distributed.

As in the case of the standard PCA, we assume we have at our disposal a larger dataset
{x1, . . . ,xn} with n vectors of length m. Next, we arrange these n vectors as the columns of a
matrix D ∈ Rm×n. Similarly we get for the true data the matrix A ∈ Rm×n and for the noise the
matrix E ∈ Rm×n. Thus, we would like to recover a low-rank7 matrix A such that D = A + E,
with E a sparse corruption matrix. This is an optimization problem with constraints, whose
solution is the optimal pair (Ao,Eo) found as [186]:

(Ao,Eo) = arg min
A,E

[rank(A) + γ ‖vect(E)‖0] subject to A + E = D.

As discussed in more detail in Section 2.3.1, this is a NP-hard optimization problem. Neverthe-
less in certain conditions, its solution is the same as that of the equivalent problem [186, 24]

(Ao,Eo) = arg min
A,E

[‖A‖∗ + λ ‖vect(E)‖1] subject to A + E = D,

with ‖M‖∗ the nuclear norm, computed as the sum of singular values of M. In practice a
suitable value of the Lagrangian multiplier λ > 0 is needed. A good choice for λ is λ = m

1
2 .

Furthermore, for algorithm complexity reasons, the equality constraint is replaced by a penalty
term and thus we end up solving

(Ao,Eo) = arg min
A,E

[
µ ‖A‖∗ + λµ ‖vect(E)‖1 + 1

2 ‖D−A− E‖2
F

]
,

with ‖M‖F the Frobenius norm defined as the square root of the sum of the squared singular
values of M and µ a small constant.

Given a distorted observation, the standard PCA returns an approximation in a Gaussian
setup, i.e., following the intuition that change is small. The question is what happens with
PCA when this intuition is false? What if (to the limit) the change from the observed value to
the true value is very large for just one component and zero for the rest? Intuitively, the PCA
approximation will be such that every component of the approximation will include some of
this large change, even if the respective component in the input had the true value. In other
words, the PCA will distribute the large change in one component among all components in the
approximation, thereby acting according to the intuition that the change from the true vector to
the distorted vector can be only small overall. It will thus introduce relatively small errors in
every vector component for the sake of one large error in a single component. The sparse PCA
is then an adaptation of the standard PCA to such a (non-Gaussian) setup.

6Densely supported is another way of saying that the noise affects all components of x̃ equally, or equivalently
it is stationary with respect to the 1D signal given by the position-ordered succession of components of x̃.

7Clearly the absence of noise decreases the information content and thus the noise-free data-matrix A has a
reduced rank.
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Non-Gaussian methods In this case, instead of overcoming Gaussianity, we now work with
methods that are designed to be free of it. As already mentioned, a typical example in this
direction is the particle filter (see Section 2.2.1). Yet another example is the Independent Com-
ponents Analysis (ICA).

In principle the ICA asks for independence and, in comparison to PCA, it is thus able to
successfully work in non-Gaussian environments. The practical implementation of this princi-
ple is at least problematic in some cases as various ICA methods lead to different results. Often,
the ICA transform is implemented as a rotation of whitened data [180], using moments up to
the fourth order in the process. However, is not guaranteed that a density is fully described by
moments up to the fourth order. Nevertheless, there are implementations of ICA like Comon’s
algorithm [35] and Infomax [13] that theoretically could take into consideration dependencies
above the fourth order moments.

We consider this to be a good example for the abuse of the Gaussian intuition that often
leads researchers to think in Gaussian terms, even if they explicitly try to avoid it.

Impose Gaussianity

Instead of devising new methods that work without the Gaussian assumption or adapting exist-
ing ones, we could simply modify the input data, previous to processing it, such that it is Gauss
distributed. Modifying the statistic properties of some data such that it is Gaussian distributed
has been proposed in various contexts from density estimation [33] to signal analysis [140].

Here, this concept of Gaussianization is proposed for pattern recognition problems in the
form of the multiclass Gaussianization feature-extraction transform [44], [48]. In this case,
in contrast to the other Gaussianization methods, we are interested that each class-conditional
density is Gaussian, not that the distribution of the entire data set after the transformation is
Gaussian. We are interested in Gaussianity, while keeping separability. This additional con-
straint is new in the field of Gaussianization transforms and it provides the justification for the
novel methods developed for this purpose, which are described in detail in Chapter 3.

The Gaussianization feature-extraction transform can be thought of performing in a simi-
lar manner to the first step of kernel PCA, i.e., reach in a nonlinear way a transformed space
where the Gaussian assumption holds, such that we could, e.g., apply PCA to get all the advan-
tages previously mentioned. Nevertheless, in comparison to the kernel methods, the transform
described in this work is an explicit transform, from which not only PCA, but also all other
Gaussian methods could benefit. Furthermore, due to computational constraints, the kernel
PCA actually works only in a certain subspace of the space that could theoretically be reached
by the transform corresponding to the used kernel, therefore its optimality in this respect is not
guaranteed.

Gaussianization is conducted here in a supervised manner, with the help of a nonlinear
transform whose parameters are computed such that they optimize a similarity measure between
the estimated true distribution of the data and its ideal distribution. The ideal distribution is in
our case a Gaussian mixture with one component for each class. This similarity measure is
simply the sum of squared differences between the distribution nonparametrically estimated
from the training data and the mixture parametrically (i.e., under the Gaussian assumption)
estimated from the same training data. The approach used here is inspired from the performance
analysis of nonparametric, kernel-based density estimation (see Section 2.1.1). Intuitively, as
our target is Gaussianity, using the sum of squared differences, with its relationship to the
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Gaussian assumption is justified.
As nonlinear transform the elastic transformation is used, similar to that proposed for tasks

such as image registration. By its elastic constraint, this nonlinear transform is diffeomorphic, a
property that is paramount to a successful Gaussianization for pattern recognition applications.
This means that even though in the transformed space the data is not perfectly Gaussian, its
“structure” and thus separability is preserved. Thus, a transformation is proposed that actually
makes the data as Gaussian as possible while preserving the separability. Furthermore, there is
no dimensionality reduction associated with this Gaussianization. The purpose followed here
is not to find a nonlinear Gaussian subspace that is separable, but to modify the original feature
space, such that it becomes as Gaussian as possible, while, again, keeping its separability.

1.2 Novell hysteresis classification methods
A classification problem implies distinguishing concepts. These concepts are gathered in a
problem space. To solve a classification problem with the help of a computer we need a pro-
jection of the problem space that can be handled by mathematical means. This projection is
constructed with the help of measurements or raw features. We consider that in the measure-
ment space, the concepts are mapped to classes. In the problem space, concepts seldom overlap,
ducks are definitely different from swans. In the measurement space however, classes usually
overlap, taking size and weight as features, one will find that some ducks appear to be swans
and some swans appear to be ducks. An adequate measurement process is the way to preserve
the problem-space separability in the measurement space, however in many applications such a
measurement process is simply not available. At the same time, the raw features can not solve
separability issues in the problem space. Assuming separability is achieved in the raw-feature
space, the next step would be to design a function over it that takes different values for different
regions and define these regions such that they correspond to the classes. This function is called
a classifier and the process by which the regions are assigned to classes is called training. Often
it is easier to find the optimal classifier in a map of the measurement space rather than in the
measurement space itself. This map of the measurement space is called the feature space and
it is generated with the help of a feature-extraction transform. There is a plethora of feature-
extraction transforms. The simplest ones effectively only select some of the raw features (i.e.,
the feature selection methods). Their transformation matrix contains only ones and zeros. More
involved feature-extraction transforms may increase, decrease or conserve the dimensionality
of the measurement space in the feature space and implement highly non-linear maps.

To avoid confusions, we divide the feature extraction process into two parts: the measure-
ment part and the analysis part. In the first part we measure the problem space, often with dedi-
cated hardware thereby constructing a measurement or raw-feature space. In the second part we
analyze the measurement space and compute features. As mentioned above and discussed in
more detail later the analysis step is needed to be able to effectively and efficiently find the rules
by which classes can be separated, i.e., the classifier. Sometimes analyzing the measurements
and finding the separation rules are combined into a single classification method8.

Generating a good feature space is a difficult endeavor. Conversely, choosing the classifier
seems to be the simplest thing to do in designing a classification system. There are modern

8Classification method is used next to describe the way by which classes can be shattered. Thus a classification
method can include either a feature extractor and a classifier or only a classifier.
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classifiers, proven to be universal approximators Ű meaning that they can perfectly fit any con-
tinuous separating surface in the feature space Ű which makes the choice of a classifier appar-
ently self-evident. However, appearances are often deceiving as practically choosing the perfect
architecture for the classifier and/or finding the separating surface from the available training
sample turns out to be very difficult or even impossible to do with the same classifier for all
possible classification problems.

In practice we start with a good sample of the problem space, meaning that we have data
covering all and only situations from the problem space such that its statistical structure is well
reflected. Then we extract features and build a training sample. The usual way to conduct
feature extraction is to take a large number of measurements that have something to do with
the problem space and hope that somewhere there in that raw feature space there is enough
separability for a classification method to shatter the classes with a high-enough margin of
success. While searching for the optimal classification method we may or may not apply a
feature-extraction transform and may or may not modify the training sample. At each and every
step along this path, the algorithm designer has to take various decisions while considering
concepts such as the curse of dimensionality, the ugly duckling, the bias-variance tradeoff [91]
and the no free-lunch theorem [66] that are briefly discussed in Section 1.2.1.

Feature extraction significantly simplifies the classification but may also lead to serious
problems when conducting classification. Nevertheless, this step is unavoidable, as it is needed
to grasp the problem space and construct a solution. An attempt is undertaken here to put
things in a new perspective, for which purpose we need to ask, if it is possible to also explicitly
bring the problem space to bear directly on the likelihood term of a generative approach to a
classification problem or on the posterior in a discriminative approach instead of just implicitly
with the help of feature extraction? Assuming that the problem is well posed and the no-
overlap condition is respected in the problem space, the answer to this question is yes! In the
hysteresis-classification framework that at this stage is briefly introduced in Section 1.2.2, to be
then discussed in detail in Chapter 4, information from the problem space is used to improve
the classification taking place in the feature space. We provide thus new ways to make use of
prior knowledge.

1.2.1 Issues in statistical pattern recognition
Pattern recognition needs to deal with a set of issues, mostly related to the way computer-science
experts go around designing and using such methods. Being aware of these issues represents
the starting point for improving our methods or designing new better ones.

The curse of dimensionality. The curse of dimensionality is a well-known problem within
the pattern recognition community. It describes the decrease in performance of a classification
algorithm of constant architecture, with the decrease of the fraction of cardinality of the training
sample and dimension of the feature space (e.g., increase the size of the feature vector while
keeping the number of feature vectors in the training set constant). For a simple explanation, one
should first be aware of the fact that in order to properly shatter a feature space, a classifier needs
a certain minimal density of training-set data points per volume. Now, the volume increases
exponentially with the dimension and therefore, to ensure that this data density is sufficient, so
should the number of data points. In general, with k the number of samples in a training set,
ρ the data density and d the dimension of the feature space, we may write that k = ρd, which
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implies that ρ = k1/d. In practice a data density of 10 is sometimes considered satisfactory9.
The curse of dimensionality relates to the fact that a classifier trained with a training set where
the data density is smaller than needed, will perform worse (in particular on unseen examples)
than the same classifier trained on a training set with sufficient data density. For example, take
a classifier A trained in an N-dimensional feature space on the basis of a set of k samples, this
classifier will perform worse if it is trained in an M-dimensional feature space with M � N ,
using a set of k samples.

The real question is why is there a minimal data density needed? Intuitively we can see
that locality is important in taking decisions, meaning that in order to find the class of a point
in the feature space we should ideally evaluate information from points in its vicinity. If the
data density is small, then there are large swath of training space where we don’t have any
evidence about how the classes are distributed. In order to be able to shatter these regions we
need to interpolate a separation surface between available data points that lay far away. Thus
classification decisions on points within these regions be essentially taken based on distant
points from the training set, therefore ignoring locality. We can also see that decisions for
points away from the training samples is taken ignoring locality and decisions for points close
to the training samples is taken considering locality. This is the intuition for overfitting when
under the curse of dimensionality.

Building a training sample. In general, the curse of dimensionality is related to a set of issues
around the problem of how to sample properly the random variable describing the decision prob-
lem that needs to be solved. The correct number of samples depends on the information content
of the problem, which is in practice related to the information capacity of the measurement
vector (i.e., the output of the procedure by which we extract information from the problem),
which in turn depends on the number of individual measurements in the vector. Assuming the
measurement procedure is optimally adapted to the problem at hand, the information content of
the problem and the capacity of the measurement vector are equal and thus the feature-vector
random variable completely describes the problem at hand. Then, successful classification de-
pends on the quality of the sample extracted from this random variable. A good-quality sample
has to have a cardinality that allows it to be properly distributed over the feature space such as
to ensure the theoretical reconstruction of the true underlaying statistical model of the problem.
At the same time, it has to have a cardinality in relation to dimensionality to allow the training
algorithm of a classifier to practically reconstruct and harness the underlaying statistical model
of the problem in a successful way.

A first aspect is that for low-density training sets, the chances of having in there all data-
points configurations needed to unequivocally find the optimal separating surface are small, so
the classifier can not be designed and is not prepared to properly classify new unseen data, in
which case it is said to generalize poorly. Take for example a binary classification problem in a
2D feature space with a training set of just two examples, one per class. With this training set,
following Occam’s razor, the optimal classification solution is a linear classifier whose separa-
tion surface goes eventually through the middle of the line linking the two points in the training
set, but is otherwise arbitrary oriented (as long as it separates the two examples). However, if
in reality each class is Gauss distributed with different means and covariance matrices, a linear

9This is related to the a minimal tolerable variance of the estimate of the mean of a one dimensional Gaussian
random variable.
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classifier will do a rather poor job, as a quadratic classifier is needed. Should the data density
have been higher, we would have had more chances of observing a configuration of training-set
data points where the linear classifier does not work and thus we would have been able to see
that we need to come up with a better solution.

At the same time it should be considered that there is a problem with the number of training
examples versus the dimensionality of the feature space only under the assumption that the
training sample is properly extracted from the feature space10. Should this not be the case, the
performance remains poor even for very large (in relation to the dimensionality) training sets, as
the data again does not capture the entire variability of the problem space, even if the number of
examples in the training set would suggest otherwise. Note that in this case the data density over
the entire features space is small even if it high over some parts of the feature space. In other
words, the data density is not simply a question of the sheer number of training samples with
respect to the size of the feature space, but also a question of the spread of the training samples.
For some classifiers this is related as well to the fact that during training certain directions in the
feature space are overemphasized. Meaning that the classifier relates mostly to these features to
separate the classes. This search and usage of the most separable features is usually a desired
property of the training process11 but one which works against the generalization performance
if the training sample is not adapted to the variability in the problem space such that it leads
to emphasizing the false features due, e.g., to the fact that the available training sample covers
only part of the entire feature space.

Another aspect only partially related to the first, is related to the complexity of the separating
surface and thus of the classifier12. In general, the model capacity needs to be optimally adapted
to the information content13 in the problem at hand. However, often you have excess model
capacity, because you have the necessary model capacity but to few data (i.e., poor sample) or
enough data but too much model capacity or few data and too much model capacity. The curse
of dimensionality issue afflicts powerful classifiers strongly than simpler ones for the same
data density. The more complicated the separating surface, i.e., the higher the model capacity,
the tighter the fit it is able to achieve on the training set, where a tight fit results in very good
classification results on the available training set. Intuitively, this is because the more parameters
the separating surface has the more difficult it is to set them up properly in particular in regions
of the feature space with low density 14. Even more, if we have high model capacity, we need a
higher data density even in the regions that would otherwise have sufficient data density. This
means that there is a minimal average data density at which a classifier of optimal complexity
could successfully shatter the features space, however, classifiers of higher model complexity

10By properly extracted we mean that it covers the entire feature space and in doing so it theoretically provides
the base on which to correctly estimate the a-posteriori probability for each class.

11In particular when considering that very often many features do not contribute to the separability in the feature
space, as discussed more thoroughly in the section about "ugly duckling".

12In general, the more powerful the classifier, the more complicated the separating surface it can model and thus
the higher the number of classification problems that it can solve perfectly.

13The maximal manageable information content in a problem can be estimated from the information capacity
of the raw measurement vector. For example in the case of a 1024× 768 pixel gray level image with eight bit per
pixel, this is: 1024× 768× 28 bits. It is important however to note that this is usually well in excess of the typical
information content of the recognition problem at hand. The true information content in the problem at hand is
estimated with the help of the validation data.

14Equivalently, we can say that the more possible separating surfaces you can interpolate, the higher the chances
of getting the wrong one.
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need a larger data density to function properly. If we have model capacity that is in excess of
the available training sample and the training sample is poor, this tight fit will accommodate
only the limited number of configurations present in this low-density training set and therefore
it is a good chance that other configurations will not be properly classified. If we have model
capacity that is in excess of the available training sample and the training sample is good, the
tight fit will wrap around the sample components and not the problem, as the classifier will not
learn the problem, but will spend the excess modeling capacity to learn by heart the examples
in the training set. Therefore, again, the classifier will have a poor generalization performance,
as it will work properly on the training set and the training set only, thus overfitting on this
training set. Yet another aspect is that the number of possible decision surfaces increases with
the dimension of the feature space when the data density is hold constant. Thus under such
conditions the probability of finding the correct surface15 decreases and thus training becomes
more difficult. However, increasing the data density serves to increase this probability 16.

Ugly duckling. The ugly duckling theorem says that there is no predefined optimal set of
features, and therefore, for each problem a particular set of features is needed. Conversely, this
particular feature set is related to the technical framework of the respective problem, as well as
the knowledge and therefore the bias of the person that designed the feature extraction process.

The ugly duckling theorem argues along the following lines: at the most general level ig-
noring any type of problem-related knowledge, features are logical predicates on patterns and
similarity among patterns is defined as the number of shared logical predicates. Within this
setup however, it is shown that any two patterns are similar.

More formally, considering for ease of understanding binary17 features fi. To characterize
each pattern18 we may use logical predicates defined over these features. Therefore a pattern
may have several predicates. The logical predicates are in turn characterized by their rank. The
rank is a natural number related to how general of a description the predicate may provide.
Higher rank predicates are more general, such that they represent a suitable description for sev-
eral patterns. Conversely lower rank predicates are more particular, rank one predicates being
characteristic for a single pattern. Highest-rank predicates are characteristic for all patterns.
Such predicates that describe either all patterns or no pattern at all are considered self evident.
It can be demonstrated that the total possible number of unconstrained predicates excluding
self-evident ones is N = 2n − 2, where n is the number of regions in which the used features
have divided the pattern space.

As shown in Figure 1.1, the Venn diagrams of features divide the pattern space into regions.
In this example, the pattern for the white region has one rank-one predicate f1ANDf̄2, three
rank-two predicates f1, f1XORf2, f̄2 and three rank four predicates f1ORf2, f̄1ORf̄2, f1ORf̄2.
At the same time, the rank one predicate is specific for the white region alone, the rank two
predicates are shared by the white region with one other region and rank three predicates are
shared with unordered sets of two other different regions. Rank four predicates are self evident,

15This probability would be computed as the number of favorable cases divided by the number of possible cases.
16This happens because the number of possible cases decreases.
17In this case, a binary feature is related to the presence or the absence of an attribute for the pattern for which

we conduct the feature extraction. The binary feature takes the value one when the attribute is present in the
investigated pattern or zero when this is not. For example for the pattern chair, the attribute may be the backrest.

18A logical predicate is for example, f1ANDf̄2, where f̄2 means NOTf2. This logical predicate has the value
one for a pattern where the binary feature f1 is present (true) and f2 is not present (false).
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as they cover the entire set of four possible regions.

Figure 1.1: Shown here is the pattern space of a 2D binary-feature vector v = [f1, f2]T . The
red Venn diagram corresponds to f1 and the black one to f2. Outside the red diagram you can
find f̄1 and outside the black one f̄2. This 2D feature vector defines four regions in the pattern
space: blue, white, yellow, and green. In the white region for example, the rank one predicate
f1ANDf̄2 is true.

It is important to notice that the same region-division of the pattern space can be achieved
by different pairs of 2D features, so our discussion is independent of the particular choice of
features.

Similarity between two patterns can be defined as the number S of shared predicates. This
number however, depends on the number of patterns in the pattern space, but not on the patterns
themselves such that for n patterns is S = 2n−2 − 1. For our example, the pair of patterns
corresponding to the white and the yellow regions share three predicates; f1, f1ORf2, f1ORf̄2,
the same number of predicates being shared by any other of the remaining four pairs of patterns.

Then, the ugly duckling theorem says that:

Given that we use a finite set of predicates that enables us to distinguish any two patterns
under consideration, the number of predicates shared by any two such patterns is constant and
independent of the choice of those patterns. Furthermore, if pattern similarity is based on the
total number of predicates, shared by the two patterns, then any two patterns are “equally
similar”[184].

This theorem is valid nor only for discrete, but also for continuous feature spaces as well.
The name “ugly duckling” comes from the fact that under this theorem, without any type of
additional assumptions, an ugly duckA is similar to a beautiful swanB. Assumptions need thus
to be made such as to define similarity in a way that leads to a successful separation of ducks
from swans. For example, we could introduce also the rank of the predicates in the definition
of similarity besides their number. However, as the possible rank of the predicates is related to
the strength of the independence relationships among features, this implicitly assumes that the
features are chosen such that the rank can be used to define similarity, i.e., they are independent.
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In a way we went here backwards from features over properties/predicates to patterns, to
show that from a feature perspective there is no predefined feature space where patterns are
dissimilar so choosing good, separable features and even defining similarity depends on the
problem space, i.e., depends on the particular application and the knowledge and thus the as-
sumptions that we make while designing a classification system for that particular task.

On these grounds, the usual strategy while constructing a measurement/feature space is to
take as many measurements as possible even if they are loosely related to the problem space
such as to be certain to capture the entire problem variability and separability in the features
(usually the information capacity of the feature space is larger than the information content of
the problem). The problem in this case is that if you add features in excess of the information
content of the problem, these features will serve to overfit the training sample. More precisely,
these will capture variability of the training sample rather than of the problem space. With this as
a starting point, we may argue that the strategy of achieving separability by blindly adding raw
features (i.e., measurements) to an initial feature space is flawed. More precisely, if the newly
added features are dependent and thus not certain to add to the separability they may actually
help confuse the classifier training. Conversely, independent features may improve the overall
separability even if they themselves are not separable at all (see Ref. [89]). To avoid overfitting
the training sample, a feature extraction transform or a feature/measurement selection procedure
is applied once we are finished defining measurements/features. When a feature transform is
used this is usually designed such that the transformed space is also tuned on the problem at
hand19. The balance between cardinality of the feature sample and dimensionality of the feature
space is important and has been discussed in the ’Curse of dimensionality’ section.

The bias-variance trade-off. Assuming we have at our disposal data that constitutes a good
problem-space sample, we would like to build a classifier that generalizes well. The generaliza-
tion performance is measured by the generalization error and it is influenced by the choice of
feature space and classification method20. The generalization error can be expressed as a sum
of three terms: the irreducible (Bayes) error that is related to the problem space and/or the in-
herent limitations of the measurement procedure, the bias and the variance of the classifier. The
bias reflects the approximation properties or the modeling capacity of the classification method.
The variance reflects the link between classification method and problem-space sample. The
bias-variance trade-off describes the fact that there you cannot optimize both bias and variance
at the same time. Figure 1.2 illustrates this concept.

A classification method has two components: a function space where all separating func-
tions that can be implemented by the method live and a training procedure by which the optimal
function can be found from some training data. Both bias and variance have accordingly two
subcomponents. The first is related to the function space and the second to the training pro-
cedure. Thus, there is a model bias that has to do with the presence of the optimal classifier
in the function space21 and an estimation bias, which has to do with the ability of the training
procedure to find the optimal classifier. There is also a model variance that has to do with the

19There are two important aspects here: representativity and separability. However, assuming the problem space
is separable and the measurements capture this separability, a feature transform-based dimensionality reduction
using an objective function that aims at representativity will help concentrate the separability available in the input
space on less dimensions in the output space, serving thus as well a separability purpose.

20Here, a classifier is an instantiation of the classification method.
21A classification method with zero model bias over all problems is an universal approximator.
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(a) (b)

Figure 1.2: Here it is shown the function space for two different classification methods. The
optimal classifier is marked with a star, while the ’found’ classifier is marked with a disc. The
double-headed arrow marking the distance between the optimal and the found classifiers depicts
the bias, while the green circle depicts the variance. (a) Large bias and small variance (b)
Smaller bias and larger variance

fact that the classifier would yield the same error irrespective of where from in the problem
space the test sample comes, and an estimation variance, which has to do with the ability of the
training procedure to find the same classifier irrespective of where from in the problem space
the training sample comes from. Virtually no machine-learning theoretical considerations on
generalization deal directly with estimation bias and variance. These are usually somewhat hid-
den in terms measuring the performance on the training set. Often, practical machine learning
follows this lead and assumes the training procedure to be optimal, concentrating on the model
bias and variance.

The bias-variance trade-off is a concept instrumental in practically finding the best possible
classification method for a problem. After dividing the data into a train a test and a validation
set, one typically approximates the Bayes error with the human performance and measures the
performance on these data subsets. Then, for example, a significant difference between the
human performance and the train performance shows that we deal with large bias, while an
insignificant difference between the performance on the train, validation and test set indicates a
small variance. Such considerations are used to guide the search for the classification mode.

No free lunch. The no free-lunch theorem has to do with the fact that there is no unique
classifier to equally well solve all classification problems and therefore each problem has its
own optimal solution. The underlying assumption is that a classifier cannot know the entire
feature space, because it is not trained on the entire feature space, but on a sample from the
feature space, i.e., the training set, and the training set covers only a portion of the feature
space. Therefore, of critical importance in this case is the generalization performance of the
classifier.

The no free lunch theorem states that the generalization performance of a classifier cannot
be good over all possible problems. Even more, its performance over all possible problems is
constant and therefore improved performance on a certain set of problems leads to decreased
performance on another set [66]. Therefore in practice we need to know for what problems
a classifier is suited and apply it only there. In this context, the assumptions made by the
algorithm designer have a major influence on the performance of the used classifier and as
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classifier designer it is always better to be familiar with many various classification techniques
than expert in just a few powerful ones.

Modern classifiers like for example kernel machines are universal approximators. Such an
universal approximator will perfectly model any continuous separating surface while (at least
in the case of kernel machines) taking care of the generalization performance so it apparently
solves all classification problems perfectly and therefore equally well contradicting thus the
no free-lunch theorem. However, even if it will model any separating surface, it can not find
any separating surface efficiently, where efficiency includes [15]: computational complexity
(related to the number of required computations), statistical efficiency (related to the needed
training sample) and engineering efficiency (related to the needed human involvement). At the
same time there are other methods that will do it, but they will in turn fail on other problems.
Thus the no free-lunch theorem holds.

The "no-overlap“ condition. For well posed classification problems, the no-overlap condi-
tion expresses the intuition that in the problem space classes do not overlap. In pattern recogni-
tion one might imagine cases when the problem is ill posed, and then the no-overlap condition
simply does not exist. The argumentation in this case would run along the same lines as in the
case of the wave-particle dualism in quantum mechanics. However we work seldom if ever in
the problem space. Normally we work in the measurement space, which represents the projec-
tion of the problem space over a measurement procedure 22. When projecting the problem space
into the measurement space the no-overlap condition often gets broken in a more or less subtle
manner.

Take for example photographies of non-transparent objects in natural light recorded by
means of a consumer camera with standard lenses. Each pixel belongs to either foreground
or background. To segment the image – or in other words classify each pixel into one of the two
possible classes – we want to use this exclusivity (i.e., the ”no-overlap“ condition) to improve
our result. On the other hand, in the case of transparent objects recorded in the same way, one
and the same pixel may belong to both foreground and background due to reflection effects, this
being an example where the ”no-overlap“ condition does not exist in the measurement space. In
both cases the measurement process implies measuring light with a camera observing the scene
through standard lenses. This is adequate for the first case, but inadequate for the second, where
a polarizing filter would have helped mitigate at least some of the reflections.

Statistical, density-based classification is good to decide in the region of the feature space
where the classes overlap. The classification error may be reduced if the information that the
classes do not overlap in the problem space, is put to use. However, we first need a way to
express this type of knowledge (i.e., the knowledge that the classes do not overlap), and this
depends on the particular problem.

1.2.2 Hysteresis classification

The hysteresis classification is a tool that is able to improve classification in the feature space by
using the ”no-overlap“ condition of the problem space, thus offering a new venue for the usage
of prior information. The discussion on hysteresis methods is focused in this work on the case
of binary image segmentation, where knowledge from the problem space may be expressed

22Sometimes the result of measurements are called raw features.
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with relative ease with the help of neighborhood relationships defined among labeled pixels.
The main labeling takes place in a feature space, where each pixel has a feature vector related
to its gray-level value. The final labels are afterwards computed by taking into consideration
the fact that the object region is connected, as it does not overlap with the background. The
foundations of the hysteresis classification framework have been laid in Reference [36]. New,
powerful hysteresis classifiers for vessel segmentation, like the relative hysteresis classifiers,
have been proposed in References [49, 50, 46] and represent together with Reference [42] the
basis for the discussion on hysteresis classification from Chapter 4, and retina-based person
identification from Section 5.1.2 of this work.

Vessel segmentation and biometric authentication

Even though we consider vessel segmentation here ”only“ as an application example for our
hysteresis classification, it is a topic of sufficient practical importance to justify conducting re-
search on algorithms purposefully designed for it. Vessel segmentation is useful in medical
applications [112], but also in security applications, more precisely in biometric authentica-
tion. Biometric authentication, or in short biometrics23, represents an integrating term covering
methods aimed at establishing the identity of an individual based on some of his biological or
behavioral characteristics. Often used biometric cues are for example face, palm and finger-
prints, iris but also vascular patterns. Vascular pattern-based biometric authentication implies
imaging the vascular patterns behind a palm- or a fingerprint, in the retina or on the sclera and
using features related to this patterns for biometrics. In general it is considered safe to assume
that irrespective which vascular patterns are used these are unique, specific to each individual
and are not influenced by aging. Furthermore, they are difficult to forge, begin related to blood
flowing through vessels within the body. The imaging of palm- and fingerprint as well as sclera
vessels can be conducted even contact-less, which improves user acceptance. Conversely, the
imaging of the retina vessels requires cooperation, but it is also the most difficult to forge and
its uniqueness is considered fact, except for pathological cases.

Extracting features related to the vascular patterns, such as to be able to conduct biometric
authentication, implies searching for feature points like vessel bendings and bifurcations. The
simplest most direct way to do this is on the segmented vessel tree, for which purpose we need a
fast and accurate vessel segmentation method, like hysteresis classification-based segmentation.

1.3 Security applications

Who is this guy and what is he doing there? These are rather intrusive questions, but if one
wants to be certain that the guy being given the banking data to is one’s finance adviser and not
someone else, or if one wants to be certain that the guy by one’s car is the neighbor checking
his own car parked nearby and not a thief, these are precisely the questions one will be asking.
So one would like to know the identity of another person and to be able to find out if the way
this person acts is normal.

23From a historical perspective, the term biometrics has been first used to describe the statistical analysis of
biological data. More recently, it is widely use in relation to biometric authentication, which represents the way
we use it here as well.
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Such applications represent currently an active research area. Automatically verifying and
establishing the identity of a person based on his or hers biometric characteristics is already
ubiquitous as it will be pointed out in Section 1.3.1. If we take for example fingerprints, they
replace passwords on computers and are stored in passports and identity cards for verification
purposes besides their older uses as access control and for the purpose of forensic investigations.
Action recognition and abnormality- or event-detection (see Section 1.3.2) is on the verge of
becoming ubiquitous. Cameras recording data that needs to be analyzed in this respect are
present almost everywhere, from buses to busy intersections in many cities.

Algorithms for security applications need to be designed to meet certain requirements that
arise from the very nature of their application field. The filed of security applications has several
subfields. As these requirements are application dependent, they are shared by algorithms only
if their respective subfields intersect. In this work the accent lies on the subfields of event detec-
tion and person identification, thus the requirements introduced in Section 1.3.3 and therefore
the algorithms resulting from them are tailored to these applications.

In this work, novel solutions for problems such as fingerprint and retina-based person iden-
tification, as well as event detection will be described. These solutions include the use of the
sparse classifier but also the use of new stochastic signal analysis methods and are discussed in
detail in Chapter 5. The sparse classifier in particular is a versatile algorithm that can be suc-
cessfully used for person verification/identification [45] [42] and that will be introduced here
for the first time to event detection [47]. The CRFs and the related Maximum Entropy Markov
Models (MEMMs) are stochastic models, whose application to event detection is pioneered
here [135]. In the same field of stochastic-signal analysis for event detection, a new Linear
Predictors Mixture (LPM) [134] will also be introduced.

1.3.1 Biometric person verification and identification
Nowadays there is an acute need to automatically relate a person accessing a certain resource
to a previously established identity. This need arises from the ubiquitousness of activities and
applications where such a procedure is required, like for example access control, authorization
of a money transfer or login into a network. The initial approach to such problems is token
based. The individuals whose access should be controlled make use of a token in the form of a
card or of a password, which can identify them with respect to the controlling authority. This
traditional approach is however pledged by some principle problems related to its token-based
nature. The token may be stolen or lost, accidentally shared or malevolently duplicated.

The alternative to a token-based system is a biometric system, where the individual is the
token. Biometric features represent a set of person-related unique properties that may identify
an individual. This individual characteristics are in a majority of cases biological features like
the face, the eyes, the fingerprints, the teeth, the form of his hand, the pattern of vessels on his
palm, and so on. Behavioral characteristics as for example the gait, the speech the handwriting
are being used as well. These biometric features can be easily acquired with the help of dedi-
cated hardware. In some cases, like for example that of a person’s face captured with a camera,
this works even without explicit interaction with the acquisition hardware.

Within the framework of biometric authentication [103], a distinction is usually made be-
tween verification, meaning one-to-one correspondence and identification, meaning one-to-
many correspondence. In a verification application one will usually check if a person is the
one he or she claims to be, by comparing this persons biometric features against those of the
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claimed identity. In an identification setup, one will establish the identity of an unknown per-
son, usually by comparing his or hers biometric features against those of a set of known persons.
The core procedure in both cases is the comparison between two sets of biometric features.

Person verification is needed in direct communications, when one needs to be certain that
the one at the other end of a communication channel is really the one he pretends to be. Per-
son identification is needed in access control, when one needs to make sure that only certain
individuals are allowed to enter a secured area.

In general, person authentication algorithms need to compare sets of biometric credentials.
One set is acquired from the target person and the other(s) are available in a database. There is
usually a tradeoff between the quality with which the biometric credentials have been acquired
and the difficulty of authenticating the respective person. The challenge is currently to con-
duct person authentication despite poorly acquired biometric credentials, which for the case of
identification, represents our focus here as well.

1.3.2 Event detection
An event represents an unexpected pattern in the analyzed data. The detection of such events is
required in many applications, and therefore, from a historical perspective, it was given many
names besides event detection, like anomaly detection, rare-class mining, exception mining,
chance discovery, novelty detection or outlier detection. Some applications where event de-
tection plays a major role are: intrusion detection in network security, security monitoring,
video indexing, fraud detection, biosurveillance, traffic incident detection, and quality control
in manufacturing.

For security applications in particular, event detection involves usually the analysis of a time
series. In this context events are rare and in this contribution, novel methods will be discussed
to detect rare events in time series. A security-related example where one could envisage the
use of such methods is that of a human observer monitoring the live feed of a security camera.
In such a case, this person would have difficulties to concentrate over a sufficiently long period
of time to effectively detect events and thus, the need for automatic event detection methods
arises to support the human observer. These algorithms would constantly analyze the data flow
and select for the analysis of the human observer only what they would detect as event.

Designing an event detection algorithm is challenging. The boundary between what is nor-
mal and what constitutes an event is often not precise and on top of this, what is normal and
what is event usually keeps evolving. Therefore, the first task, and one of the most difficult
ones, is to define what represents an event such as to be able to conduct feature extraction ac-
cordingly and gather training data representing the normal case. Four types of events have been
identified in the literature [32]: point events, context events, collective events and online events.
In the case of point events, the event observations are very different from the rest of the data
and appear very rarely. Under this definition looking for point events is in some cases simi-
lar to detecting outliers. For context events, one no longer analyzes single observations, but a
group of successive observations and marks an event if a single observation is strikingly differ-
ent from the others in its group, even if the observation itself is no outlier with respect to entire
data. In the case of collective events, we analyze several groups of observations, and mark an
event if their union exhibits certain characteristics, even if each group in itself is not related to
an event. Finally, online events are related to the case when what is considered event changes
with time. However, this separation is somewhat too specific, as proper pattern definition and
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feature extraction would lead in most cases to the same setup of looking for one unexpected
pattern. The true difficulty is represented then by the fact that the unexpected may become
expected after our event detection system has been put into place, in which case the normal
case would be effectively evolving to include the event case. Therefore, we need to differen-
tiate also between static-event applications, including point, context and collective events and
dynamic-event applications, i.e., the online events. In particular the later type of applications
needs special algorithmic solutions that should be seemingly retrained or that can be retrained
automatically.

Most event detection algorithms use statistical modeling, including statistical classifiers.
Other approaches to event detection stem from various different classification paradigms, such
as for example structural pattern recognition where both graphs and grammars have been used
for such purposes. Algorithms for event detection usually work on the premises that what is
”normal“ is often encountered and therefore easily available for training, while what is ”event“
is very rarely encountered and is not available for training. Defining the event as something
that is not normal, event detection algorithms are usually designed and trained to recognize
”normal“ and decide ”event“ when their confidence in the recognition result is too small. This
strategy is followed here as well and is applied to the analysis of time series.

1.3.3 Algorithms for security applications
We introduce next a set of requirements and performance indicators to guide the development
of algorithms for security applications. Adam and Rivlin [4] introduced a set of operational
requirements to be satisfied by event-detection algorithms such as to ensure deployment in
practical applications. They are:

• Simple and fast tuning for a given video stream.

• The algorithm should be adaptive, such as to accommodate an evolving normal case.

• Robustness to interferences, including hardware-induced noise but also higher-level, problem-
related disruptions, like for example spurious scene motions in the case of an algorithm
analyzing the behavioral pattern of an individual.

• Automatic learning and operation.

• Low computational requirements.

In the same context of event detection, but for the specific case of the analysis of human be-
havior, Turaga et al. [178] recognized that algorithms specifically designed for this task need to
exhibit a set of invariances:

• Invariance to scaling and viewpoint.

• Execution rate invariance.

• Anthropometric invariance.

Cappelli et al. [30] established in their fingerprint verification contest a set of measures of
performance for algorithms designed for such purposes. These measures consider accordingly
only one-to-one correspondences. The most important such measures are:
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• False match rate (FMR) and false non-match rate (FNMR).

• Failure to enroll rate24.

• Average execution time.

• Average memory allocation.

Next the discussion will focus on algorithms and classes of algorithms that are well suited
for security applications. The sparse classifier is particular is a versatile algorithm well suited for
both person identification and event detection. Conversely, event detection can be successfully
approached with algorithms designed for the analysis of random signals, like for example the
Conditional Random Field (CRF).

The sparse classifier for person identification and event detection

According to the principle of parsimony, also known as Occam’s razor, if we are to select
among several explanations for some facts, then we should choose the most simple one. The
sparse classifier can be considered an expression of the principle of parsimony in the case of
pattern recognition. Sparsity as a data analysis and representation paradigm is currently widely
investigated for various purposes like compressed sensing [144, 26, 58], but also feature extrac-
tion [54], and data compression. Sparse representations have already been used for recognition
tasks [187, 115] and even for the recognition of human actions using data from a wearable
motion-sensor network [189] or using video data [85]. In this context sparse-representations-
based classification shares its heritage with established methods in data analysis, such as the
minimum description length model selection strategy, or the Support Vector Machines (SVM).
According to the minimum description length principle if we are to choose from among sev-
eral algorithmic solution to a classification problem, we should choose the least complex (as
in most simple) solution that allows the most compact representation of the training data. On
the other hand, the support vector machines use a small (as in simple) subset of most relevant
features vectors from the training set to conduct the classification such that the generalization
performance is optimal.

In principle the sparse classifier attempts to describe a test sample in terms of a combination
of training samples and implicitly assumes that the most compact representation is obtained
using training samples from the same class as the test sample. This intuition is very similar to
that used by the k-Nearest-Neighbor (k-NN) classifier [66] and as such it has been confirmed in
practice countless times.

The sparse classifier is particularly robust to noise in the training space in the form of strong
corruption affecting a large number of the components of the feature vector. Furthermore,
in some cases, when using the sparse classifier the choice of the feature extraction process
becomes second to the size of the feature space. It is thus more important to have a dimension
of the feature space that is large-enough to be able to properly compute the sparse representation
inherent to the sparse classifier, than to choose features that are particularly representative or
lead to a particularly separable feature space. Nevertheless, good separability in the feature
space is still a necessity.

24Enrolling means here extracting (from a raw fingerprint image) the information that will be processed by the
fingerprint recognition system to return a decision.
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Figure 1.3: A random signal.

The sparse classifier is properly used for person identification when there are several mea-
surements available of the same biometric traits for each person in the database used for iden-
tification. For event detection, it is optimal if the sparse classifier uses a training set in which
each sub-case of the normal case is accordingly labeled, as discussed later in Chapter 2 and in
Chapter 5.

Event detection by analysis of random signals

Conducting event detection often has an inherent time component that the sparse classifier can
take into account only at the feature level. As in this case we analyze time series of feature
vectors, it should be instrumental to take this into account during the classification phase as
well. The most general assumption to be made with respect to a time series is that it represents
a stochastic or random signal and thus we concentrate here on the way random-signal analysis
methods can be used for event detection.

Random signals require special handling, as the tools used to describe deterministic signals
are not always good for random signals. A random signal ξ depends upon two parameters the
realization index k and the time index t such that we can write ξ(k)(t). For a particular time
index t1, ξ(k)(t1) is a random variable. A certain realization k1 corresponds to a time signal
ξ(k1)(t). A random signal is illustrated in Figure 1.3.

A random signal is called a random process if t is continuous and a random series if t is
discrete. To describe the statistical properties of random signals we use measures developed for
random variables. For t = t1, with x1 = ξ(t1), the distribution function is F1(χ1) = P (x1 ≤
χ1), where we’ve dropped the index k for simplicity reasons. The density function is then

p1(χ1) = ∂F1(χ1)
∂χ1

. The statistical description of the random process is improved if we have

access to the joint distribution and density functions defined as

Fn(χ1, . . . , χn) = P (x1 ≤ χ1, . . . , xn ≤ χn)

and
pn(χ1, . . . , χn) = ∂nFn

∂χ1, . . . , ∂χn

respectively.
A prerequisite for event detection is change detection, and depending on the application

the separation between this two concepts is more or less significant. In general an event is
always a change, while a change is not always an event. To detect changes and events, random
signals are processed by methods like the Wiener filter, the Kalman filter, the particle filter or
related stochastic models such as the Hidden Markov Model (HMM), the MEMM and the CRF.
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As we discuss next, for event detection dedicated algorithmic chains are built around different
characteristics of such methods.

Residual-based change and event detection. Stochastic models for random signals are gen-
erally used in two main setups, both equally well suited for event detection: as a filter where
observations including the one at the current time step are processed and as a predictor where
only observations up to the previous time step are used. In keeping with the literature [88]
we will refer here generically to filters to describe stochastic methods for residuals-based event
detection. Filters can be seen as residual generators, as shown in Figure 1.4, and as such they
can be used for change and event detection. Assuming that yn = y(n), the ideal ”normal-case“
signal that contains no event is available, if there is no change in the observed signal xn, then
the residuals εn are a white noise process, when the filter is tailored to the normal case. A vari-
ation in the statistical properties of the residuals is an indicator for change. Should yn not be
available, one can connect the filter in predictor configuration with yn = xn and proceed.

Fi l t e r

+
+ -y

x

(a)

Fi l t e r

+
+ -

x
Delay

(b)

Figure 1.4: Residual generators: (a) Filter, (b) Predictor configuration.

The main problem is to decide when is the change, as captured in the variation of the resid-
uals, significant. For this purpose decision or stopping rules are used. A stopping rule includes:
(i) a test statistic sn that is a function of the output (usually the residuals) of the filter, (ii) some
test function G(sn) that is supposed to extract from the test statistic the information needed to
take a decision, and (iii) a way to take this decision, which happens by comparingG(sn) against
a threshold T .

Change detection algorithms must decide among two hypothesis:

H0 : no change
H1 : change.

With the help of the test function, the decision is taken as:

Decide H0 if Gn(sn) < T.
Decide H1 if Gn(sn) ≥ T.

Two popular test functions are (i) the CUmulative SUM test (CUSUM) [10] and the Geometric
Moving Average test (GMA) . For the CUSUM, the test function is defined as

Gn = max(Gn−1 + sn − υ, 0),

with υ a parameter of the test. For the GMA we have:

Gn = λGn−1 + (1− λ)sn, 0 ≤ λ ≤ 1.

The test statistic sn is computed from the filter residuals εn. Some of the statistics that can
be used are:
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Figure 1.5: Change detection with one filter.

• sn = εn that relates to changes in the mean of the residuals.

• sn = ε2
n − β that relates to changes in the variance of the residuals.

• sn = εnxn−k that relates to changes in the correlation between residual and input.

• sn = εnon−k that relates to changes in the correlation between residual and output.

• sn = sign(εnεn−1) that uses the fact that a white zero-mean process changes its sign every
second sample on average.

The stopping rule measures essentially the deviation from the no-change hypothesis. Change
is detected when this deviation is too large. This entire procedure, for the one-filter case is il-
lustrated in Figure 1.5.

Figure 1.6: Change detection with two filters.

Two filter approaches are used in applications where one would like to detect slower-varying
changes and ignore fast ones. In this case a filter based only on recent data is compared to a
filter that includes a larger history. Recent data for the first filter is extracted from a short sliding
window. The choice of L, the length of the short sliding window, is then critical. The other filter
either considers all data available until the processing time or data extracted from a larger sliding
window.

Data:
Filter F1︷                                           ︸︸                                           ︷

x1, x2, . . . , xN−L, xN−L+1, . . . , xN︸                  ︷︷                  ︸
Filer F2

Theoretically, when the filter based on the larger data window has significantly larger residuals
then the one based on the shorter data window, a change is detected. The difficulty consists in
choosing an appropriate test statistic, related to the residuals of both filters and deciding what
are small residuals. This test statistic can then be used, for example, with the CUSUM test to
obtain a stopping rule. Change detection with two filters is depicted in Figure 1.6.
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Filter 1

Filter 2

Filter N

Decision

Figure 1.7: Change detection with several filters.

In the two-filter approach sudden changes were considered normal and slow ones represent
the event. There are also applications where not one but several types of changes are considered
normal. The solution in this case is a multi-filter approach as shown in in Figure 1.7.

In practice we often encounter such setups where the normal case has several subcases.
Depending on how much training data and what kind of data we have at our disposal we can
proceed in several ways. When labeled data is available - similar in this respect with the sparse
classifier - a filter would be trained for each sub-case of the normal case and an event would be
detected when all filters yield large residuals. When unlabeled data is available, we would have
to devise a new unsupervised-training procedure that should be able to train at least one filter
for each sub-case without the corresponding labels. The Linear Predictors Mixture introduced
in Section 5.2.1 includes besides such an unsupervised training also a way to decide when an
event has occurred. When no data is available we can use our prior knowledge on the problem
space to design an expert system, where each filter component is set by hand, or alternatively,
to properly set up methods that learn online in an unsupervised manner, like adaptive filters.

State-space models for event detection. Some very popular stochastic models, like some of
the Dynamic Bayes Networks from Section 2.2.1 assign each observation to a discrete state
that can be seen as a label. Such methods offer alternative ways to design event-detection
algorithms. In this case we can define normal states/labels and event states/labels and detect an
event the moment the most probable state given an observation is an event state. The difficulty
resides in the fact that we typically do not have events in the set of observations used to train the
model, as events are assumed very rare. Therefore the model characteristics and the way we use
it to conduct inference and training must be adapted to such a setup. Such a state-space-based
approach stemming from CRFs is discussed in more detail in Section 5.2.2.

1.4 From vessel segmentation to Gaussianization

This book represents a collection of research topics in the larger field of signal-analysis methods
either supporting or directly used for biometric person identification and event detection. This
work is not an exhaustive review of signal-analysis methods for such security applications,
because this purpose, however tempting and interesting, is beyond the size limitations imposed
by the context of a professorial dissertation. The various topics discussed here are related not
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only as stages of a statistical decision-making process in the security field, but also as concepts
evolving from each other, as pointed out next.

The process of classification is one of decision making, as we have to decide for a new
sample to which class it belongs. From this perspective, segmentation is decision-making at
a pixel level, as we have to classify each pixel to either background or object. The hysteresis
classification paradigm, even though applicable to binary classification problems, was designed
for difficult segmentation tasks and as such it is able to successfully segment vessels.

Vessel segmentation is needed in a myriad of medical applications but also in security appli-
cations. The prime example in this latter filed being that of person identification, where vessel
segmentation is needed when using the vasculature as biometric cue, like for example in the
case of retina vessels, but also the palm vessels or the eye-ball vessels. Retina vessels are used
in high-security applications. Analyzing the palm vessel tree besides the palm print offers im-
proved performance. The vessels are used not only as a liveliness detector, but also to improve
the specificity of this method. The conjunctival vasculature can be used to improve iris-based
person identification, in particular for uncooperative subjects. Vessel segmentation is generally
used to extract a biometric feature vector, the identification is then conducted with the help of
this vector by various classification methods.

Assuming that several biometric feature vectors of the same person are available, the sparse
classifier represents a classification method very well suited to identification tasks. It offers high
accuracy despite small sample size and high robustness to distortions of the biometric feature
vector as well as speed, but it also offers inbuilt outlier-detection capability, which makes the
sparse classifier well suited for event detection as well.

For event detection, the sparse classifier needs, besides labeled sub-cases of what has been
defined as the normal case, also tailored feature extraction such that a set of conditions that allow
the usage of the sparse classifier are met. Furthermore, as usually event detection for security
applications implies the analysis of a time-dependent signal, this feature extraction step not
only supports the sparse-classification paradigm, but also helps adapt the sparse classifier for
the analysis of time signals.

Classifiers that inherently take into account the time-evolution of the analyzed data can be
devised from stochastic signal analysis methods. In a large number of cases, these methods
make the assumption that the data they analyze is Gaussian distributed.

To improve the appropriateness of such methods, we may want to transform the input data
such that it is Gaussian distributed, thus effectively ”gaussianizing“ the data. The Gaussianiza-
tion transform has then the purpose of modifying the distribution of the input data to Gaussian.
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Chapter 2

Theoretical background

The purpose of this chapter is to offer a review of various methods and algorithms related to the
research described in the next chapters. It is supposed to be used as a theoretical reference for
the novel approaches introduced in this work. In many cases, besides introducing the needed
concepts, a complete perspective over the respective topic is offered. This serves to underline
certain ways of thought whose influence can be then observed in the following chapters. Each
method is first put into context before being described in detail, trying as much as possible to
go from simple general considerations to detail in steps as small as necessary.

Section 2.1 reviews various estimation methods for both densities and signals. Section 2.2 is
dedicated to graph-based statistical inference and finally Section 2.3 to the sparse classification
framework. Density estimation is used throughout the entire book, with an emphasis on the
Gaussianization transform in Chapter 3, signal estimation, sparse classification and statistical
inference are used in particular in the applications Chapter 5.

2.1 Estimation

Estimation theory deals with the problem of finding values from observations to which they are
locked in a relationship. The estimate â of the value a is computed as a function of the observa-
tions and we may write âN = f(r1, r2, . . . , rN) when we useN observations ri, i = 1, 2, . . . , N
to compute the estimate. Usually the observations are afflicted by various disturbances and the
main difficulty resides in finding a good estimate of the sought values. The quality of an esti-
mate is established with the help of its properties.

Properties of Estimators. As the observations are random, the estimate itself is also a random
variable. The properties of a random variable need to be described in a statistical sense. For this
task we consider the process â(r) : ˆavek1, ˆavek2, ˆavek3 . . ., with r = r(a), where a is some
fixed parameter vector, and discuss Bias, Consistency and Efficiency.

Bias. An estimate â is called unbiased if

E {â(r)} = a.

35
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Consistency. An estimate is consistent if

lim
N→∞

P{|âN − a| < ε} = 1,

for an arbitrarily small ε ≥ 0. The sequence of estimates âN , N = 1, 2, . . . is said to converge
in probability to a.

Efficiency. An estimate is more efficient than another estimate if it has a smaller variance.
If â is any unbiased estimate, then the variance of any component âi is bounded by

E
{

(âi − ai)2
}
≥ j−1

ii , (2.1)

with i = 1, . . . , L. The lower bound j−1
ii is an element of the diagonal of the inverse of the

Fisher information matrix (see Appendix A).
If the sought parameter is a scalar, than (2.1) becomes

E
{

(âN − a)2
}
≥ 1

E
{[

d
da

ln pr|a(r|a)
]2} , (2.2)

with r = {r1, r2, . . . , rN} the set of available observations. The relation from (2.2) represents
the Cramér-Rao bound for the scalar estimate â. An estimate that satisfies the Cramér-Rao
bound with equality is the most efficient estimate of all. If âN is unbiased and efficient with
respect to âN−1 for all N , then it is also consistent.

The properties of estimates guide the search for the best estimate for various estimation
problems. We discuss density estimation in Section 2.1.1 and signal estimation in Section 2.1.2.
Section 2.1.3 concludes our discussion on estimation topics with the Expectation Maximization
algorithm.

2.1.1 Density estimation
To conduct statistical inference, we often need to know the Probability Density Function (pdf)
of the involved random variables. The pdf is related to the likelihood of various events defined
over the experiment described by the respective random variable. Density functions that are
sufficiently common in practice are described by mathematical formulas that involve a set of
parameters. The purpose of parametric density estimation is to compute these parameters from
the available data. Conversely, non-parametric density estimation is used when the generic
form of the density function is not known. Next we discuss both parametric and non-parametric
density estimation, for further references see [183, 167, 139].

Parametric estimation

In this case of parametric estimation, we determine one or more unknown parameters of a
known density function from noisy observations. The unknowns may be scalars, vectors, etc.
There are two main assumptions that can be made with respect to these parameters and that
we discuss separately next, the parameters can be assumed to be: (i) unknown constants1, or

1This is sometimes called "The frequentist approach".
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Figure 2.1: The ML setup.

(ii) random variables. Starting from a set of observations {ri}, i = 1, . . . , N , representing a
sample from the random variable r that is characterized by the parametric density pr|a(r|a) with
parameters a, we search for methods to compute â the estimate of a from the available sample.

When the parameter vector a is considered to be a random vector, we implicitly assume
knowledge of the a-priori density pa(a) and we can thus use the joint density pr,a(r, a) =
pr|a(r|a)pa(a). Parametric estimation procedures that use this joint density are sometimes gath-
ered under the name Bayes estimation [174]. As we discuss next, these procedures are related
to each other and many of them yield the same estimate under the Gaussian assumption.

Maximum Likelihood Estimation. The Maximum-Likelihood (ML) estimation yields an es-
timate under the assumption that a is some unknown constant (i.e., a realization of a random
variable). The ML estimation can be used as well when we have no knowledge of pa(a) or
we do not desire to let this knowledge influence our estimation. The setup valid in this case is
shown in Figure 2.1.

We start by defining the likelihood. For a given ri, we can compute the following function
of the parameter vector a: li(a) = pri|a(ri|a). The likelihood is then computed from the joint
probability of the entire set of observations r1:N = {ri}, i = 1, . . . , N , under the parameter
vector

pr|a(r|a) = pr1:N |a(r1:N |a) =
N∏
i=1

li(a) =
N∏
i=1

pri|a(ri|a),

assuming each realization in the available sample is conditionally independent under a. The
ML estimate of the parameter vector is then computed as:

â = arg max
a

pr|a(r|a). (2.3)

As the gradient disappears at the maximum, (2.3) leads to the Likelihood equation

d

da
pr|a(r|a) = 0. (2.4)

Since the logarithm is a strictly monotonic function, we can also use the equivalent Log-
Likelihood equation:

d

da
ln pr|a(r|a) = 0. (2.5)
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Figure 2.2: The MAP setup.

Maximum-a-Posteriori Estimation. The Maximum-a-Posteriori (MAP) estimation yields an
estimate under the assumption that a is a random variable. In this case, the following setup is
valid: a source generates a parameter vector a with the a-priori density function pa(a) and
pr|a(r|a) is the pdf of the observation r under the parameter a. This is illustrated in Figure 2.2.
In comparison to the ML estimation we consider that in this case we have additional information
with respect to a in the form of pa(a) and we want to use this information hoping for a better
estimate. Conversely, starting from the MAP setup we could reach the ML setup by assuming
that pa(a) is the uniform distribution and thus any a is equally probable.

We look for a such that the a-posteriori density pa|r(a|r) is maximal

â = arg max
a

pa|r(a|r). (2.6)

Using the Bayes rule we may express the a posteriori density as:

pa|r(a|r) = pa(a) pr|a(r|a)
pr(r) . (2.7)

Because the evidence term pr(r) in the denominator of (2.7) does not depend on the sought
parameter vector, we obtain:

â = arg max
a

pa(a) pr|a(r|a). (2.8)

By comparison to (2.6), (2.8) is easier to compute in practice.
The MAP estimate can be better than the ML estimate in particular when the estimation uses

a limited number of measurements and thus any prior information on a is a welcomed addition.
With a higher number of measurements, the ML estimate becomes asymptotically optimal what
consistency and efficiency are concerned.

Bayes estimation and the Gaussian assumption. Next, instead of building the likelihood
function, we assign a cost to each estimate â in relation to the true parameter vector a. This is
done with the help of the non-negative cost function C(â, a) that becomes zero when â = a.
The task we now face is to find the estimate that minimizes the riskR, defined as the expectation
of the cost function over the joint probability pr,a(r, a)

R = E {C(â, a)}
=

∫ ∞
−∞

∫ ∞
−∞

C(â, a)pr,a(r, a)drda

=
∫ ∞
−∞

I(â)pr(r)dr,
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with I(â) =
∫∞
−∞C(â, a)pa|r(a|r)da. Under the assumption that I(â) is strictly convex, to

minimize the risk we need to minimize I(â) and thus the sought estimate is the one for which

dI(â)
dâ

= 0. (2.9)

Choosing as cost function the squared error between the estimate and the true value,C(â, a) =
(â − a)2, we obtain, after solving (2.9)

â =
∫ ∞
−∞

apa|r(a|r)da, (2.10)

and therefore, the Minimum Mean Square Error (MMSE) estimate that minimizes the expected
squared error, is the mean of the a-posteriori density.

Another widely used cost function is the uniform cost function defined as [174]

C(â, a) =

0 for |â − a| ≤ ς

1 otherwise
,

which assigns a zero cost only to estimates within a small distance from a and maximal cost
otherwise. In this case, we obtain after solving (2.9) that the corresponding estimate is given by
the maximum of the a-posteriori density, and is thus the MAP estimate.

If the posterior is a Gaussian distribution, then the maximum of the density is at the position
of the mean value, and therefore the MMSE estimate is a MAP estimate. Thus, both the squared
error and the uniform cost functions lead to the same estimate only when the posterior is Gaus-
sian. Furthermore, it can be shown[176] that with a Gaussian posterior2 any cost function that
is a convex function of the distance δ = |â − a| leads to the same estimate (2.10). Therefore,
not only the squared error and the uniform cost functions are equivalent under the Gaussian
assumption but also the absolute error function C(â, a) = |â − a| and any cost function that is
a convex function of the distance δ.

Non-parametric estimation

In the case of non-parametric estimation, we need to find an unknown density function from a
set of observations. Next we give a concise revision of kernel smoothing for density estimation,
discussing both the univariate and the multivariate case.

Univariate kernel density estimation. We introduce univariate kernel density estimation
starting from the histogram and continue our discussion with methods designed to analyze the
performance of such estimation procedures. The methods discussed here are designed to ap-
proximate an unknown function. For this purpose they rely on a simple function called kernel.
Various such functions exist and the choice of kernel is a major design step in non-parametric
estimation. This simple functions have a parameter called bandwidth, which again has a major
influence on the quality of the computed estimate. The discussion on univariate kernel density
estimation methods is closed with practical modalities to select the bandwidth.

2Actually any posterior that is symmetric about its mean is enough.
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From histogram to kernel. The simplest univariate non-parametric density estimator is
the histogram. The histogram is a step function, the step hight being proportional to the number
of observation falling in an interval of the real axis related to the step length. This intervals
are called bins and they partition the real axis without overlap constructing a bin system. The
histogram as density estimator is computed as

p̃(x; b) = # observations in the bin containing x
Nb

, (2.11)

where N is the total number of available, independent observations and b is the width of a bin.
An additional factor that has to be taken into consideration is where the bin starts and where it
ends. For example, with respect to the origin (corresponding to zero), the bin system may be
centered there, may have it as left or as right edge, etc.

Defining the bin width as b = 2h, the probability of an observation x falling in a bin centered
at x̂ is P (|x̂ − x| ≤ h) = p̃(x̂) · 2h. This probability can be approximated also by the relative
frequency, i.e., the number of observations kx̂ falling in a bin centered at x̂, in which case the

probability is P (|x̂− x| ≤ h) = kx̂
N

. Then we have that

p̃(x̂) = kx̂
2hN ,

and considering the function

Kh(z) =


1

2h for |z| ≤ h

0 otherwise
,

we get

p̃(x̂) = 1
N

N∑
i=1

Kh(x̂− xi), (2.12)

where xi is the i-th observation from the set of available observations {x1, . . . , xN}.
In this setup Kh(z) is a kernel function with bandwidth h. Equation (2.12) can be written

equivalently as

p̃(x̂) = 1
Nh

N∑
i=1

K

(
x̂− xi
h

)
, (2.13)

where we have used Kh(u) = 1/h · K(u/h). To ensure that the estimate is indeed a density
(i.e, is positive and integrates to one) the kernel K has to satisfy the same conditions.

When using the histogram to approximate non-parametrically a density, the estimate is a
step function. In the kernel setup, one can switch to other kernels (other than the histogram-
equivalent uniform kernel) to generate continuous estimates. One widely used example is the
Gaussian kernel, defined as:

Kh(z) = 1√
2πh

e
−
z2

2h .
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Performance analysis. The performance of a density estimation procedure is defined by
how good does the computed estimate approximate the true density. This depends on the choice
of the kernel and of the bandwidth. As pointed before, various kernels lead to various esti-
mates. But more important than the kernel choice is the choice of the bandwidth. A too small
bandwidth leads to undersmoothing, while a too large one to oversmoothing.

To find the optimal kernel, various optimality criteria have been proposed. These criteria
are based on the squared error between the estimate p̃(·) and the true density p(·). Considering
these two functions, the Integrated Squared Error (ISE) is given by

ISE [p̃(·;h)] = ISE (h) =
∫

[p̃(x;h)− p(x)]2 dx.

The ISE can be used for a single set of observations, taking into account other possible sets, we
need to build the mean ISE as

MISE (h) = E {ISE(h)} .

Bandwidth selection. Based on MISE , efficient optimality criteria can be built that allow
the computation of the bandwidth hopt in close form, in relation to the kernel K(·) and the total
number of available observations N as

hopt =
[

R(K)
µ2

2(K)R(f ′′)N

] 1
5

, (2.14)

with µ2(K) =
∫
z2K(z)dz and R(g) =

∫
g(x)2dx, for any square-integrable function g(·). It

can be shown [167] that when p(x) is a member of the Gaussian family of distributions, equation
(2.14) can be simplified to

hopt =
[

8 ·
√
π ·R(K)

3 · µ2
2(K) ·N

] 1
5

σ̃, (2.15)

which leads to
hopt ≈ 1.06N− 1

5 σ̃, (2.16)

with σ̃, e.g., the parametric ML estimate of the standard deviation under the Gaussian assump-
tion. Equation (2.16) is known as Silverman’s rule-of-the-thumb for estimating the bandwidth
of a kernel.

Multivariate kernel density estimation. The extension of kernel density estimation to mul-
tidimensional random variables is not straightforward in practice, as many more bandwidth-
related parameters are required. The method is strongly afflicted by the curse of dimensionality.
Under these circumstances, similar to the univariate case, we discuss here besides the multivari-
ate estimator also performance analysis methods and bandwidth selection modalities.

The multivariate estimator. The kernel-based estimate of the density of a d-dimensional
multivariate random variable is given by

p̃(x̂) = 1
N

N∑
i=1

KH(x̂− xi), (2.17)
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where H is the symmetric, positive definite, d × d bandwidth matrix. Similar to the univariate
case, we have that KH(x) = |H|−

1
2 K

(
H− 1

2 x
)

where the kernel K must have all properties of
a density function. A popular choice for a kernel, is the standard multivariate Gaussian kernel
defined as

K(x) = 1
(2π) d2

e−
1
2 xTx

that leads directly to

KH(x) = 1
(2π) d2 |H| 12

e−
1
2 xTH−1x.

A further simplification is to assume that the bandwidth matrix is a diagonal matrix H =
diag(h2

1, . . . , h
2
d), in which case the kernel estimator becomes

p̃(x̂) = 1

N

(
d∏
l=1
hl

) N∑
i=1

K

(
x̂1 − xi,1

h1 , · · · , x̂d − xi,d
hd

)
,

with x = [x1, . . . , xd]T . In the most simple case, when H = h2I the number of parameters in
the multivariate bandwidth reduces to a single one, and we get:

p̃(x̂) = 1
Nhd

N∑
i=1

K

(
x̂− xi
h

)
. (2.18)

Performance analysis. As in the scalar case, the performance of the estimator depends
on the choice of kernel and bandwidth, but in the multivariate case, the choice of bandwidth
includes the type of bandwidth and the precise entries in the bandwidth matrix. Performance
measures are needed to allow us to make these choices in an optimal way. As in the univariate
setting, these measures have as starting point the MISE .

Bandwidth selection. It can be shown that if the density to be estimated p(·) is actually a
multivariate Gaussian distribution N(µ,Σ), then the optimal bandwidth matrix is given by

H = cΣ,

and thus the precision of the estimates depends only on d and N . If one assumes further that
H = diag(h2

1, . . . , h
2
d), then the components of the bandwidth matrix of a Gaussian kernel may

be estimated by

hi =
( 4
d+ 2

) 2
d+4

N−
2
d+4 σ̃i, (2.19)

with σ̃i the estimate of the standard deviation for vector component i. If all components of the
diagonal of H are equal we have an Isotropic Kernel, otherwise we have an Anisotropic Kernel.

2.1.2 Linear signal estimation
We concentrate next on estimating random signals (see Figure 1.3). In general, for this purpose
we assume that there exists a relationship linking the signal values to the available observations,
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which are also afflicted by random disturbances. The problem of signal estimation can then be
recast as the problem of finding the parameters of the inverse model of this relationship, such
that the estimate obtained from the observations is as close as possible to the true signal.

Assuming that the relationship linking observations and values is linear we work with the
following productive model that explains how the observations are “produced” from the true
signal values

r = Sa + n, (2.20)

with r a vector, S a matrix, a another vector and n zero-mean noise accounting for the random
disturbances. This model has several interpretations. In a possible interpretation, r is the ob-
servation, S is the relationship matrix and a is the true signal3. In an alternative interpretation,
r is the true signal, S is a signal matrix with consecutive chunks4 of the observed signal along
its lines, and a is the inverse model5.Thus, according to our model, the observations and true
signal are linearly related in the presence of noise. Next, we will discuss methods to obtain an
estimate of the vector a.

Although at this stage there are no further assumptions on the additive noise term, the es-
timation procedures we describe next use only moments up to the second order. Therefore,
what concerns various independence assumptions, they are suited only if the analyzed signals
are white and Gaussian. Furthermore, these methods work only for stationary signals. The
nonlinear and nonstationary case is discussed in Section 2.2.

We start our discussion with the least-squares estimation method that we apply at the design
of the linear least-squares filter. The unbiased least-squares estimate is concerned with mini-
mizing the error of fit between model output and observed data, but there is no assertion made
about its variance. In this respect, the least-squares estimate works in the same setup as the ML
estimate. When minimizing this variance we obtain another type of estimator, the minimum
mean square error estimator, which works in a setup similar to the MAP estimate. We continue
our discussion with the Wiener filter that represents the practical implementation of the MMSE
in the case of signal estimation. Finally we describe the Wiener-filter related one-step linear
predictor. For further references see [139, 92].

Least-Squares Estimator

We look for an unbiased estimate â, when E{â(r)|a} = a. It follows that in the case of linear
estimation â = Ar, the condition AS = I must be fulfilled, as E{â(r)|a} = E {ASa + An}
and E {n} = 0.

With f = r− Sα, the error vector, the least-squares estimate minimizes the approximation
error ε2 = fT f =‖ r− Sα ‖2

`2 and thus:

â(r) = arg min
α

‖ r− Sα ‖2
`2 .

By setting ∂ε2

∂α = 0 we obtain

â(r) =
[
SHS

]−1
SHr,

3An example for this interpretation is to consider r a time-domain observed signal, S the inverse of the Fourier
transform and a the Fourier-transformed true signal.

4Consecutive chunks of signal may be obtained with a sliding window.
5In a related interpretation, r is the observation, S is a signal matrix with consecutive chunks of the true signal

along its lines, and a is a relationship vector.
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and therefore, the sought estimator is given by A =
[
SHS

]−1
SH . With this estimator, â(r)

represents the least-squares estimate for signal spaces where the scalar product is defined as
〈x,y〉 = yHx.

For spaces where the scalar product is defined as 〈x,y〉 = yHGx, the estimate is

â(r) =
[
SHGS

]−1
SHGr, (2.21)

and is called the generalized least-squares estimate, the corresponding estimator being A =[
SHGS

]−1
SHG.

Best Linear Unbiased Estimator. By the Gauss-Markov theorem, for the model in (2.20),
under conditions that we introduce next, the least squares estimator represents the Best Linear
Unbiased Estimator (BLUE).

If we choose G = R−1
nn with Rnn = E{nnH}, then (2.21) yields the unbiased estimate with

the smallest variance (i.e., minimal diagonal elements for Ree):

â(r) =
[
SHR−1

nnS
]−1

SHR−1
nnr.

For the BLUE, the estimator is computed as A =
[
SHR−1

nnS
]−1

SHR−1
nn . If the noise process is

white with covariance matrix Rnn = σ2I, then A =
[
SHS

]−1
SH and the standard least-squares

estimator is the BLUE.

The Least Squares Estimator and the Gaussian Assumption. Within the context of least
squares signal estimation, the Gaussian assumption is made with respect to the noise term n.
We will show next that when the noise term is white and Gaussian the least-squares estimator
achieves the Cramer-Rao bound. We observe that when the components of the involved random
variable are independent the least squares estimator yields the best possible result.

When the error process is white with zero mean and common variance over all elements
such that E

{
nnH

}
= σ2I, the covariance matrix cov[â] = E

{
(â − a)(â − a)H

}
of the least-

squares estimate is:

cov[â] = E
{

(SHS)−1SHnnHS(SHS)−1
}

= (SHS)−1SHE
{
nnH

}
S(SHS)−1

= σ2(SHS)−1SHS(SHS)−1

= σ2(SHS)−1

= σ2Φ−1.

If on top of this the error process n = r− Sa is also Gaussian, the Fisher information matrix J
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is computed as [92]:

J = 1
σ4E

{
SHnnHS

}
= 1
σ4 SHE

{
nnH

}
S

= 1
σ2 SHS

= 1
σ2Φ

It follows that the covariance matrix of the estimator is under these conditions equal to the in-
verse of the Fisher information matrix and thus the least-squares estimate â satisfies the Cramer-
Rao bound with equality, being thus the most efficient estimate.

The Linear Least-Squares Filter

The Least-Squares (LS) estimator can be used to compute the parameters of a filter. The purpose
of this filter is to estimate the true random signal from a set of noisy observations. The estima-
tion procedure is linear such that the estimate is computed as a weighted sum of noisy-signal
values. The corresponding setup is shown in Figure 2.3.

Filter

++ -

Figure 2.3: Problem setup of the linear least-squares filter.

By this method we have the possibility to compute the weights of the filter, without invoking
assumptions on the statistics of the filter input. The method of least squares involves the use of
time averages, hence the filter depends on the number of samples used in the computation.

For a transversal filter with weights h(n), n = 0, . . . , p − 1, the estimation error 6 (i.e.,
residual) is

e(i) = d(i)− y(i)

= d(i)−
p−1∑
n=0

h∗(n)r(i− n)

where d(i) is the desired filter output and y(i) =
p−1∑
n=0

h∗(n)r(i−n) is the realized output for the

input r(i) = [r(i), r(i− 1), . . . , r(i− p+ 1)]T .
h is chosen such that the cost function

J(h) =
i2∑
i=i1
|e(i)|2

6The error process is usually assumed white with zero mean and variance σ2.
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is minimized. i1,2 define the index limits at which the error minimization occurs, i.e., the training
data. With i1 = p and i2 = N we have to minimize J(h) = eHe with

e = d− Sh

where the input data is arranged in matrix form as

S =


r(p) r(p+ 1) · · · r(N)
r(p− 1) r(p) · · · r(N − 1)
...

...
...

r(1) r(2) · · · r(N − p+ 1)

 .

The least-squares estimator of the filter weights is then computed as:

h = [SHS]−1SHd.

The filter resulting from the minimization is termed a linear least-squares filter.

Minimum Mean Square Error Estimation

The correlation matrix of the estimation error of a linear estimate â(r) = Ar is:

Ree = E
{
e(r)eH(r)

}
= E

{
[â(r)− a] [â(r)− a]H

}
.

For an unbiased estimate, the diagonal elements of Ree represent the variances of each compo-
nent of â. We search now for an estimate with minimal variance. For this purpose we minimize
over A the elements on the diagonal of Ree to obtain [139] (see also Appendix A)

A = RraR−1
rr (2.22)

with Rar = E{raH} = RH
ra and Rrr = E{rrH}. Hence, the minimum mean square error

(MMSE) estimate is

â(r) = RraR−1
rr r.

For the model in (2.20), assuming n is not correlated to a, we have that Rra = RH
ar = RaaSH

and Rrr = SRaaSH + Rnn. Thus, we obtain

A = RaaSH
[
SRaaSH + Rnn

]−1
,

which is equivalent to

A =
[
R−1
aa + SHR−1

nnS
]−1

SHR−1
nn .

The correlation matrix of the estimation error is Ree =
[
R−1
aa + SHR−1

nnS
]−1

.
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The connection between MMSE and BLUE and the link to the Gaussian Assumption. If
the matrix Raa is not known, the we set R−1

aa = 0 and it follows that

A =
[
SHR−1

nnS
]−1

SHR−1
nn

which represents the BLUE estimator. The MMSE estimation method may yield an estimate
that has a smaller variance than BLUE, but this estimate will be biased.

We have seen in the previous section, that under the Gaussian assumption (on the posterior of
the estimate) the MMSE estimator is a MAP estimator. Ignoring Raa is equivalent to switching
from the MAP to the ML setup. Thus, we conclude that when ignoring Raa under the Gaussian
assumption, MMSE becomes BLUE and is a type of ML estimator. As discussed above, if the
error process is white, the least-square estimator is the BLUE. Therefore when the error process
is white and Gaussian, the least-square estimator is a ML type of estimator.

The Wiener Filter

As previously discussed, we consider that the true signal is related to the noisy observations in
a linear manner and it can be thus estimated from those with the help of a linear model. The
linear model tells us how to combine the noisy observations (up to and including the current one)
for the purpose of computing an estimate of a true signal sample. Under these circumstances,
with the Wiener filter we follow the purpose of estimating the form of a signal from noisy
observations. Therefore, we make use of discrete linear filters and in particular we concentrate
on FIR-filter structures. We proceed by means of MMSE in a setup depicted in Figure 2.3 and
obtain the Wiener-Hopf equations, whose solution yields the Wiener filter.

The Wiener-Hopf Equations. We search for an FIR filter h(n) such that its output y(n) =
h(n) ∗ x(n) = ∑p−1

i=0 h(i)x(n− i), which represents the sought estimate, verifies

E
{
|e(n)|2

}
= E

{
|d(n)− y(n)|2

}
→ min

when x(n) is the noise-corrupted signal and d(n) the desired output, i.e., the true signal. This
cost function may be written as:

J = E {e(n)e∗(n)}

= E
{
|d(n)|2

}
−

p−1∑
i=0

h∗(i)E {x(n− i)d∗(n)}−

−
p−1∑
i=0

h(i)E {x∗(n− i)d(n)}+
p−1∑
k=0

p−1∑
i=0

h∗(k)h(i)E {x(n− k)x∗(n− i)}

= σ2
d −

p−1∑
i=0

h∗(i)rxd(−i)−
p−1∑
i=0

h(i)r∗xd(−i) +
p−1∑
k=0

p−1∑
i=0

h∗(k)h(i)rxx(i− k),

(2.23)

with
rxx(m) = E {x∗(n)x(n+m)} ,

rxd(m) = E {x∗(n)d(n+m)} .
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Delay Filter +
+

-

Figure 2.4: A one-step linear predictor. The Filter corresponds to the linear operator relating
the predicted value to the available observations.

Assuming a stationary process, J is a second-order function of h(n) and by setting to zero
its derivative with respect to the filter weights, we obtain the Wiener-Hopf Equations (see also
Appendix B):

p−1∑
i=0

h(i)rxx(j − i) = rxd(j), j = 0, 1, . . . , p− 1. (2.24)

The discrete Wiener Filter. The discrete Wiener filter is obtained by solving the Wiener-
Hopf Equations (2.24). In matrix form (2.23) becomes:

J(h) = σ2
d − hHrxd − rHxdh + hHRh.

From∇J(h) = 0 we obtain
Rxxh = rxd, (2.25)

with
h = [h(0), h(1), . . . , h(p− 1)]T ,

rxd = [rxd(0), rxd(1), . . . , rxd(p− 1)]T ,
and

Rxx =


rxx(0) rxx(−1) · · · rxx(−p+ 1)
rxx(1) rxx(0) · · · rxx(−p+ 2)
...

...
...

rxx(p− 1) rxx(p− 2) · · · rxx(0)

 .
The Wiener Filter is then computed as:

h = R−1
xx rxd. (2.26)

In the case of the Wiener filter one needs to know the desired output for the corresponding input
only in the training phase, when h is computed.

One-step Linear Prediction

The linear predictor (see Figure 2.4) predicts one step into the future, i.e., it predicts the next
value of the input signal, using a linear combination of the current and past values.

A predicted signal value x̂(n) is computed as a linear combination7 of p signal values x(n−
p), . . . , x(n− 1) as:

x̂(n) = −
p∑
i=1

a(i)x(n− i). (2.27)

7The reason for the negative sign in the formula will become clear later.
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• The numbers a(1), a(2), . . . , a(p) are the (fixed) coefficients of the above mentioned lin-
ear combination.

• The sequence
h(n− 1) = −a(n)

can be seen as the impulse response of a length-p FIR filter.

• With y(n) = x̂(n) we have the following equivalent to (2.27):

y(n) =
p−1∑
i=0

h(i)x(n− i).

The one-step linear predictor enjoys a clear link to the Wiener filter and through the Yule-
Walker equations to autoregressive processes as well. Both these relationships are discussed
next, as well as the relationship between linear signal prediction and the Gaussian assumption.

Coefficient optimization. The “optimal” coefficients a(n) depend on the statistics of the ran-
dom process x(n). In the following, we will describe how these coefficients can be found.

The prediction error can be written as

e(n) = x(n)− x̂(n)

= x(n) +
p∑
i=1

a(i)x(n− i).
(2.28)

The aim is now to minimize the mean squared error

F = E
{
|e(n)|2

}
under the assumption of a stationary input process x(n). We have

F = E
{
x2(n)

}
+ E

{
2

p∑
i=1

a(i)x(n− i)x(n)
}

+E


p∑
i=1

a(i)x(n− i)
p∑
j=1

a(j)x(n− j)

 .
Only x(n) is random, so we can write

F = E
{
x2(n)

}
+ 2

p∑
i=1

a(i)E {x(n− i)x(n)}

+
p∑
i=1

p∑
j=1

a(i) a(j)E {x(n− i)x(n− j)} .

The expected values turn out to be values of the autocorrelation sequence of the input process
x(n). For a real-valued stationary process, this is defined as

rxx(m) = E {x(n)x(n+m)} .
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Because rxx(m) = rxx(−m) for a real-valued stationary process, we have

E
{
x2(n)

}
= rxx(0),

E {x(n− i)x(n− j)} = rxx(i− j),
E {x(n− i)x(n)} = rxx(i).

Thus, we have that

F = rxx(0) + 2
p∑
i=1

a(i)rxx(i) +
p∑
i=1

p∑
j=1

a(i) a(j) rxx(j − i).

Minimizing the error with respect to the unknown coefficients a(1), . . . , a(p) yields the equa-
tions

−
p∑
i=1

a(i) rxx(j − i) = rxx(j), j = 1, 2, . . . , p,

which are known as the normal equations of linear prediction. In matrix notation they are
rxx(0) rxx(−1) . . . rxx(−p+ 1)
rxx(1) rxx(0) . . . rxx(−p+ 2)
...

...
...

rxx(p− 1) rxx(p− 2) . . . rxx(0)



a(1)
a(2)
...

a(p)

 = −


rxx(1)
rxx(2)

...
rxx(p)

 (2.29)

In short we get
Rxxa = −rxx(1) with aT = [a(1), . . . , a(p)] . (2.30)

By comparing equation (2.25) to equation (2.30), we can observe that the one step linear pre-
dictor is nothing more than the Wiener filter in predictor setup, i.e., when the desired response
is just the signal itself, more precisely the next observation from the analyzed random signal.

Yule-Walker equations. An autoregressive (AR) model of a random signal is obtained by ap-
plying white noise8 w(n) to the input of an all-pole LTI system with coefficients a = [a(1), . . . , a(p)]T ,
such that the corresponding difference equation is

x(n) = w(n)−
p∑
i=1

a(i)x(n− i).

The Yule-Walker equations return the parameters of an AR model, given the autocorrelation
of the modeled process and the power of the corresponding white noise:

rxx(0) rxx(−1) . . . rxx(−p)
rxx(1) rxx(0) . . . rxx(−p+ 1)
...

...
...

rxx(p) rxx(p− 1) . . . rxx(0)




1
a(1)
...

a(p)

 =


σ2
w

0
...

0

 . (2.31)

As it may be seen, the Yule-Walker equations include the normal equations of linear predic-
tion (2.29) and an additional relation describing the AR model. It may thus be concluded that a
linear predictor is best suited to analyze a signal that represents an AR process.

8White noise is a wide-sense stationary and uncorrelated stochastic signal. For a purely random signal, the set
distributions are independent. Thus, white Gaussian noise is a strict-sense stationary purely random signal.
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Sample prediction and the Gaussian assumption. We assume that all samples available for
the prediction x(n − i), i = 1, . . . , p are Gaussian with zero mean and covariance matrix Rp

and we would like to find x̂(n) the best estimate for the next sample x(n). As discussed before,
this estimate can be found, with a quadratic cost function as the mean of the posterior density
p(x(n)|xp), where xp = [x(n− 1), . . . , x(n− p)]T . It can be shown [174] that this posterior is
given by

p(x(n)|xp) = 1√
2π

exp

−
(
x(n)− gTxp

)2

2σ2


with σ =

√
|Rp+1|
|Rp|

, g = R−1
p ϕ andϕ = E {x(n)xp}. With this Gaussian posterior, the sought

estimate9 is given by x̂(n) = gTxp, i.e., a linear combination of the previous samples, just like
the one-step linear predictor. Thus, when the samples are jointly Gaussian, the one-step linear
predictor represents the best predictor. However, it is not guaranteed that a linear combination
of previous samples represents the best predictor under different circumstances.

2.1.3 Expectation maximization
Expectation Maximization (EM) [86] is an iterative method for computing a ML estimate â of
a set of parameters a. The parameters are related to some complete data. The complete data
is usually a set of realizations of the complete random variable c. The estimate is computed
with only some observations of the incomplete data that is generated by the incomplete random
variable r. The incomplete/observed data has to have a known relationship to the complete
data. For example, assuming c has dimension N , r can be the vector containing only the first
k, k ∈ {1, . . . , N − 1} components of c, or r may include a number k of functions of the other
N − k entries of c. In general, we can assume that c = [r, z], where z is some hidden data.
To compute our estimate we have at our disposal O observations not necessarily i.i.d. extracted
from the incomplete data R = {r1, r2, . . . , rn}.

Next, the general EM algorithm is discussed and then an example is given of EM-based
estimation for missing-data problems under the i.i.d. assumption, in which context it is shown
how to compute the parameters of a Gaussian mixture model (GMM). GMMs are widely used
models in all types of applications ranging from audio [195] to background modeling [120].
The are often employed, e.g., as parametric approximations to more complex distributions. We
will conclude our discussion on the EM algorithm by analyzing some shortcomings, as well as
emphasizing the link between this algorithm and some stochastic signal analysis methods that
are used later on.

The general form of the EM algorithm

The EM algorithm computes a ML estimate. As discussed before, for this purpose it suffices
to solve the corresponding log-likelihood equation (see equation (2.5)). As we have only the
incomplete data at our disposal, we set about to formulate the log-likelihood of the incomplete
data under the sought parameters a with the purpose of obtaining an expression where the

9As pointed out before, under such circumstances, the estimate represents the optimum by a number of cost
functions and not only by the quadratic cost function.
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optimum over a can be readily computed. We start from the logarithm of the density of the
observed data, which we compute with the help of some function q(z) that is member of a
family of pdf approximations Q:

log p(r) = log
∫
p(r, z)dz

= log
∫
q(z)p(r, z)

q(z) dz.

Using Jensen’s inequality, while taking into consideration, that log is a concave function and
making the dependency on the parameter vector a explicit, we obtain a lower bound for log p(r|a)
as:

log p(r|a) ≥
∫
q(z) log p(r, z|a)

q(z) dz. (2.32)

A careful look at the right-hand side of this inequation reveals it to be a functional on q and a
that can be expanded as:

L(q, a) =
∫
q(z) log p(r, z|a)

q(z) dz

=
∫
q(z) log p(r, z|a)− q(z) log q(z)dz.

So our problem is now recast as finding q and a for which L(q, a) is maximal that will lead us to
the a for which the log-likelihood log p(r|a) is maximal. Then, as already implied in its name,
the EM algorithm is a coordinate ascent in L including two main steps that repeat iteratively
until the parameter vector does not change significantly anymore:

• E-step: Given a parameter âm from the previous iteration estimate:

q̂m+1 = arg max
q∈Q
L(q, âm).

• M-step: Given the conditional qm+1 from the previous step compute:

âm+1 = arg max
a∈A
L(qm+1, a).

To solve the E-step, we rewrite L as∫
q(z) log p(r, z)

q(z) dz =
∫
q(z) log p(z|r)p(r)

q(z) dz

=
∫
q(z) log p(z|r)

q(z) dz +
∫
q(z) log p(r)dz

= log p(r)
∫
q(z)dz +

∫
q(z) log p(z|r)

q(z) dz

= log p(r)−
∫
q(z) log q(z)

p(z|r)dz, (2.33)

where we have dropped the dependency on a for the sake of clarity. Looking at the right side
of the equation (2.33), we recognize the second therm of the difference as the Kullback-Leibler
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divergence between q(z) and p(z|r). This is zero only when the two are equal, being otherwise
positive. It appears thus clear that that solution of the E-step is q(z) = p(z|r), in which case the
functional L(p(z|r), a) evaluates to log p(r|a), the log-likelihood of the incomplete data, and
the inequation (2.32) holds with equality.

In the M-step we need then to maximize over a

L(p(z|r, âm), a) =
∫
p(z|r, âm) log p(r, z|a)− p(z|r, âm) log p(z|r, âm)dz,

where we made the dependency on âm clear. This is equivalent to maximizing

Lc(a) =
∫
p(z|r, âm) log p(r, z|a)dz

over a as the second term of the difference does not depend on a. It is interesting to note that
Lc(a), called the complete log likelihood, is an estimate of the log-likelihood of the complete
data computed as the expectation of the log-likelihood over the conditional of the hidden data
on the observed data, as p(c|r) = p(z, r|r) = p(z|r).

The two steps of the EM algorithm become then:

• E-step: Given an estimate âm from the previous iteration, compute Lc(a).

• M-step: Compute âm+1 as:

âm+1 = arg max
a∈A

Lc(a).

It is advantageous to divide and complete the above set of steps, obtaining thus a five-steps
algorithm:

1. Start with an initial (i.e., m = 0) estimate âm of the sought parameter vector.

2. Given the observed incomplete data and the estimate from the step above, build the con-
ditional p(z|r, âm).

3. Use the conditional from the previous step to build the complete log likelihood Lc(a).

4. Compute âm+1 as the argument that maximizes the Lc(a).

5. Increase m and go to step two if the estimate changes significantly, otherwise stop.

The EM algorithm is not guaranteed to find the global optimum, being thus susceptible
to get stuck into local optima. The standard solution to this problem is to start from several
initializations and pick the final result that has the largest likelihood.

EM-based estimation for missing data problems under the i.i.d. assumption

In many applications, like for example when learning the parameters of a GMM, from unlabeled
data we have a missing data problem with i.i.d. observations. We speak of missing data prob-
lems, when there is no information available to link the complete and the incomplete data. Then,
the complete data is a set of independent identically distributed samples C = {c1, c2, . . . , cn},
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each one consisting of an observed ri, and an unobserved zi, i = 1, . . . , n, with no functional
relationship between the two.

The first task we face is to find a mathematical expression for the conditional of the hid-
den data on the observed data under a give parameter vector. Here we can make use of our
prior knowledge on the problem setup. We then use this conditional to express the complete
log-likelihood as a function of the parameters given the available sample from the observed
data. Finally we find the sought parameters at the location of the maximum of the complete
log-likelihood. This procedure is illustrated next for finding the parameters of a GMM from
unlabeled data.

Estimate the parameters of a GMM. Our purpose is to estimate the parameter vector a =[
(wj,µj,Σj)

]
, j = 1, . . . , k, from n vectors r1, . . . , rn, i.i.d. generated from a mixture of k

Gaussians with density

p(ri|a) =
k∑
j=1

wjγj(ri|µj,Σj)

with γj(x) = N (µj,Σj), and where wj ≥ 0 and
∑k
j=1 wj = 1. Our complete data is given by

ci = [ri, zi] , i = 1, . . . , n, where the hidden data zi is the mixture-component label for each
observation. Therefore in this case the hidden data is a scalar random variable whose sample
space (that includes all outcomes/elementary events) is Ωzi = {1, 2, . . . , k}.

We now define the conditional of the hidden data on the observed data under a give param-
eter vector. This is the probability that at the m-th iteration, the i-th sample was generated by
the j-th mixture component, computed as:

P (zi = j|ri, âm) =
w

(m)
j γ(ri|µ(m)

j ,Σ
(m)
j )∑k

l=1 w
(m)
l γ(ri|µ(m)

l ,Σ
(m)
l )

. (2.34)

Given one instance ri from the sample of observed data and the parameter vector from
iteration m, the complete log-likelihood is computed as:

Lic(a) =
k∑
j=1

P (zi = j|ri, âm) log [p(ri, zi|a)]

=
k∑
j=1

α
(m)
ij log

[
wjγ(ri|µj,Σj)

]
=

k∑
j=1

α
(m)
ij

[
log (wj)−

1
2 log |Σj| −

1
2(ri − µj)TΣ−1

j (ri − µj)
]

+K

where for a compact notation we define α(m)
ij = P (zi = j|ri, âm), with

∑k
j=1 α

(m)
ij = 1. K is

a constant, independent of a, and can therefore be ignored in our optimization setup. With L̂ic
obtained from Lic by ignoring K we can complete the E-step as:

Lc(a) =
n∑
i=1

L̂ic(a)

=
n∑
i=1

k∑
j=1

α
(m)
ij

[
log (wj)−

1
2 log |Σj| −

1
2(ri − µj)TΣ−1

j (ri − µj)
]
.

(2.35)
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With the complete log-likelihood given in equation (2.35), the M-step is then:

find a to maximize Lc(a),

subject to
k∑
j=1

wj = 1, wj > 0, Σj is positive definite, j = 1 . . . , k. (2.36)

Solving the M-step (2.36), leads to âm+1 =
[
(w(m+1)

j ,µ
(m+1)
j ,Σ

(m+1)
j )

]
, j = 1, . . . , k where

w
(m+1)
j =

n
(m)
j∑k

l=1 n
(m)
l

,with n(m)
j =

n∑
i=1

α
(m)
ij , (2.37)

µ
(m+1)
j = 1

n
(m)
j

n∑
i=1

α
(m)
ij ri

and

Σ
(m+1)
j = 1

n
(m)
j

n∑
i=1

α
(m)
ij (ri − µ(m+1)

j )(ri − µ(m+1)
j )T .

As it can be seen, in equation (2.37), the EM algorithm establishes a relationship between
the missing data given in this case by the unknown label of each instance of the observed-data
sample and one of the sought parameters. Furthermore, with the help of equation (2.34) we can
label the available data and therefore conduct unsupervised classification in a MAP approach
with the prior given by wj and the likelihood by γj(x).

Although the EM algorithm can be randomly initialized, practically it is better to use the
k-means clustering for initialization.

Concluding remarks on the EM algorithm

The EM algorithm is a powerful tool widely used in the statistical analysis of data. It has
generated a multitude of other algorithms that follow similar principles to iteratively search for
parameters and/or hidden data.

Depending on the application, the algorithm has also some drawbacks, like for example, the
fact that the number k of clusters has to be set a-priori, when using the EM for unsupervised
classification. In this case, to find the optimal solution, we need to use additional methods like
Minimum Message Length or Bayes Information Criterion [66]. There are extension of the EM
algorithm that incorporate such considerations directly and find the optimal k alone [70].

Extensions of the EM algorithm for various setups are usually referred to as generalized EM.
The Baum-Welch algorithm, that is used to train a Hidden Markov Model (HMM) is such an
example. A generalized EM is used also to train a Maximum Entropy Markov Model (MEMM)
and EM-inspired algorithms are used to conduct training in CRFs as well.

The EM algorithm represents the application of a broader class of algorithms known as
variational methods [107] to the problem of parameter estimation. Variational methods are
particularly helpful for the practical deployment of graphical models as discussed in the next
chapter.
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2.2 Graphs in the probability theory
Probabilistic inference and learning can be described by both algebraic manipulations and by
graphical models [20]. Probabilistic graphical models provide a simple way to visualize the
structure of a probabilistic model. They substitute complex computations required to do infer-
ence and learning for graphical manipulations and may thus serve as a backbone for efficiently
computing marginal and conditional probabilities. They also give insight into the properties of
the model, in particular conditional independence properties.

General inference. Inference in a statistical setup is related to the computation of joint and
conditional probabilities over various subsets of a set of random variables that completely de-
scribe the modeled reality (i.e. a probabilistic model). These probabilities are typically used to
investigate relationships among the random variables. Two major tools in statistical inference
are the sum rule and the product rule.

For a set of N discrete random variables {x1, . . . , xN}, the sum rule is used to compute the
probability p(x1, . . . , xN−S) of a subset of random variables by marginalizing p(x1, . . . , xN)
over the complementary subset of random variables {xN−S+1, . . . , xN}:

p(x1, . . . , xN−S) =
∑

xN−S+1

· · ·
∑
xN

p(x1, . . . , xN). (2.38)

The product rule relates a joint probability to a conditional and another joint probability. It is
used to compute the conditional of a subset of random variables on another subset of random
variables as a fraction of two joint probabilities:

p(xn1 , . . . , xnK , |xm1 . . . , xmL) = p(xn1 , . . . , xnK , xm1 . . . , xmL)
p(xm1 . . . , xmL) .

Efficient inference. Marginals can be computed efficiently by means of the sum-product al-
gorithm, which makes use of the distributivity property of multiplication with respect to addi-
tion. An efficient algorithm implies less computations than the number needed to evaluate the
sum in Equation 2.38. The sum-product algorithm uses a message-passing formalism.

Similar considerations lead to the efficient computation of other measures of interest, like
the most probable realization xmax = arg maxx p(x), which can be achieved by the max-sum
algorithm.

These methods that are typically introduced in the context of special types of graphical
models (i.e., trees), can be extended to offer efficient solutions for exact inference in general
graphical models in the form of the junction-tree algorithm that is discussed briefly in Sec-
tion 2.2.2. However, in practice exact inference in graphical models of arbitrary topology even
if conducted efficiently is often not feasible due to the share size of the model. Yet another issue
with exact inference is the mathematical expression of the involved distributions, which may
become intractable10. In such cases approximation methods are needed [107]. These approx-
imation methods may target the inference procedure and/or the involved distributions. There
are three main types of such methods: (i) relaxation methods that are adaptations of fast exact
inference methods where some conditions needed for successful exact inference are ignored,
like the loopy belief propagation that represents the application of the sum-product algorithm

10This may happen for example when the underlaying integrals can not be computed.
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for trees (i.e., belief propagation) to graphs with loops, (ii) variational methods that are built
around an optimization procedure like the one discussed in equation (2.33) and (iii) sampling
or Monte Carlo methods that are based on sampling from distributions.

Conditional independence. A random variable (or set of random variables) a is conditionally
independent of b given c if

p(a, b|c) = p(a|c)p(b|c) (2.39)

or equivalently a y b|c if:
p(a|b, c) = p(a|c). (2.40)

In this context, a and b are not independent, as they are related over c. They can be however
looked upon as unrelated proofs for c. For example, measuring rainfall in a weather station
is conditionally independent of how wet you get when you go outside given the current rainy
weather.

A graph captures the way in which the joint distribution of several random variables can
be decomposed into a product of factors – each depending only on a subset of the variables –
based on their independence properties. Each node represents a random variable (or a group
of random variables). Each arc expresses the probabilistic relationship between these variables.
Depending on whether the arcs are directed or undirected, there are two types of graphical
models: (i) Directed graphical models, or Bayes networks that are discussed in Section 2.2.1
with an accent on Dynamic Bayes Networks, and (ii) Undirected graphical models, or Markov
random fields that are discussed in Section 2.2.2.

2.2.1 Bayes networks and dynamic Bayes networks
For Bayes networks , a directed arc signifies conditional dependence. A node A is parent to
a node B if there is a directed arc from A to B. The descendants of a node are its children,
children’s children and so on. A directed path from A to B is a sequence of parent-child nodes
starting at A and ending at B. An undirected path from A to B is a sequence of nodes such that
each node in the sequence is a parent or child to the next one. Inference in Bayes networks is
related to the search for conditional independences among variables of the graph.

Conditional independence. In a Bayes network each node is conditionally independent from
its non-descendants given its parents and the absence of arcs implies conditional independence.
More subtle conditional independence relationships may be investigated with the help of D-
separation. D-separation is a graphical test for conditional independence. Two nodes A and B
are conditionally independent given C if C d-separates them. A set of nodes SD d-separates
two disjoint sets of nodes S1 and S2, if every undirected path from S1 to S2 is blocked. A path
is blocked if there is a node X such that either one of the following properties holds:

• X has converging arrows and neither it nor its descendants are in SD.

• X does not have converging arrows and is in SD.

In general we can say that a path is blocked when there is node on the path that belongs to the
conditioning set, except for the case when this node has converging arrows. This is related to the
phenomena of “explaining away”, where observing a child node (i.e., a node with converging
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arrows) does not imply conditional independence of the parents. Indeed, assume that admission
to an university depends on passing any one of two exams. Now given that admission has been
successful and the second exam was passed we compute a probability for having passed the first
exam as well that is smaller by comparison to the probability of having passed the first exam
given that admission was successful and without considering the result of the second one. Thus
equation (2.40) does not hold and the result on the first exam is not independent from the result
of the second exam given that you know if the admission was successful or not. Intuitively, we
can say, that knowing that admission was successful and the second exam was passed makes
the result on the first exam unimportant so it may as well have been flunked, it does not matter,
as the result on the second exam has explained the admission away.

Dynamic Bayes Networks. A Bayes network applied to a stochastic processes is called a
Dynamic Bayes network (DBN). In this case, directed arcs point forward in time. We are thus
considering only directed acyclic graphs, where there are no directed loops. DBNs usually
work in a recursive manner, the model being extended at each time index, when a measurement
becomes available. This has thus to do with the fact that the size (and thus final shape) of the
model is not known beforehand. Conversely their architecture is well suited for such cases. As
an example, consider a sequence of time-consecutive observations {y1,y2, . . . ,yT} constituting
a first order Markov model. Their joint probability can be then factorized like:

p(y1,y2, . . . ,yT ) = p(y1)p(y2|y1) · · · p(yT |yT−1). (2.41)

The DBN corresponding to this case is shown in Figure 2.5.

y1 y 2 y3 yT

Figure 2.5: A Dynamic Bayes network

The architecture of a DBN - similar to the case of a Bayes network - must be adapted to
the practical problem it models. There are however some simple yet powerful DBNs often
encountered in practice on which we will focus next. Let us assume now, that observations are
dependent on some hidden variables called states, and the states constitute a first-order Markov
chain. We obtain thus a new type of stochastic model with increased modeling capacity. This
may be used, among others, for purposes like estimating a “state signal” from an “observation
signal”. The hidden variables live in the state space that can be either discrete or continuous.
A DBNs for a discrete state space case is shown in Figure 2.6 and a DBN for a continuous
state space Figure 2.8. Each of these two cases will be analyzed in more detail, but first we
will discuss about how to conduct inference in these simple state-observation DBNs. This
represents the foundation upon which inference in more complicated DBNs lays. Furthermore,
even this relatively simple DBNs are of huge practical importance, which serves to underline
the versatility of the graphical models framework.

Inference in state-observation DBNs

As pointed out previously, inference implies the computation of various joint and conditional
probabilities. For the case of state-observation DBNs, there are several quantities of interest.
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A task often encountered in practice is to find out the sequence of states corresponding to an
available sequence of observations. In a maximum likelihood approach, we seek to maximize
the joint probability of observations and states over the states:

p(x1, . . . ,xT ,y1, . . . ,yT ) = p(x1)p(y1|x1)
T∏
t=2

p(xt|xt−1)p(yt|xt).

For a given sequence of observations {y1, . . . ,yT}we are therefore interested in the conditional
p({x1, . . . ,xT}|{y1, . . . ,yT}) = p(x1:T |y1:T ) whose maximum argument (usually computed
by means of the expectation) returns the sought state sequence {x1, . . . ,xT}. Our model is de-
scribed by p(x1), p(xt|xt−1) and p(yt|xt), ∀t > 1. Due to the sequential nature of the available
data, rather than computing the maximum likelihood estimate of the state sequence for each
new available observation from scratch, it is more advantageous to update an existing estimate
in light of the newly acquired data [64]. The sought conditional may be computed as:

p(x1:t|y1:t) =p(y1:t|x1:t)p(x1:t)
p(y1:t)

= p(y1:t|x1:t)p(x1:t)∫
p(y1:t,x1:t)dx1:t

= p(y1:t|x1:t)p(x1:t)∫
p(y1:t|x1:t)p(x1:t)dx1:t

. (2.42)

A recursive formula is then obtained as

p(x1:t|y1:t) =p(x1:t,y1:t)
p(y1:t)

=p(xt,yt|x1:t−1,y1:t−1)p(x1:t−1,y1:t−1)
p(y1:t)

=p(yt|xt,x1:t−1,y1:t−1)p(xt|xt−1,x1:t−2,y1:t−1)p(x1:t−1,y1:t−1)
p(yt|y1:t−1)p(y1:t−1)

=p(yt|xt)p(xt|xt−1)p(x1:t−1|y1:t−1)p(y1:t−1)
p(yt|y1:t−1)p(y1:t−1)

=p(x1:t−1|y1:t−1)p(xt|xt−1)p(yt|xt)
p(yt|y1:t−1) , (2.43)

considering that each node is conditionally independent from its non-descendants given its par-
ents and thus: (i) the current observation is independent from both previous states and previous
observations, given the current state; and (ii) given the previous state, the current state is inde-
pendent of the previous observations and any other previous states.

Yet another quantity of practical interest in this context is the marginal p(xt|y1:t),∀t. With
the help of the Bayes formula, starting from p(xt,yt|y1, . . . ,yt−1), we can devise a recursion
for this marginal directly, without having to go over p(x1:t|y1:t). The update step is then

p(xt|y1, . . . ,yt) = p(yt|xt)p(xt|y1, . . . ,yt−1)
p(yt|y1, . . . ,yt−1) , (2.44)
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considering that given the current state, the current and previous observations are independent,
and we may thus write p(yt|xt,y1, . . . ,yt−1) = p(yt|xt).

The probability distribution of the next state given observations (predict step) is

p(xt|y1, . . . ,yt−1) =
∫
p(xt,xt−1|y1, . . . ,yt−1)dxt−1

=
∫
p(xt|xt−1)p(xt−1|y1, . . . ,yt−1)dxt−1,

(2.45)

considering that given the previous state, the current state and the previous observations are
independent, and we may write p(xt|xt−1,y1 . . . ,yt−1) = p(xt|xt−1).

The probability of the current observation given the previous ones (evidence) is

p(yt|y1, . . . ,yt−1) =
∫
p(xt,yt|y1, . . . ,yt−1)dxt

=
∫
p(yt|xt)p(xt|y1, . . . ,yt−1)dxt

(2.46)

again with p(yt|xt,y1, . . . ,yt−1) = p(yt|xt).
Finally, we are often interested in computing p(xτ |y1, . . . ,yτ ,yτ+1 . . .yt) the probability

of a past state given observations starting from before that past state and up to the present
(smoothing). Using the Bayes rule and the assumed conditional independence relationships,
this can be computed as:

p(xτ |y1, . . . ,yτ ,yτ+1 . . .yt) =p(xτ ,y1:τ ,yτ+1:t)
p(y1:τ ,yτ+1:t)

=p(yτ+1:t|xτ ,y1:τ )p(xτ ,y1:τ )
p(y1:τ ,yτ+1:t)

=p(yτ+1:t|xτ ,y1:τ )p(xτ |y1:τ )p(y1:τ )
p(yτ+1:t|y1:τ )p(y1:τ )

=p(yτ+1:t|xτ )p(xτ |y1:τ )
p(yτ+1:t|y1:τ )

. (2.47)

In turn, p(yτ+1:t|xτ ) can be computed recursively as:

p(yτ+1:t|xτ ) =
∫
p(yτ+1:t|xτ ,xτ+1)p(xτ+1|xτ )dxτ+1

=
∫
p(yτ+1:t|xτ+1)p(xτ+1|xτ )dxτ+1

=
∫
p(yτ+1,yτ+2:t|xτ+1)p(xτ+1|xτ )dxτ+1

=
∫
p(yτ+1|xτ+1)p(yτ+2:t|xτ+1)p(xτ+1|xτ )dxτ+1. (2.48)

All these equations can be derived directly by inspecting the corresponding Bayes network.
Furthermore, the recursion relationships can be regarded as propagating a message forward or
backward through the model. This observation represents the basis for the message-passing
nomenclature used next.
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y1 y 2 y3 yT

x1 x2 x3 xT

Figure 2.6: A HMM represented as a DBN.

Discrete hidden variables

Grid-based methods deal with the case of discrete hidden variables [7], when the states are
associated to labels. Often, the number of states is also finite and these methods are then called
finite-state models. A sequence of hidden variables represents thus a 1D discrete signal. The
best-known algorithm of this type is the HMM, however it has a set of limitations that the
MEMM overcomes. Both these algorithms are discussed next with an emphasis on the way
they are related to each other.

Hidden Markov models and maximum entropy Markov models. The HMMs are gener-
ative models able to describe the joint probability p(x1, . . . , xT ,y1, . . . ,yT ) of a sequence of
observations Y = {y1, . . . ,yT} and a corresponding sequence of states x = {x1, . . . , xT}. If
we are able to compute the joint probability of all variables of interests, then joint probabil-
ities of subsets of variables are obtained by marginalization and conditional probabilities are
obtained as a ratio of two marginals. For HMMs, the input observations are assumed inde-
pendent given the state and any form of relationship among observations is explained only at
the level of the states under the Markovian assumption. The DBN equivalent to a HMM for
a sequence{y1, . . .yT} is shown in Figure 2.6. Such a batch of measurements represents at
the same time a realization of a stochastic process of length T , whose corresponding graphical
model is shown in the Figure.

There are however applications where, for increased descriptive power, we may like to in-
clude into our model relationships stretching over several observations directly and not only
over the states. MEMM represent the adaptation of the HMMs to such a setup. They are dis-
criminative models working in an a posteriori manner, which can describe the probability of
states given observations. This conditional probability may depend on arbitrary functions of the
observations, thus being able to model also relationships extending over many observations, like
for example attributes shared by several observations. The statistical description of these rela-
tionships is transparent to the model [116]. In a way, the MEMM setup could be described as
including a transformation of the observations followed by establishing a DBN-like stochastic
model in the transformed space.

In the following we introduce each of these two algorithms, while concentrating on the
MEMM, as the HMM represents an established algorithm well covered in the literature.

Hidden Markov models. Consider a system that at any time is in one ofN different states
X = {x1, x2, . . . , xN}. At regularly spaced discrete times, the system undergoes a state change.
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A state-transition matrix A = {aij} governs the changing of the states:

aij = P (xt+1 = j|xt = i), 1 ≤ i, j ≤ N and
N∑
j=1

aij = 1, 1 ≤ i ≤ N.

The states are elementary events of a discrete state random variable and the state transition
matrix is actually a compact representation of the state-conditional frequency functions for
each state in the model. The state process is a first order Markov process. Each state emits an
observation (that in the most general case is a n-tuple), and only the observations are monitored.
Each state has assigned an observation pdf. This pdf can be either discrete or continuous,
but it must have a known parametric expression (see [20] pp. 612). We therefore have B =
{bj(y)}, j = 1 . . . , N the set of all state-conditional densities with

bj(y) = p(y|x = j).

The initial state distribution is π = {πi}, i = 1 . . . , N , where

πi = P (s1 = i).

The parameter vector corresponding to such a a model is

λ = (A, B, π).

Such a model can be used to solve one of three basic problems [153]:

1. The evaluation. Using the observation sequence Y = {y1, . . . ,yT}, compute P (Y|λ)
the probability of the observations given the model λ. The solution to this problem is
returned by the forward and by the backward algorithm.

2. The quest. Given the observation sequence Y and the model λ find a state or a sequence
of states x = {x1, . . . , xT} that are optimal. In this context, optimal means most probable
and we can distinguish four cases:

i. Find the most probable next state given all available states and observations. The
solution to this problem is given again by the forward algorithm.

ii. Find the most probable current state, when the observation sequence includes the
current observation. The solution to this problem is given again by the forward
algorithm.

iii. Find the most probable past state, when the observation sequence includes observa-
tions both from before and after the observation corresponding to the sought state.
The solution to this problem is given by the forward-backward algorithm.

iv. Find the most probable sequence of states for the given sequence of observations. It
is said that this sequence best explains the observations. The solution to this problem
is returned by the Viterbi algorithm, that is a type of max-sum algorithm.

3. The training. Adjust the model parameters λ to maximize P (Y|λ). Starting from an
observation sequence Y and a model λ, find a better model λnew. The solution to this
problem is computed by the Baum-Welch algorithm, which, as previously discussed, is a
type of generalized EM.

For an excellent description of the algorithms representing the solution to each of these
problems, see Rabiner’s tutorial on HMMs [153].
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Figure 2.7: A MEMM represented as a DBN.

Maximum entropy Markov models. In the case of MEMMs, the state transitions and
state-conditional observations densities are replaced by a set of transition functions, each single
function describing the probability of the current state x, given the previous state x′, upon
making an observation y. Thus, for a model with a number of N states, we have in this case
N transition functions pj(x|x′j,y), j = 1, . . . , N , representing distributions over possible next
states for each fixed x′j . The DBN corresponding to a MEMM is shown in Figure 2.7. As it can
be seen, the observations are nolonger independent given the state, as the current state nolonger
d-separates the current and previous observations. With an MEMM we can therefore introduce
in our model various non-independent relationships extending over several observations.

In the case of the MEMMs we avoid the direct modeling of the distribution of observations
given the state. We make use of the maximum entropy framework to come up with a para-
metric expression for our transition probability. The parameters of each transition function are
computed from a training set of observations using a type of generalized EM algorithm [136].

1. The principle of maximum entropy. We would like to determine the density of a ran-
dom variable. Everything we know about this variable is that it generated a finite set of
observations (i.e., a sample) S that we have at our disposal. Under a set of constraints
(derived from the available sample), the density that best represents our knowledge on the
random variable is the density making the least assumptions on the data [101]. This den-
sity has thus the largest entropy. Therefore, we look for the highest-entropy distribution
incorporating the constraints.

These constraints are pieces of information whose validity can be tested on the available
sample. For example, the information that the expectations of various deterministic func-
tions of the random variable have certain values E {fi(x)} = vi, i = 1, . . . , Nf can be
tested on the sample. In this particular case, it can be shown [16] that if there exists a
maximum entropy distribution, then this is

p(x) = c exp
Nf∑
i=1

λifi(x), ∀x ∈ S, (2.49)

with c a constant, and {λ1, . . . , λNf} a set of weights11. The density in (2.49,)which is
a member of the exponential family and can be seen as a type of softmax function (see

11In an alternative motivation for this expression, the inner product between the weights vector λ =
[λ1, . . . , λNf

]T and the corresponding vector of deterministic functions f(x) = [f1(x), . . . , fNf
(x)]T is inter-

preted as a measure for the plausibility of x. To construct a probability distribution out of this measure that can
take both positive and negative values, the inner product is exponentiated (such as to always obtain a positive
value) and then normalized. The normalization factor is given by c =

∫
exp

∑
i λifi(x)dx. This argumentation
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[20] pp. 198), is also known as a Log-Linear Model (LLM) because the logarithm of the
density is a first-order polynomial with respect to the weights.

2. The transition function. In our MEMM case, we would like to take into account cer-
tain relationships among the observations. We do so with the help of the deterministic
functions from before. We use these transition functions to link observations, observa-
tion properties and state transitions. They are usually boolean-valued and depend on the
current observation and the possible next state, expressing also the presence or the ab-
sence of a certain attribute in the observation for a certain state (see also the discussion
on “Ugly Duckling” in Section 1.2). For each pair r = 〈a, x〉, with a : Y → {0, 1}
a boolean-valued function of the observation and x the destination state, we define one
function fr(yt, xt) as

fr(yt, xt) =

1 if a(yt) = 1 and x = xt

0 otherwise
(2.50)

with x ∈ X being one of the N possible states. The boolean function a(yt) describes the
presence or absence of an attribute in the observation.

3. Training. Next we assume that we have a training set of labeled observations. We intro-
duce the constraints that the expectation of each such function equals its average over the
training sample. Therefore we have that

1
nx′j

nx′
j∑

k=1
fr(ytk+1, xtk+1) = 1

nx′j

nx′
j∑

k=1

∑
x∈X

pj(x|x′j,ytk+1)fr(ytk+1, x),

with t1, . . . , tnx′
j

the time steps where xtk = x′j , thus involving the transition function

p(x|x′j,ytk+1). As discussed above, under these constraints, the sought distribution can
be computed using equation (2.49) as

p(x|x′j,y) = 1
Z(y, x′j)

exp
∑
r

λrfr(y, x)

with λr parameters to be learned and Z(y, x′j) a normalizing factor, such that p(·) is a pdf
over the next states x. It is interesting to note that this is the probability of the current
state x given an individual previous state x′j, j = 1, . . . , N and the current observation
y, not the general probability of the current state given some previous state x′ and the
current observation.

As a matter of fact, the MEMM can be simplified by reducing the number of parameters
when using such general densities. Under these circumstances, the observations and the
previous state are treated as independent evidence for the current state [136]. As it can be
seen from Figure 2.7, we then have

p(x|x′,y) = p(x|x′)p(x|y)
= p(x|x′)c exp

∑
r

λrfr(y, x),

applies even better when using the logistic sigmoid instead of the exponential function to construct the probabil-
ity distribution. The logistic function takes values in the interval (0, 1) rather than (0,∞) as in the case of the
exponential.
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the prior p(x|x′) describing the transition probability between states and the conditional
p(x|y), which is computed with the model stemming from the maximum-entropy princi-
ple, describing the influence of the observations. The precise choice of prior depends on
the particular problem for which the MEMM is used.

Continuous hidden variables

For discrete DBNs, the state sequence is specified with the help of a set of state conditional
probability mass functions, one for each state. In the case of HMMs, these are gathered in the
state-transition matrix while in the case of MEMMs, these are the transition functions. For con-
tinuous DBNs however, the probability of a state taking a certain individual value is zero, thus
we have to go from discrete to continuous distributions, i.e., from probability mass functions
to probability density functions. These pdfs are derived from a state-transition function which
returns the current state taking as argument the previous one, therefore, they link consecutive
states directly instead of using statistical descriptions representing conditional probabilities of
the next state given the current one (like the state-transition matrix of the HMMs or the transition
distributions of the MEMMs). A DBN with continuous states is shown in Figure 2.8.

As the states are continuous, conducting inference is more cumbersome than for the grid-
based methods. The majority of problems stem from the fact that we need to use integrals
instead of sums for computing various probabilistic measures of interest (like, e.g., densities
and their moments). Thus, the type of distributions involved with these methods represent a
major point, as the equations (2.42) to (2.48) are tractable only under certain restrictions. The
most important restriction is the assumption that the underlying probabilities are all Gaussian,
as only when both distributions are Gaussian, is their product again Gaussian – which represents
a huge advantage, as you don’t have to integrate over difficult or even non-integrable functions.
Yet another assumption, again related to mathematical tractability is that the dynamical system
generating the states is linear. If all these assumptions are met, then the solution takes the form
of a Kalman filter. If the assumption about the linearity is not met, then the solution is given by
the extended Kalman filter and related approaches. If on top of this we renounce the Gaussian-
ity assumption as well, the solution is given by the particle filter, where from a certain point of
view, the involved integrals are solved with Monte Carlo integration, alternatively a variational
approach can be used here. Ultimately both the Kalman and the particle filter represent modal-
ities to conduct inference in a dynamical system with more respectively less constraints. Both
these algorithms are discussed next, again placing an emphasis on the way they are related to
each other.

x1

y1

x 2

y 2

x3

y3

xT

yT

Figure 2.8: Bayes network for a dynamical system with continuous hidden variables.
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Linear dynamical systems: the Kalman filter. A classic linear Gaussian state-space model
is the Kalman filter [109], which in its essence is a least squares estimator of the states sequence
[92]. For a given set of time-ordered observations {y1, . . . ,yT} the Kalman filter returns the
corresponding sequence of states {x1, . . . ,xT}. The Kalman filter maximizes the joint proba-
bility of observations and states, however, it does it sequentially finding at each time step the
most probable state, given the available observations. In the case of the Kalman filter this pro-
cedure leads to a rather manageable mathematical apparatus, because of the assumption that all
underlying distributions are Gaussian, and the Gaussian distribution is closed under multiplica-
tion, meaning that the joint distribution of two Gaussian variables is still Gaussian [20].

It uses the following assumptions:

• At each time step t, a d-dimensional real-valued observation yt is generated from a k-
dimensional, real-valued state xt.

• The initial state is Gaussian
x1 = µ0 + u

with u ∼ N (0,P0)

• The state sequence is a first order Markov signal and the observations are independent
given the states.

• The state sequence is the realization of an AR process of the first order (linear dynamic
system)

xt = Fxt−1 + v1, (2.51)

with a Gaussian noise term v1 ∼ N (0,Γ) and where F is the state-transition matrix.

• The output function generating the observation from a state is linear

yt = Cxt + v2, (2.52)

again with Gaussian observation noise v2 ∼ N (0,Σ) and where C is the observation
matrix.

• We look for p(xt|y1, . . . ,yt), that would allow us to compute:

E {xt} =
∫

xtp(xt|y1, . . . ,yt)dxt.

The parameters Θ = {F,Γ,C,Σ,µ0,P0} are assumed to be known. They are either inferred
from the problem framework or, they can be learned from some training data by a type of EM
algorithm (see [20] pp. 642).

In general, F and C can be also time dependent, in which case we have Ft and Ct respec-
tively. This is also valid for Γ and Σ. If they are time-dependant, the values at each time t
should be inferred from the problem-setup, usually over some features. If they remain constant,
they may express some prior knowledge related to how much can observations be trusted over
the states.

If the eignevalues of F are smaller than one, then the respective AR process will colapse to
zero. Conversely, if they are larger then one, it will diverge to infinity [166].
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The equations of the Kalman filter. Next we will make use of α̂(xt) = p(xt|y1, . . . ,yt)
to denote the pdf of a state given all available observations [20], underlining the fact, that this
is a function of the current state xt. Due to our Gaussian assumption, we have that α̂(xt) ∼
N (µt,Vt).

From equations (2.44) and (2.45) we have the following recursive relationship for α̂(xt)

ctα̂(xt) = p(yt|xt)p(xt|y1, . . . ,yt−1)
= p(yt|xt)

∫
p(xt|xt−1)α̂(xt−1)dxt−1,

with ct = p(yt|y1, . . . ,yt−1), which is again Gaussian. Therefore the weighted pdf of the
current state given all available observations is computed as the product between the probability
of the current observation given the current sate (evaluated as a function of the current state)
and the pdf of the current state given all previous observations. This is illustrated in Figure 2.9.

Figure 2.9: In this figure the updated density of the state upon making the current observation
p(xt|y1, . . . ,yt) ∼ N (µt,Vt) is shown together the probability density of the current obser-
vation as a function of the state p(yt|xt) ∼ N (Cµt,Σ) and the predicted density of the state
given all previous observations p(xt|y1, . . . ,yt−1) ∼ N (Fµt−1,Pt−1).

As all variables are Gaussian and assuming µt−1 and Vt−1 known, we have

ctN (µt,Vt) = N (Cµt,Σ)
∫
N (Fµt−1,Γ)N (µt−1,Vt−1)dxt−1

= N (Cµt,Σ)N (Fµt−1,Pt−1).
(2.53)

Making use of equation (A.5) from Appendix A to compute

N (Fµt−1,Pt−1) =
∫
N (Fµt−1,Γ)N (µt−1,Vt−1)dxt−1,

with
Pt−1 = FVt−1FT + Γ,

we may compute the parameters of the densities on the left-hand side in equation (2.53) as a
function of the parameters of the densities on the right-hand side, as described in equations (A.5)
and (A.6). Thus, taking into consideration equations (2.51) and (2.52) the Gaussian density for
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xt has the parameters12

µt = Fµt−1 + Kt(yt −CFµt−1)
Vt = (I−KtC)Pt−1,

with
Kt = Pt−1CT (CPt−1CT + Σ)−1

the Kalman gain matrix. At the same time, the pdf of the current observation given all previous
observations is

ct = N (CFµt−1,CPt−1CT + Σ),

that can be used to compute p(y1, . . . ,yt) =
t∏
i=1

ci, which is needed in various applications13.

This gives us a complete set of recursive relations to compute the probability of the state
given all available observations, upon receiving a new observation yt. The initial conditions are
given by

p(y1)p(x1|y1) = p(x1)p(y1|x1)⇔ c1α̂(x1) = p(x1)p(y1|x1)
which, considering our initial assumptions, leads to

µ1 = µ0 + K1(y1 −Cµ0)
V1 = (I−K1C)P0
c1 = N (Cµ0,CP0CT + Σ)

with
K1 = P0CT (CP0CT + Σ)−1.

Summary of the Kalman filter Before applying the Kalman filter we need to find the
initial parameters. This can be computed automatically from some training data or set manu-
ally based on a thorough understanding of the problem at hand. The set of initial parameters
consists of the parameters of the density of the initial state N (µ0,P0), the parameters of the
linear dynamical system describing the states (i.e., the state-transition function) F and the state
covariance matrix Γ together with C the parameters of the linear function relating states to ob-
servations and Σ the observation covariance matrix. With these initial parameters, upon making
at time t a new observation yt, the Kalman filter works the following way:

• First we estimate the covariance matrix14 of the density of the state at time t conditioned
on the observations available up until t− 1:

Pt−1 = FVt−1FT + Γ.

Observation: The mean of this density is mt−1 = Fµt−1. In some applications of
the Kalman filter this is used to introduce into the model an additional set of param-
eters: the control variables u, that are related to external influences, not inherent to
the model. The control variables influence the mean mt−1 over the control matrix
B, such that this is computed now as: mt−1 = Fµt−1 + But−1.

12If Γ,Σ,F and C are constant, then Pt and Kt will stabilze quickly and then remain constant as well.
13In tracking applications it can be used for gating, i.e., deciding if an observation belongs to the modelled pro-

cess or not. For this purpose, the covariance matrix S = CPt−1CT +Σ is used to compute a type of Mahalanobis
distance d from the observation to the prediction d = (y−Cx)T S−1(y−Cx) + ln |S|.

14This is actually the covariance matrix of the predicted state density.
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• We continue by computing the Kalman gain matrix:

Kt = Pt−1CT (CPt−1CT + Σ)−1.

• The Kalman gain matrix Kt can be used directly to compute:

– The meanµt of the state density conditioned on all available observations, including
the one made at time t as:

µt = Fµt−1 + Kt(yt −CFµt−1).

– The corresponding covariance matrix15 Vt as:

Vt = (I−KtC)Pt−1.

Furthermore, we can also compute the pdf of the new observation given all previous observa-
tions as:

ct = N (CFµt−1,CPt−1CT + Σ).

As it can be observed, these formulae compute directly the mean of the probability density
of the current state given all available observations. As the density is Gaussian and it thus takes
its maximal value at the position of the mean, we can safely consider it as the best available
estimate of the sought state.

Related methods. The Kalman filter has generated several related methods aimed at over-
coming its limitations with respect to the type of dynamical system it models. The most impor-
tant are the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). The former
works with a piece-wise linear model, the latter can work with highly nonlinear dynamical
systems using a special type of sampling.

The EKF uses a first-order linear approximation of the involved nonlinear functions. A
Taylor series-based first order approximation of a nonlinear function h(x) around a point p can
be computed as:

h(x) = h(p) + (x− p)
1! h′(p) +H.O.T.

= xh′(p) + h(p)− ph′(p)
= ax+ b

with a = k′(p) and b = h(p) − ph′(p). H.O.T. is an acronym for Higher Order Terms and
contains all the rest of the Taylor expansions terms of an order higher than one that are ignored
in this case.

The EKF uses a Taylor series-based approximation of the known nonlinear dynamic system
involved to compute an approximation of the sought state distribution. The same trick is used
for the nonlinear state-conditional observation-generation function. The UKF uses a sample
that allows the exact computation of the needed means and covariances then applies the nonlin-
earities to the sample and estimates again the (now nonlinearly transformed) parameters. Thus

15This is now the covariance matrix of the updated state density.
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we obtain again an (mean and covariance-based) approximation of the sought state distribution,
but this time using the exact, known dynamic system instead of its linear approximation as in
the EKF case. The same type of processing applies to the conditional distribution of the obser-
vations as well. This procedure is called the unscented transform and yields in general better
distribution approximations than what is used for the EKF. Because the used sample is gener-
ated directly from the known state distribution at the previous step and such that it perfectly
reflects its mean and covariance, this is also called deterministic sampling.

The UKF should be used over the EKF if the nonlinearities at the level of the stat-transition
equation and the observation generation function are too strong for a first-order approxima-
tion or if the Jacobi matrix involved in the computation of the EKF for vector-valued random
variables can not be computed efficiently16.

Neither the UKF nor the EKF explicitly renounce the Gaussianity assumption, they both
process only moments up to the second order. As previously discussed Kalman filters are ba-
sically least-squares estimators, and such an estimator achieves the Cramer-Rao bound only
under the Gaussian assumption. Therefore other methods are needed to achieve optimality
when working in a non-Gaussian environment. Furthermore, if the involved distribution are
“difficult” such that it is hardly possible to generate a sample to precisely reflect their mean and
covariance, even the UKF would function poorly, as the deterministic sampling would fail. The
solution to all these problems is the Particle Filter that is a Monte Carlo-based method using
importance sampling.

Non-linear dynamical systems: the Particle Filter. If the state transition function is not lin-
ear, or/and the underlying distributions are not Gaussian, the Kalman filter returns just the best
second order approximation of the true state process. To further minimize the approximation
error in such cases, we need a new type of model. The main difficulty is given by the fact that
once we leave the Gaussian assumption, the mathematical apparatus needed to update the state
sequence when a new observation arrives (see equation (2.44)) becomes intractable. Thus, we
need alternative methods to compute p(xt|y1, . . . ,yt). Furthermore, as we leave also the lin-
earity assumption with respect to the way the states are generated, we need to evaluate some
expectation over a nonlinear function.

The currently available solutions to these problems can be gathered into two groups: vari-
ational approximations [107] and Monte Carlo approximations [20]. Within the framework of
Monte Carlo approximations the solution takes the form of the particle filter [7].

With particle filters, to approximate the sought expectation we use a set of samples randomly
generated by the corresponding pdf. The main difficulty consists now in the fact that the density
we would like to sample is unknown. At the same time we look for a solution able to work in a
sequential manner.

Similar to the Kalman filter, the particle filter returns in a sequential manner for a set of time-
ordered observations {y1, . . . ,yT} the corresponding sequence of states {x1, . . . ,xT}, finding
at each time step the most probable state, given the available observations. It uses the following
assumptions:

• At each time step t, a d-dimensional real-valued observation yt is generated from a k-
dimensional, real-valued state xt.

16This may happen if the derivatives of the function are difficult to derive analytically or they come with a high
computational cost when approximated numerically.
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• The state sequence is a first order Markov signal and the observations are independent
given the states.

• The initial-state pdf (i.e, the prior) is known.

• The state sequence is the realization a non linear dynamical system f(x), with a known
noise term

xt = f(xt−1) + v1
t (2.54)

• The output function g(x) generating the observation from a state is also non linear and
afflicted by noise whose density is known

yt = g(xt) + v2
t . (2.55)

• The sought expectation is now again

E {xt} =
∫

xtp(xt|y1, . . . ,yt)dxt (2.56)

but the posterior p(xt|y1, . . . ,yt) is difficult to evaluate analytically, due to the nonlinear-
ity f(·). This is why we use here a sample-based estimate17. We could then approximate
the expectation in a maximum likelihood approach with the help of a set of NP i.i.d. sam-
ples from p(xt|y1, . . . ,yt)

E {xt} �
1
NP

NP∑
i=1

x(i)
t .

We assume here also that the way the noise influences the states and the observations is linear.
The particle filter works even if this is not the case, however, for didactic purposes, we would
like to emphasize here the relationship to the Kalman filter.

The equations of the Particle Filter. To begin with, let us remember that what we are
actually looking for is p(x1:k|y1:k), the probability of a states sequence given an observations
sequence. In the particle filter setup we have no closed-form solution for this probability and
hence no way to search for its maximum analytically.

Thus we set forth to estimate this probability. We are able to do this if we have a set of
samples from the corresponding random variable together with a set of associated weights.
Each sample represents an observed value (i.e., realization) of the random variable. We call this
sample-weight pairs particles. The weights are chosen according to the principles of importance
sampling. Afterwards, we need to make this estimate sequential, which leads to the problem of
degeneracy where after a few iterations, all particles but one will have very small weights. This
problem can be solved by resampling, meaning generating a new set of samples each time the
degeneracy appears – for which purpose we need a way to measure the degeneracy.

1. Sample-based estimate of a density. Our purpose is to estimate a density function p(x)
from a set of samples that we know are i.i.d. drawn from the target distribution. The
available set of samples is {x1, . . . , xNP } ≡ {x(i)}, i = 1, . . . , NP . To introduce the

17In this case we use stochastic sampling, like e.g., importance sampling which is different from the deterministic
sampling used for the UKF.
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density estimate, we start with two examples illustrating various views on this issue, thus
helping us to better grasp the expression used in the end.

Using {x(i)}, the ML estimate of the mean is the sample average:

mx �
1
NP

NP∑
i=1

x(i).

On the other hand, for a discrete random variable, assuming {x(i)} covers its entire sup-
port, its probability frequency function can be written as

p(x) =
NP∑
i=1

P (x(i))δ(x− x(i))

=
NP∑
i=1

w(i)δ(x− x(i)),

with w(i) = P (x(i)) and P (x(i)) = N
x(i)
N

the probability of x(i), where Nx(i) is the number
of times the value x(i) appears in {x(i)}. This allows us at the same time to compute a
continuous estimate of a continuous random variable x starting from a sample {x(i)} of
x.

Assuming we have a set of i.i.d. samples {x(i)}, i = 1, . . . , NP from the random variable
x, and a corresponding set of weights {w(i)}, i = 1, . . . , NP , making together a set of
particles {x(i), w(i)}, i = 1, . . . , NP , an empirical estimate of the density function of x is:

p(x) �
NP∑
i=1

w(i)δ(x− x(i)). (2.57)

For the particle filter, it follows directly that

p(x1:k|y1:k) �
NP∑
i=1

w(i)δ(x1:k − x(i)
1:k), (2.58)

with {x(i)
1:k}, i = 1, . . . , NP a set of support points, {w(i)}, i = 1, . . . , NP a set of weights

and x1:k = {xj}, j = 1, . . . , k all states up to k, i.e., the entire trajectory.

2. Importance sampling. We would like now to provide a sample-based estimate for a den-
sity p(x) according to equation (2.57). However, we assume that it is difficult to extract
samples from p(x) but it can be easily evaluated at every point18. Then, we make use of
another density q(x) termed importance density, from which samples can be generated
with ease and it can also be evaluated at every point. The general idea is that a realiza-
tion sampled from q(x) is used to compute p(x) while compensating for its frequency of
appearance, which is different between the two densities.

18This happens very often in practice as we are technically able to properly generate samples directly only from
a relatively limited number of distributions.
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Imagine you have extracted N samples {x(j)}, j = 1, . . . , N from q(x) and now you
would like to compute the probability P ([T1 ≤ x ≤ T2]) =

∫ T2
T1
p(x)dx. Should you have

extracted from p(x) a good estimate of the sought probability would have been

P ([T1 ≤ x ≤ T2]) = # samples ∈ [T1 ≤ x ≤ T2]
N

= 1
N

Nj∑
l=1

[[x(l) ∈ [T1 ≤ x ≤ T2]]]

= Nj

N

with [[·]] the Iverson bracket – a binary function, that takes the value one only if its
argument is true and zero otherwise – and Nj the number of samples in the interval
[T1 ≤ x ≤ T2]. We have used this rather complicated formula only to rise attention to the
fact that the probability is computed by adding a certain value (in this case one) for each
sample in the target interval and dividing by the number of samples. Back to our original
setup, we have N samples from q(x). As before, we will compute the sought probability
by adding a certain value for each component of the sample in the target interval, then di-
viding by the size of the sample. To compensate for the fact that we sample from another
distribution as the one we need, we compute the probability as

P ([T1 ≤ x ≤ T2]) = 1
N

Nj∑
k=1

p(x(k))
q(x(k)) ,

thus adding for each sample k the value p(x(k))
q(x(k)) , which compensates for the different fre-

quency of appearance of x(k) between p(x) and q(x).

This is shown in Figure 2.10. In this example, the sample {x(j)}, i = 1, . . . , NP was
generated from the importance density q(x). Using the sample together with the values
of p(x) and q(x) corresponding to the realizations in the sample, we may compute P (x ∈
{1, 2}) = 1

9 · (
4
9 ·

9
1 + 2

9 ·
9
2 + 2

9 ·
9
2) = 1

9 ·
6
1 = 2

3 .

Based on such considerations, in our case we extract {x(i)}, i = 1, . . . , NP samples from
q(x) and estimate p(x) with equation (2.57), where the sample weights are now

w(i) ∝ p(x(i))
q(x(i)) .

For the particle filter, it follows that the samples x(i)
1:k are drawn from q(x1:k|y1:k) and the

corresponding weights are:

w(i) ∝ p(x(i)
1:k|y1:k)

q(x(i)
1:k|y1:k)

. (2.59)

3. Sequential importance sampling. Next we assume that p(x1:k−1|y1:k−1) is available and
we would now like to find p(x1:k|y1:k) upon observing yk. We choose q(·) such that it
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Figure 2.10: In this figure the target density p(x) is depicted in black and the importance density
q(x) in gray. Also shown is the sample {x(j)}, j = 1, . . . , 9 extracted from q(x).

can be described by the graphical model in Figure 2.8 as well. Then, q(x1:k|y1:k) can be
computed as:

q(x1:k|y1:k) = q(xk|x1:k−1,y1:k)q(x1:k−1,y1:k)
q(y1:k)

= q(xk|x1:k−1,y1:k)q(yk|x1:k−1,y1:k−1)q(x1:k−1,y1:k−1)
q(y1:k)

= q(xk|x1:k−1,y1:k)q(yk|x1:k−1,y1:k−1)q(x1:k−1|y1:k−1)q(y1:k−1)
q(yk|y1:k−1)q(y1:k−1)

= q(xk|x1:k−1,y1:k)q(x1:k−1|y1:k−1)q(yk|x1:k−1,y1:k−1)
q(yk|y1:k−1) .

Upon observing yk, we have that:

q(x1:k|y1:k) ∝ q(xk|x1:k−1,y1:k)q(x1:k−1|y1:k−1).

Then, the samples x(i)
1:k drawn from q(x1:k|y1:k) can be obtained by augmenting each

x(i)
1:k−1 drawn from q(x1:k−1|y1:k−1) with x(i)

k drawn from q(xk|x1:k−1,y1:k). The weight-
update equation becomes [7]:

w
(i)
k ∝

p(yk|x(i)
k )p(x(i)

k |x
(i)
k−1)p(x(i)

1:k−1|y1:k−1)
q(x(i)

k |x
(i)
1:k−1,y1:k)q(x(i)

1:k−1|y1:k−1)

∝ w
(i)
k−1

p(yk|x(i)
k )p(x(i)

k |x
(i)
k−1)

q(x(i)
k |x

(i)
1:k−1,y1:k)

,

where we have used equation (2.43) in the numerator, with the evidence p(yk|y1:k−1) as a
proportionality constant. By inspecting the graphical model corresponding to q(·) we see
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that q(xk|x1:k−1,y1:k) = q(xk|xk−1,yk), then we have

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
k )p(x(i)

k |x
(i)
k−1)

q(x(i)
k |x

(i)
k−1,yk)

(2.60)

and we can therefore discard the trajectory x(i)
1:k−2 and the history of observations y1:k−1.

We observe that for each particle, the update weight depends on the prediction of the sam-
ple xk based on its previous value xk−1 and on the probability of the current observation
given the state sample corresponding to this particular particle. Furthermore we can now
compute directly the posterior:

p(xk|y1:k) �
NP∑
i=1

w
(i)
k δ(xk − x(i)

k ). (2.61)

Note that the sample practically does not change, the particles do however, because the
corresponding weights get updated (see Figure 2.11).

Choosing the importance density q(·) is a design requirement of the particle filter. Al-
though better choices can be made, in practice p(xk|x(i)

k ) is often used as importance
density,as the weight update equation (2.60) turns to:

w
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k ).

4. The degeneracy problem. As the variance of the importance weights always increases
with time, after some iterations, only very few particles will still have sufficiently large
weights to matter when computing the estimate (see Figure 2.11). The degeneracy can be
measured with the help of the effective number of samples defined as:

Ñeff = 1
NP∑
i=1

(
w

(i)
k

)2
. (2.62)

As it can be easily seen, Ñeff ≤ NP , the equality existing only when each weight has the
value 1

NP
. Thus the smaller Ñeff , the larger the degeneracy.

5. Resampling. The degeneracy problem can be tackled in two ways. The first would be
to choose an optimal importance density that is generally viable only under additional
constraints like a discrete and finite number of states or Gaussian noise sequences v1

t and
v2
t and linear noise influences (see equations (2.54) and (2.55)). Alternatively we need

to generate a new set of particles including a new sample {x(i)new
k }, i = 1, . . . , NP each

time the degeneracy becomes too large.

The resampling eliminates particles with small weights by sampling againNP times from
p(xk|y1:k) as defined in equation (2.61) and such that P (x(i)new

k = x(i)
k ) = w

(i)
k . In the re-

sulting sample all weights are reset to w(i)new
k = 1

NP
. The resampling process is illustrated

in Figure 2.11. The number of particles is kept constant. In some cases, not p(xk|y1:k) is
resampled, but rather {x(i)}, i = 1, . . . , NP is resampled according to p(x|y1:k). In such
cases, the samples x that get large weights will b repeated several times to reflect their
importance. Several computation-efficient resampling schemes exist [7].
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Figure 2.11: In this figure are depicted from top to bottom: the original particles as predicted
at iteration k − 1, the updated particles at iteration k (where some particles degenerate), the
corresponding posterior at iteration k and the new particles, obtained after resampling.

Summary of the Particle Filter. In summary, the particle filter works like this:

(i). First, some particles are generated:

– Their sample values xk−1 are extracted according to some prior.

– Their weights are all equal.

(ii). The particles are predicted:

– Their sample values are computed from xk−1, using f(·).

– Their weights are all equal.

(iii). The particles are updated:

– Their sample values remain the same as at the previous step.

– The weights get updated upon arrival of yk. They reflect how good the correspond-
ing sample x(i)

k explains yk according to g(·), such that the higher p(yk|x(i)
k ), the

larger the weight. In other words, particles whose samples xk better explain yk
according to g(·) (i.e., the probability p(yk|x(i)

k ) is larger) receive larger weights.

(iv). With the help of this particles, p(xk|y1:k) is estimated.

(v). In the resample step, a new set of particles is generated19. Two main cases exist here (in
both cases the number of particles remains constant.):

A. ∗ New sample values are generated according to q(·). Note that q(·) could also
be approximated by p(xk|y1:k).

19Theoretically this happens only if Neff is small enough, practically this happens at each iteration step.
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∗ Their weights are set equal.

B. ∗ The sample values from the previous step are used. The samples corresponding
to previous particles with large weights get duplicated at a rate that is propor-
tional to the weight.

∗ The weights of these new particles are again set equal.

We have introduced here the particle filter at a conceptual level. This general particle filter
is known as the Sequential Importance Sampling (SIS) particle filter. The practical imple-
mentation poses additional challenges this constituting an active research field loosely termed
Sequential Monte Carlo [64].

The particle filter as a more general – as in making fewer assumptions – type of method is
appropriate for a larger set of practical problems than the Kalman filter and its derivates. Never-
theless even for problems where the Kalman filter is not optimally suited, as its assumptions do
not hold, it should still be taken into consideration. In such cases, it internal mechanics represent
only an approximation to the underlying distributions, however, it often returns faster, better re-
sults by comparison to a standard (i.e., with a manageable number of particles) particle filter.
Here appears thus a window of opportunity for complementary Gaussianization methods aimed
at gaussianizing the data, such that the assumptions of the Kalman filter hold. Gaussianization
methods are discussed in the context of classification problems in Chapter 3.

2.2.2 Markov random fields and conditional random fields
As we have discussed before, graphical models are related to conditional independence proper-
ties in a set of random variables. These independence properties lead to a certain factorization
of their joint distribution into a set of conditional distributions.

Conditional independence. One of the main reasons for using this framework at all was the
ability to gain insight into these independence relationships by inspecting the graph and apply-
ing graphical conditional independence tests. For Bayes networks, this test is the d-separation.
For Markov random fields conditional independence is related directly and simply to actual
graph separation. Considering the sets of nodes A,B and C, we can say that A is condition-
ally independent from C given B, if all paths from A to C are blocked by B, meaning that
all connections from A to C must go through B. Such a Markov random field [20] is shown
in Figure 2.12. In this case, a node is conditionally independent from all other nodes in the
network given only its neighbors, i.e., the nodes to which it is connected by a direct path. The
set of neighboring nodes including the other parents of child nodes is called the Markov blanket
of a node.

Cliques, potentials and the Hammersley-Clifford theorem. To compute the joint probabil-
ity of all variables in the field, we will use cliques. A clique is a subset of linked nodes such that
each pair is linked. A maximal clique is a clique where the addition of any other node from the
graph results in it not being a clique anymore. For each node, there is a number C of cliques,
each one including xC of its neighbor nodes. We can associate to each clique a strictly positive
function defined over the set of configurations of the member nodes, where by a configuration
we understand a set of realizations, one for each random variable at each node. This function



78 2.2. GRAPHS IN THE PROBABILITY THEORY

x1

x 2

x 2

x3

x3

x4

x4

A

B C
Figure 2.12: A MRF with sets of nodes related by the conditional independence relationship
A y C|B and different states.

is called potential. The practical intuition behind these potential functions is that they select
(by assigning larger values) configurations of realizations of random variables that should be
preferred (having higher probability) over others.

The joint probability of all nodes is computed as a product of potentials of maximal cliques.
The potential of a maximal clique can be defined for example as the product of the potentials
corresponding to each clique that can be constructed from the nodes in the maximal clique20.
Then, by the Hammersley-Clifford theorem [17, 80], the joint probability of all variables in the
field is defined with the help of the set C of maximal cliques as

p(x) = 1
Z

∏
C

ψC(xC), (2.63)

with ψ(xC) potential functions over maximal cliques and Z a normalization constant such that
p(x) is a pdf. The Gibbs measure p(x) is consistent with the conditional independence relation-
ships that can be inferred by visual inspection of the corresponding graph as described above.
In some applications, p(x) is rewritten as

p(x) = 1
Z

exp
[
−
∑
C

E(xC)
]

(2.64)

with ψC(xC) = exp [−E(xC)] and E(·) the energy function.
Comparing equation (2.41) with equation (2.63) we observe that both depend on functions

of neighbors. The main difference is that in the former case, these functions have a precise
statistical meaning, being themselves densities and thus normalized (i.e., they integrate to one),
while in the latter case, these are some unnormalized functions, which explains also the presence
of the normalizing factor Z. Making use of unnormalized functions provides for a larger model
capacity.

From directed to undirected graphs. It is possible to convert a directed graph to an undi-
rected one that uses as potentials the conditional densities from the directed graph. These special

20There are also other ways to define this potential. Factor graphs [20] are instrumental in keeping track of the
factors in potentials. Each factor involves then only a subset of nodes from the maximal clique.
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undirected graphs are called “moral” graphs. However, the factorization of p(x) corresponding
to a moral graph can not be directly related to conditional independence properties as in the
case of densities and directed graphs.

In a moral graph, any two parents of any node are linked being thus “married” (i.e., forming
a pair) and ensuring that all nodes involved in a conditional appear together within a clique.
The process of moralization that transforms a directed graph into an undirected graph using the
conditionals as potentials is helpful for conducting exact inference. More precisely, with the
help of moralization we can apply the junction-tree algorithm for conducting exact inference
in undirected models, to directed models as well. The junction-tree algorithm has also a “tri-
angulation” step where it is ensured that no loop is chord-less [20] and which is the basis for
computing probabilities in a recursive manner [107].

Conditional random fields. Conditional random fields (CRF) that are the main topic of this
section, represent a combination of directed and undirected models. They can, among others,
be used as an adaptation of Markov random fields to a setup in which we have sequential data.

With x a sequence of labels, Y a sequence of observations, and G = (V,E) a graph with
V vertices and E edges, such that x is indexed by the vertices of G, the definition of CRFs
according to Lafferty [116] is:

(Y,x) is a CRF when conditioned on Y, the random variables x obey the Markov property
p(xv|Y, xw, w , v) = p(xv|Y, xw, w ./ v) with respect to the graph, where “w ./ v” means
that w and v are neighbors in G.

It appears now clear that the CRFs are actually a mix between a directed and an undirected
graph. There is an undirected graph relating the states/labels and a directed graph relating the
observations to the states. Only for the states there are explicit Markovian relationships, while
relationships among observations do not need to be explicitly represented [173]. Depending on
the type of CRF, it may be that either all, some or each of the observations are linked to either
all, some or each of the states. Such mixed models are sometimes called chain graphs [20, 77].
The corresponding graphical model is shown in Figure 2.13.

y1 y 2 y3 yT

x1 x2 x3 xT

x'v

Figure 2.13: The graph representation of a CRF.

As we are in a sequential setup, where we need to find a set of labels for a set of observations,
we assume next that we always have a state-observation pair. The CRF setup is more general
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than this, but this assumption is enough to cover all applications of interest in our case while at
the same time giving us the possibility to keep the discussion focused. Depending on how the
states are connected to one-another, we differentiate between linear chain CRFs (LCCRFs) and
arbitrary CRFs (ACRFs).

Linear-chain CRFs

LCCRFs are closely related to HMMs and MEMMs. In this case the states form a linear chain.
The LCCRFs label a data sequence and are ill suited to label a single observation alone. Next we
introduce LCCRFs starting from HMMs [173], and then discuss their relationship to MEMMs
[116].

From HMMs to LCCRFs. HMMs describe p(Y,x) = p(x1)p(y1|x1)
T∏
t=1

p(xt|xt−1)p(yt|xt),

a joint probability of observations and states, that can be expressed also as

p(Y,x) = exp
∑

t

∑
i,j∈X

αij[[xt = i]][[xt−1 = j]] +
∑
t

∑
i∈X

∑
o∈Y

βio[[xt = i]][[yt = o]]
,

with [[·]] the Iverson bracket, αi,j = log (p(x = i|x′ = j)), and βi,o = log (p(y = o|x = i)). In-
troducing the feature functions fij(xt, xt−1,yt) = [[xt = i]][[xt−1 = j]]e(yt) and fio(xt, xt−1,yt) =
[[xt = i]]e(xt−1)[[yt = o]], with e(x) = 1, ∀x ∈ C we obtain

p(Y,x) = exp
∑

t

∑
i,j∈X

αijfij(xt, xt−1,yt) +
∑
t

∑
i∈X

∑
o∈Y

βiofio(xt, xt−1,yt)
,

which can be written in compact form (notice the similarity to equation 2.64) as

p(Y,x) = exp
(

K∑
k=1

λkfk(xt, xt−1,yt)
)

(2.65)

representing thus a LLM, as defined in equation (2.49). Equation (2.65) is a general expression,
that has the advantage of allowing us to compute a probability measure also in the case when
the parameters λk are no longer logarithms of densities. In this case however, if we desire the
probability measure to be a density, we need to also multiply the right side of the relation in
(2.65) with a normalization constant 1

Z
such that it integrates to one.

For LCCRFs we are interested in p(x|Y) that, using (2.65), is computed as

p(x|Y) = p(Y,x)∑
x′
p(Y,x′)

= 1
Z(Y) exp

(
K∑
k=1

λkfk(xt, xt−1,yt)
)
,

(2.66)

with Z(Y) = ∑
x exp

(∑K
k=1 λkfk(xt, xt−1,yt)

)
.

An HMM-like LCCRF has feature functions defined only for consecutive state pairs and
for state-observation pairs, as shown in Figure 2.14. More general LCCRFs exist. Some of
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Figure 2.14: The graph representation of a HMM-like LCCRF.

them may allow a state transition to depend on one or even several observations – remembering
that the LCCRFs label batches of observations. For example, if we want the state transition
(j, i) to depend explicitly on the current observation o as well, we just add the feature func-
tion fk(xt, xt−1,yt) = [[xt = i]][[xt−1 = j]][[yt = o]]. If we would like it to depend also on
some previous observation p, we use the feature function fk(xt, xt−1,Yt) = [[xt = i]][[xt−1 =
j]][[Yt = [p, o]T ]]. A future observation f , defined with respect to some time stamp t within
the currently labeled batch of observations, can be added the same way, with the help of the
function [[Yt = [p, o, f ]T ]]. To the limit we can make any state-transition and also any state
dependent on all observations. The graph structure corresponding to such LCCRFs is shown in
Figure 2.15.

Y1:T

x2 x3 xTx1

Figure 2.15: The graph representation of a general LCCRF.

Training LCCRFs implies the estimation of the parameters λk, given i.i.d. training data
D = {x(i),Y(i)}, where x(i) = {x(i)

1 , x
(i)
2 , . . . x

(i)
T } and Y(i) = {y(i)

1 ,y
(i)
2 , . . .y

(i)
T } are batches

of labels and observations respectively. Note that the i.i.d. assumption is over the batches,
not within every batch. There are various ways to conduct training and inference in LCCRFs
[173, 116], many of them being derived from HMMs, like the Viterbi algorithm, or the usage
of forward and backward paths.

LCCRFs and MEMMs. LCCRFs are closely related to MEMMs, making also use of feature
functions that allow us to express various relationships among observations. While the MEMMs
use an exponential model for each state, the LCCRFs use an exponential model for the joint
probability of a batch of labels given a batch of observations. Thus, for LCCRFs the state-
transition probabilities can be made to depend on the observations. This way, more problem-
related information can be introduced into the model. Furthermore, the links among states are
undirected for LCCRFs. Thus, dependencies with respect to both future and past states in the
batch may be modeled. The LCCRFs do not suffer from the label-bias problem that appears
during Viterbi decoding and afflicts the MEMMs, generating a bias towards states with fewer
outgoing transitions [116].
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Arbitrary CRFs.

Arbitrary CRFs (ACRFs) are not bound to a chain-like dependence among states. In this case
we could even leave the assumption that every state has an observation attached and introduce
virtual observation-less states that are there only to build certain cliques that are of interest.
ACRFs are powerful models, when measuring the power of a graphical model by the number
of distributions it can accommodate [20], and thus relating model-power to the generality of
the model. However, in this case in general learning and inference are no longer exact and
approximative methods are required. As previously discussed, exact solutions exist if we limit
the CRF structure to a tree (or forest) [152], in the form of the sum-product algorithm or if we
work with triangulated graphs, where the largest loop includes only three nodes, in the form
of the junction-tree algorithm. Approximative methods include the loopy belief propagation
algorithm [128], which is not guaranteed to converge [20], variational methods and sampling
methods.

Grid CRFs. An ACRF encountered in practice is the Grid CRF [93], whose graph structure
is shown in Figure 2.16. In this case, at each time instance, the state random variables enjoy
also a spatial relationship, reflecting a similar relationship at the level of the observations. Such
CRFs are well suited to work for example with video sequences where we can define a state
(i.e., label) for each pixel in an image at each time instance, and relate labels over both space
and time. Another example is the skip-chain CRF [173] that introduces dependencies of the

Figure 2.16: The graph representation of a grid CRF.

current state on other states than the previous one as well. The corresponding graph structure is
shown in Figure 2.17.

Boltzmann machines. In the context of models for multidimensional random variables there
is also a strong relationship between ACRFs and Boltzmann machines. Boltzmann machines
are actually MRFs with a special type of cliques and accordingly energy functions. This type
of cliques is known generally under the name Ising model. Conversely, the ACRFs are not
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Figure 2.17: The graph representation of a skip-chain CRF.

limited to the Ising model. Such constraints make Boltzmann machines more easily tractable,
however, they still involve too many computations for many practical applications [71] Further
simplifications are achieved in the form of restricted Boltzmann machines(RBM), where the
model topology is limited to a bipartite graph. RBMs are in turn inherently related to feed-
forward neural networks [14, 71]. For example a multi-layer classification feed-forward neural
network can be considered to consist of a RBM feature extractor with, e.g., a perceptron-based
decision layer stacked on top of it.

2.3 Sparse representations
In their most general form, the sparse representations are methods that solve underdetermined
systems of equations, when knowing that the sought solution is sparse. This setup is often
encountered in many modern applications, perhaps the best known example being that of com-
pressed sampling [25, 58]. After introducing the sparse framework in Section 2.3.1, we con-
centrate on using sparse representations for solving labeling problems and discuss the sparse
classifier [187, 44] in Section 2.3.2.

2.3.1 Problem statement and applications
A system of equations A · x = b can be solved exactly if the matrix A is square and well
conditioned, thus admitting an inverse A−1. This means that A corresponds to a set of M
equations with N unknowns, with M = N and none of the equations represents a linear com-
bination of some (or all) of the others. The standard solution in this case – for systems with
a manageable number of equations – is given by Cramer’s rule. If the systems are very large,
than their solution is found by methods like Gauss-Jordan Elimination or Low-Upper decompo-
sition. Faster solutions are available if the matrix A fulfills certain properties, like for example
the Cholesky decomposition for the cases when A is symmetric and positive definite, or the
Levinson recursion for Toeplitz matrices.

When M , N , then we differentiate between two cases:

(i) WhenM > N we have an overdetermined system of equations and in most cases no exact
solution. We usually proceed by looking for the solution that best fulfills all conditions
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expressed in the available equations. This solution is the one that minimizes the squared
error term eTe =‖ Ax− b ‖2

`2 and can be computed for example with the help of the
Moore–Penrose pseudoinverse or with Singular Value Decomposition (SVD).

(ii) When M < N we have an underdetermined system of equations and more than one
solution. In this case, we have to choose from among the available solutions one of them.
Usually we are after the one with minimum norm and to find it we solve the optimization
problem:

Find x̂ = arg min ‖ x ‖`p subject to Ax = b. (2.67)

Depending on how much information we have on our problem, we can choose the norm
to use. The default is the `2 norm ‖ x ‖`2=‖ x ‖2, in which case a solution can be found
for example again with the Moore–Penrose pseudoinverse or with the help of the SVD.
However, if we know that x is sparse, we may want to use the `0 pseudonorm21 instead.

We discuss next how to compute sparse solutions to underdetermined systems of equations and
how are such considerations applied in the case of compressed sampling.

Sparse solutions to systems of equations

We would like to compute the solution to an underdetermined system of equations. We suppose
that the columns of the system matrix have unit `2 norm. Assuming that the sought solution is
sparse, we need to solve the following problem:

Find x̂ = arg min ‖ x ‖0 subject to Ax = b. (2.68)

However, this optimization problem is NP-complete, meaning that there is no procedure to find
the sparsest solution that is more efficient than an exhaustive search, where we try all possible
solutions x. There are therefore several issues here: (i) is the sparse solution exact, (ii) is the
sparse solution unique and (iii) can we find the solution faster? As we will discuss next, these
issues tend to share answers because the exactness and the uniqueness of the sparse solution
are analyzed in the context of finding the solution efficiently. Conversely, finding the sparse
solution efficiently is paramount for the practical deployment of such methods.

The solution to the optimization problem (2.68) can be computed efficiently as the solution
to the equivalent optimization problem (see also Figure 2.18):

Find x̂ = arg min ‖ x ‖1 subject to Ax = b. (2.69)

The main question becomes now under which conditions does this equivalence hold? Along
this path, considering that sparse solutions always exist as soon as k = M , the conditions will
yield also uniqueness and exactness of the sparse solution [60, 61, 57, 26]. These conditions
are set on the system matrix A and usually give the maximal sparsity of the sparse solution that
may be obtained, where the sparsity of a vector x is measured by its `0 norm, such that when x
is k-sparse, we have that ‖x‖0 = k.

There are several sets of such conditions that can be further placed into two groups: (i)
conditions over the entries in A and (ii) conditions mainly related to the structure of A. To the

21`0 is not a norm as it does not fulfill all properties of a norm (β ‖ x ‖0,‖ βx ‖0). For ease of notation and
understanding we will use the term `0 norm for what actually is the `0 pseudonorm.
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first group belong the mutual coherence [60] and the restricted isometry [26] properties, while
the second group includes the analysis of large underdetermined systems of equations [57] and
the theory of convex polytopes [61].

Figure 2.18: Geometrical interpretation of why the minimization of the `0 norm is usually the
same as the minimization of the `1 norm in a 2D example. The red lines represent points of
equal `0 norm. The blue squares represent points of equal `1 norm. The green dot is the sought
sparse solution x0 of the optimization problem. The gray line represents the solution line of
the underdetermined system of equations Ax = b, i.e., the constraint line of the optimization
problem. As it can be seen, except for the case when the constraint line makes a 450 angle with
one of the axis, the `0-based optimization problem and the `1-based optimization problem have
a single same solution. In other words, when the `1 norm of the solution is minimal, a minimal
`0 norm solution is also obtained. Note that for this example with k = M = 1 and N = 2, the
coherence C (A) is high, thus the sparse solution is not unique.

In practical applications we have also to compute the solution to the respective optimization
problem. In the next paragraphs we dwell into each of these problems in more detail.

Mutual coherence. The coherence of A is defined as C (A) = maxi,j |〈ai, aj〉|, where ai i =
1, . . . , N are the columns of the matrix. When A has low coherence (typically << 0.5) and
N = 2M there exists a unique, exact sparse solution when k < C (A)−1. Furthermore, the
`0 solution can be recovered by `1 optimization provided the sparsity of the solution is k ≤
1+C(A)−1

2 [57].
The mutual coherence provides an upper bound on the sparsity. However, this upper bound

is impracticable in some situations. For example, if any two vectors in the matrix A are per-
pendicular to each other, this upper bound equals infinity. Conversely, a sparse solution always
exist as soon as k = M , but this solution is not unique. The restricted isometry property yields
a smaller bound that can be used under such conditions.
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Restricted isometry. A matrix A possesses the restricted isometry property if for any matrix
Φu made out of u ≤ S columns of A we have that:

(1− δS) ‖y‖2
2 ≤ ‖Φuy‖

2
2 ≤ (1 + δS) ‖y‖2

2 , ∀ ‖y‖2 <∞, δS > 0. (2.70)

This means that any u columns of A are close (as measured by δS) to an orthonormal basis, as
for such a basis ΦTuΦu = I and the corresponding transform preserves the norm, such that we
may write ‖Φuy‖2

2 = ‖y‖2
2. The restricted isometry constant δS (that depends on S, the maximal

number of columns that approximately form an orthonormal basis) is the smallest number for
which (2.70) holds. For a given u, the value of δ can be approximated as δ = 1−det (Z), where
Z = ΦuΦ

T
u .

It can be shown [25, 27, 55] that if the matrix A has a restricted isometry property such
that δ2k <

√
2− 1 then the k-sparse solution found by `1 minimization is with “overwhelming

probability” exactly the same as with the `0 solution. Furthermore the sparse solution is unique
for δ2k < 1.

That is equivalent to say that any sparse solution with k ≤ S
2 (i.e., where the sparsity is less

than half of the maximal number of columns of A that approximately form an orthonormal basis
irrespective of which columns are chosen) is unique if δS < 1 and can be recovered efficiently
if δS <

√
2− 1. At the same time, δS = 1− det (ΦSΦTS ) and det (ΦSΦTS ) , 0 usually only for

S ≥ M . Therefore, when the bounds on δS are fulfilled, the bound on the sparsity that arises
from the restricted isometry property is k ≤ M

2 .
Thus, assuming any two columns of A are perpendicular, to find out if k-sparse solutions

with k ≤ M
2 exist and can be computed efficiently, one should verify that A has the restricted

isometry property with δM <
√

2− 1.

Sparse enough? In this case we investigate the relationships between the sparsity of the
sought solution and the “underdeterminedness” of the corresponding system of equations. Thus,
assuming that the system admits a sparse solution, we ask ourselves if the solution is sparse
enough such that the `1 optimization is able to find it. Donoho showed in Reference [57] that

For every system Ax = b allowing a solution with fewer than ρM nonzeros, `1 minimiza-
tion uniquely finds that solution,

where ρ is a constant such that ρ(Z) > 0 with M < N ≤ ZM .
The first issue in this case is when does a system of equations allow a unique sparse solution?

It has been shown [59, 57] that an underdetermined system of equations admits a k-sparse sparse
solution if k < M

2 .
The second issue is when is the unique sparse solution the same as the solution to the op-

timization problem (2.69) that can be solved efficiently? This happens with “overwhelming
probability” when the the solution has at most Σ nonzeros, where Σ ≥ ρM [57]. It can be
shown empirically that for Z = 2, we have that ρ ≈ 3

10 . Therefore we recover the unique k-
sparse solution of any underdetermined system of equations that has N ≤ 2M , when k ≤ 3M

10 .
Geometric, convex-polytopes based considerations lead to similar bounds on the sparsity,

such that we may conclude that as long as the sparsity of the sought solution is just a small
fraction of the number of equations in the system, the `1 solution is equivalent to the `0 solution
and is exact and unique [187].
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In this case, the maximal sparsity of the solution that we can compute depends on the number
M of lines in the system matrix A and on how underdetermined the system of equations is, i.e.,
on the relationship between M and the number of columns N . By comparison, when using
the mutual coherence or the restricted isometry to investigate the sparseness in our system, the
maximal sparsity of the solution depends on these properties and is usually larger.

Practical considerations. The constrained minimization of the `1 norm is a convex opti-
mization problem that can be solved efficiently, in comparison to the NP-complete problem of
optimizing the `0 norm. Figure 2.18 illustrates also why this happens. Imagine you are look-
ing for the point of minimal `0 norm along the gray constraint line, starting somewhere in the
upper-right quadrant. As all points in a vicinity of the starting point have the same `0 norm, you
would not know in what direction to look for the minimum, so the best thing you can do is to
try all possible solutions. This ambiguity does not exist when using the `1 norm instead. With
respect to Figure 2.18, this becomes evident when looking at where various squares of equal
`1 norm intersect the constraint line. Except for the optimal solution (i.e., the green point), all
other solutions (i.e., intersection points) have larger `1 norms and the `1 norms of the various
solutions become smaller, the closer you are to the optimum.

In practical applications, the optimization problem (2.69) is replaced by [187]

Find x̂ = arg min ‖ x ‖1 subject to ‖Ax− b‖2 ≤ ε, (2.71)

with ε a small constant. This is done because with real, noisy data it may be that the condition
Ax = b does not hold exactly. Therefore, this stable optimization problem is used instead. It
can be shown [25] that (2.71) successfully recovers the same sparse solution as (2.69).

Usually, the optimization problem (2.71) is solved with the help of the Lasso [175]. The
Lasso is a regularized least-squares fitting method that includes finding the optimum of g(x) =
‖Ax− b‖2

2 + λ ‖x‖1, where for our purposes λ is the inverse of the Lagrange multiplier corre-
sponding to the constraint. The Lasso solution is found in a quadratic programming approach,
typically with the help of the conjugate gradient method, as g(x) is usually a convex function22.
When appropriate, other (faster) methods like Least Angle Regression (LARS) [67] may be
used as well.

Compressed sampling

One of the most important applications of sparse representations is compressed sampling. In this
case we sample a signal below the corresponding Nyquist rate and we would like nevertheless
to be able to reconstruct it perfectly. This is possible with “overwhelming probability” if the
signal admits a representation where it is sparse.

Usually we have a signal x ∈ RN that we measure with the help of N linear measurements
y = Bx, where B is a N×N matrix. For example for a digital camera with A×B = N pixels,
we have that B is the identity matrix I. Conversely, in the case of Magnetic Resonance Imaging
(MRI), B is the Fourier transform matrix. Now we would like to reconstruct x from M << N
measurements ȳ = BMx, in which case the measurement matrix BM will have M lines and N

22AT A is always positive semidefinite, and thus the quadratic form ζ(x) = xAT Ax + cT x arising from g(x)
is a convex function and it has a global minimum. When AT A is positive definite, the quadratic form ζ(x) is
strictly convex and it has thus an unique global minimum.
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columns, everything representing thus an underdetermined system of equations. We could use
the sparse representations setup to find x if we knew that x is sparse.

The solution in this case is to find a transformed domain where x is represented by s that
is sufficiently sparse, as discussed above. Thus, we make a few measurements ȳ = BMx
in a domain where the signal is not sparse, but because the signal can be represented in a
domain where it is sparse as x = Cs, we have that ȳ = BMCs or equivalently ȳ = As with
A = BMC. We reach therefore the sparse representations setup. The problem is now to find
the sparsest solution to the underdetermined system of equations ȳ = As, where we know that
if the measurement matrix A respects the restricted isometry property, we recover the exact
solution.

Now everything depends on the matrix A having the restricted isometry property. There are
matrices that have this property like, for example, a matrix whose entries are the realizations of
a white noise process, which is used for one-pixel cameras. Yet another (better known) example
is that of the product between the undersampled Fourier matrix BM and the wavelet-transform
matrix C that leads directly to the usage of the sparse representations for compressed sensing in
MRI. In this case the sparse representations framework contributes to significantly increasing
the speed of the MRI image-acquisition process, as we now need to measure at a smaller number
of positions.

2.3.2 The sparse classifier

Sparse-representation based classification bares resemblances with nearest-subspace methods,
which in turn stem from k-NN classification. Under these circumstances, the sparse classifier
looks for the single sparsest representation of a test vector in terms of a matrix of training
vectors. This representation is sparse because it ideally contains only vectors from the class
to which the test vector belongs [187]. In practice, the sparse representation will be such that
coefficients from the true class (typically the largest coefficients) will help reconstruct the test
vector from the training matrix in an optimal way, as measured by the `2 norm between test
vector and its reconstruction. Therefore, the label is assigned to the class whose training-set
vectors best reconstruct the test vector, but only if the decision is based on a representation that
is sufficiently sparse, as measured by a sparsity concentration index. To be able to properly
apply the sparse-representations framework to classification, the dimension of the feature space
and the number of examples per class need to be related to each other.

K-NN, nearest subspace and sparse classification

The k-NN algorithm has a set of drawbacks, among which is the poor generalization ability
when the training-sample size is small (a problem often encountered in practice). Nearest-
subspace methods attempt to solve this problem by inferring from the reduced sample available
and under some assumptions, the support of each class subspace in the feature space. The core
idea is that all vectors from one class lie in the same subspace of the feature space. Standard
nearest-subspace methods make some (very) restrictive assumptions on the geometry of this
subspace like: the components of the subspace are distributed along a line [121, 194], or along
a curve [142], or each data point lives in the linear span of a few of its nearest neighbors [191].
The distance functions used are defined based on these assumptions. There have been attempts
at defining more general distance functions, like for example in Ref. [9], where the distance
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between a subspace S and a point q is defined as dist2(qS) = qTZZTq, where Z contains the
basis vectors of the null space of S that in turn contains the basis vectors of S. However, this is
a type of Mahalanobis distance and it thus accurately measures relationships up to second order
moments of the class-conditional distributions that in turn implies a Gaussian assumption.

Sparse classification is a type of nearest subspace method. However, the distance function
used is the quality of the reconstruction of a test vector by a linear combination of vectors from
a class subspace. The coefficients of this reconstruction are computed based on the principle
of parsimony. It offers thus a principle-based approach in comparison to the rather heuristic
methods employed in other nearest-subspace methods. In the case of sparse classification, we
do not bother with the geometry of a class subspace. The geometry of this subspace may indeed
be complicated, but the simplifying assumption is that we can infer it from linear combinations
of the training-space vectors of that class. In other words any vector in a class can be expressed
as a linear combination of other vectors in the same class and hence a new vector will lie in the
linear span of the training vectors. The training vectors represent the spanning set for the class
subspace. Such considerations have previously been used for classification (an early example
being the work of Ullman in Ref. [179]) and have ignited research in the field of appearance-
based classification. Sparse classification is usually fast. It has a complexity order O(t3 + ndt)
[63], with t the number of nonzero elements in the sparse vector, n the size of the training set
and d the dimension of the training set. In comparison, fast nearest-subspace methods have a
complexity order of O(nd2) [9].

Building on such premises, sparse-representation based classification looks for the sparsest
representation of a test vector in terms of a matrix of training vectors. This representation is
sparse because it should contain only vectors from the class to which the test vector belongs.

Sparse representations for classification

Our basic assumption to conduct classification using sparse representations is that each class in
the shattered feature space has its own linear span. In the case of the sparse classifier, given a
test vector we search for its spanning set. Assuming further that the spanning set of each class is
present in the training set, we assign a new vector to the class whose spanning set best explains
it.

Let the training matrix be denoted by T = [T1, . . . ,Tk], containing the class-submatrices
Ti = [vi,1, . . . ,vi,Ni ] with i = 1, . . . , k, where Ni is the number of vectors in class i and k
the number of classes. The total number of vectors in T is N = ∑k

i=1 Ni and each vector
vj, j = 1, . . . , N has M entries. Then, for each new vector y we ideally have

y = Tx
= xi,1vi,1 + · · ·+ xi,Nivi,Ni ,

(2.72)

where the coefficient vector x = [x1, . . . , xN ]T has entries xj := xi,l, l = 1, . . . , Ni, different
from zero only for the training-space vectors from the class i to which y belongs. This system of
equations is usually underdetermined with the number N of vectors in the training space being
well larger than the dimension M of the vectors. Thus, there are infinitely many solutions to
(2.72), and the ones that interest us are the ones with a sparse representation x. An illustration
of this relationships is shown in Figure 2.19. The sparse vector x depicted there corresponds to
a classification problem with three classes. The first class ω1 has four vectors in the training set,
ω2 has three and ω3 has five.
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Figure 2.19: We assume a three-class classification problem with 12 vectors in the training set
and shown in this figure: (i) the sparse vector x = [x1, . . . , x12]T with entries xj ≡ xi,l, l =
1, . . . , Ni, i = 1, 2, 3, j = 1, . . . , 12, where N1 = 4, N2 = 3, N3 = 5; and (ii) the class regions
corresponding to the the three classes ω1, ω2 and ω3. The hight of the bars is related to the value
of the corresponding entry in the sparse vector. A dot means that the corresponding entry has
the value zero.

To better understand why we are interested in a sparse x, assume for example equal number
of training vectors per class. Then, as x should select only vectors from one class, the more
classes we have in our classification problem, the sparser x becomes. Therefore, we do not
search for some x̂ ∈ RN , but for the sparsest vector that solves equation (2.72). As previously
discussed, we can find this x̂ by optimizing over the `0 pseudo norm, solving:

x̂ = arg min ‖ x ‖0 subject to Tx = y. (2.73)

Ideally, assuming that a vector y is represented solely with the training vectors from the correct
class (that is, the coefficients in x for training vectors from other classes are all zero), the vector
y can be classified by looking up to which class the nonzero entries in x belong.

In practice, of course, again, questions about the required amount of sparsity and the ex-
actness/uniqueness of the sparsest solution arise. As previously discussed, if some x with less
than M

2 nonzero entries verifies y = Tx, then this is the unique sparsest solution. This means
that we have a good chance of finding the correct and unique sparsest solution to (2.72) even
for two-class problems or for configurations in which the number of training vectors per class
is not the same over all classes, provided we have enough vectors in the training set in relation
to the dimension of the corresponding feature space. The dimension of the feature space must
be M ≥ 2 · c, with c the largest number of training vectors per class in the training set. These
relationships are discussed in more detail later in this section.

The sparse classifier is not directly appropriate for one-class classification problems, as in
this case, x will no longer be sparse.

Assigning a class label

In practice, because the solution to equation (2.73) is computationally difficult to find, and we
work with real data, we solve instead:

x̂ = arg min ‖ x ‖1 subject to ‖Ax− b‖2 ≤ ε. (2.74)

As discussed before, minimizing over the `1 norm instead of the `0 norm yields the same unique
solution if x is sparse enough and T has certain properties.
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The vector x found after we solve (2.74) will usually have the largest entries for one class
only, and small non-zero entries for other classes as well. Next, we use the following notation:
1i = [b1, . . . , bn]T , bl ∈ {0, 1}, l = 1, . . . , n is the selection vector for class i, whose entries are
everywhere zero, except for the positions of the columns of T that contain the training vectors
of class i, where they are one and v1�v2 is the component-wise product of two vectors v1 and
v2. Thus, 1i � x selects the entries of x where the coefficients of class i reside. C(y), with
C : Rm → {1, . . . , k} is the function that assigns a class label to the vector y.

A classification rule that harnesses the class-subspace structure has been proposed by [187].
It assigns the test vector y to the class whose training-set vectors best reproduce y. The decision
rule reads:

C(y) = arg min
i
‖ y−T(1i � x̂) ‖2 . (2.75)

The sparse classifier looks for the spanning set that best represents the test vector and assigns
the test vector the label of the class corresponding to this spanning set. It is not guaranteed that
the spanning set of each class is present among the training-set vectors. Nevertheless, when
all conditions are verified the sparse representations framework will return a unique spanning
set for the test vector and the components of this spanning set will be from among the vectors
in the training set. At this point we can only assume that there is an intersection between the
found linear span and the sought one. Under such circumstances we assign the vector to the
class where this intersection is the largest, as measured in equation (2.75) by the `2 norm of the
difference between the test vector and its respective reconstruction.

The sparsity concentration index and the “unsure” decision

If for a certain test vector, the nonzeros of the corresponding coefficient vector are not concen-
trated over a single class, then the confidence in the sparse-classifier result is small. This may
happen for example if we attempt to assign a label to a vector whose true class has no represen-
tatives in the training set or if some components of the training set have been wrongly labeled.
If a test vector cannot be assigned with sufficient confidence to any of the classes represented
in T, then it receives the label “unsure”. In order to express such a confidence, for the decision
rule in (2.75), a sparsity concentration index is defined as

SCI (x) =
l max

i

(
‖ 1i � x ‖1

‖ x ‖1

)
− 1

l − 1 . (2.76)

The vector is labeled “unsure” when SCI (x) ≤ τ . The parameters l and τ need to be set
empirically.

The dimension of the feature space and the number of examples per class

A question of major importance for the practical deployment of the sparse classifier is: what
is the optimal dimension M of the feature space? The answer to this question involves the
maximal number of examples per class that gives the maximal theoretical `0 norm of the sparse
vector x under perfect conditions (i.e., a query vector can be represented without error by a
combination of training vectors from that one class).
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As previously discussed, with c the largest number of examples per class23 we have that
M ≥ c · 2, such that x is the unique sparsest solution and M ≥ c · %, usually with % > 2 such
that we can compute this solution by solving an `1 optimization problem.

To obtain a classification-related intuition behind this statement, imagine you would like
to label a test vector in a feature space with a training set such that c > M . According to
equation (2.72) a test vector will be exactly reconstructed under ideal conditions by a linear
combination of training-set vectors from the same class. To conduct classification we need to
find this one sparse representation. However, in our case there will not be just one but several
such representations, each equally suitable, as any M non-degenerate training-set vectors of the
same class are enough to exactly reconstruct our test vector. Conducting classification in the
sparse representations setup in this case is difficult or even impossible, as we no longer have
a convex optimization problem. There are not one but several sparse coefficients vectors that
solve our problem. Conversely, when c < M (more precisely when c ≤ M

2 ) we have just one
combination of training-set vectors from the same class that exactly reconstructs the test vector,
and accordingly we have just one x that solves our problem.

At the same time, the training matrix T usually has to be underdetermined24 such that N >
M . These relationships provide the support for the various bounds on the dimension of the
feature space in relation to the number of examples per class needed for the sparse classifier to
work properly. One such bound is [187]

c <
⌊
M + 1

3

⌋
, (2.77)

with bxc the floor function that returns the smallest integer less than or equal to x.
Yet another bound is [62]

D ≥ 2 · c log
(
N

D

)
,

assuming c � N and with D the size of the feature space after applying a feature extraction
transform. It can be shown that the sparse classification framework works for any D linear
measurements. This last bound is particularly interesting, as it implies that theoretically, it is
not the feature extraction process, but the dimension of the reached feature space that is more
important for classification with a sparse classifier. Practice shows that the sparse classifier
is indeed less sensible to the choice of the feature extraction process than other classifiers, at
comparable accuracies [187].

23Clearly, c is the number of examples per class, if each class has the same number of examples.
24Empirical evidence (see Section 5.1.3) shows that the classifier works even for overdetermined systems, as

long as T is rank deficient and x is sparse such that the rank R ≥ c · 2.



Chapter 3

Gaussian nonlinear feature extraction

The Gaussian assumption refers to the use of a Gaussian model to describe a random vari-
able. This assumption is often made in practice, being not only intuitive (as discussed in Sec-
tion 1.1.1) but also justified by the Central Limit Theorem (CLT) [97]. In its classical form, the
CLT states that the mean of N independent identically distributed random variables, with finite
mean and variance, has a limiting distribution for N →∞ that is Gaussian. Random variables
of practical interest are measurements of real-world processes being thus available only as the
result of a combination of many unobserved random influences. In the framework generated by
the CLT, this combination is considered a summation, and therefore the target random variable
is assumed Gaussian.

The Gaussian distribution has a set of appealing characteristics related to its mathematical
tractability, like, e.g., the equivalence of decorrelation and independence or the fact that all
cumulants of an order larger than two are zero. These properties make inference and reasoning
more easy in Gaussian environments. Therefore, the Gaussian assumption is made actually
more often than needed, and a lot of effort has been put into developing methods optimally
suited to such environments.

The main problem is, however, that the Gaussian assumption does not always hold. Rather
than ignoring this or rethinking everything, we can try to adapt to the Gaussian setup by Gaus-
sianizing the data. Gaussianization has already been discussed for purposes such as density
estimation [33], independent component analysis [127], blind source separation [56], speaker
adaptation [157], adaptive filtering [111], and system identification [140]. However, all these
methods are ”holistic“ in the sense that they Gaussianize the entire input data irrespective of
the class label, thus destroying separability and being unsuited for pattern recognition. Here the
accent lies on Gaussianization for pattern recognition applications.

A nonlinear transform is proposed, such that the class-conditional densities are Gaussian
in the transformed space, and thus the pdf of the data in the transformed space is a Gaussian
mixture model (GMM). For the purposes followed here, a difference is made in Section 3.1
between factorial and non-factorial distributions, only to concentrate then in the rest of the
chapter on the non-factorial case.

Any invertible and differentiable transformation y = G(x) modifies the statistical properties
of the input data according to the well-known formula [19] [101]

p(y) = p(x) 1∣∣∣ |G′(x)|
∣∣∣ ∀x = G−1(y), (3.1)

93
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where |G′(x)| is the determinant of the Jacobian matrix of the transform. Linear transforms
have the advantage of mathematical tractability, but by their inherent constraint they cannot
achieve the desired Gaussianization. As equation (3.1) shows, they can at most scale the original
density. It is thus clear that only a nonlinear transform can achieve the desired Gaussianization.
Nevertheless, there are linear transforms inherently related to Gaussianity that are often used
in practice. As already discussed in Section 1.1.1, there is a strong relationship between the
Gaussian assumption and both PCA and LDA.

A nonlinear transform has virtually complete control over the input data. The challenge
in our case is to compute the parameters of this transform such that the original information
available in the data and which allows us to shatter the feature space is still present after applying
the transform. In the non-factorial case, as shown in Section 3.2, this is achieved by introducing
an elastic constraint (i.e., regularizer) in the nonlinear transform.

The Gaussianization works in a supervised manner in the sense that it needs a labeled train-
ing set to compute its parameters. The corresponding elastic transform represents actually a
displacement field that describes the way the data (as present in the feature-space sample from
the training set) should be redistributed such as to become Gaussian. In the case of the standard
Gaussianization, this displacement field is defined over a grid with a constant distance between
grid points. The difficulty in this case is the computational complexity of the used elastic trans-
form. The complexity increases with the dimension of the input space in such a way that it
becomes prohibitive even for relatively moderate dimensions of e.g. 15. With this fixed grid,
computations are spent for positions in the feature space where no training data is present. As-
suming that the training space properly samples the feature space, this is counterproductive. To
decrease the computational burden, and thus push the dimensionality limit up, the accelerated
Gaussianization that uses an adaptive grid is introduced in Section 3.3. The distance between
grid points in an adaptive grid is variable. The adaptive grid is defined in such a way that in
the regions where the data is sparse, the density of grid points is lower than that of the fixed
grid, while in other regions the density of grid points remains constant in comparison to the
fixed grid. As a consequence, the total number of grid points decreases, thus decreasing the
computational complexity, while still ensuring a proper link to the feature space.

In Section 3.4 the validity of this approach is demonstrated experimentally on both synthetic
and real data. Also, various implementation aspects of the nonlinear Gaussianization are dis-
cussed. Finally, Section 3.5 contains a critical review of the method and points at the issues still
open.

3.1 Factorial and non-factorial distributions
The pdf of a multidimensional random variable can be either factorial or non-factorial. A fac-
torial multivariate pdf has the property that it can be factorized into independent components.
We may therefore write:

p(x) = p(x1, x2, . . . , xN) = p(x1)p(x2) · · · p(xN).

Under such circumstances, multivariate Gaussianization is actually a set of univariate Gaus-
sanizations, but only if we can obtain the independent components. Conversely, if the distri-
bution is not factorial, or if the independent components cannot be found, we need to resort to
other methods.
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In the holistic setup, a more widely used non-factorial method is the iterative Gaussianiza-
tion [118] that is strongly linked to projection pursuit density estimation [75]. The iterative
Gaussianization was discussed and shown to converge only for a Gaussian distribution with
zero mean and unit variance.

The main topic here is Gaussianization for pattern recognition, i.e., in a multiclass, non
holistic setup, but still, the dichotomy between factorial and non factorial distributions is valid.
Next we are going to discuss multiclass Gaussianization for factorial distributions in Sec-
tion 3.1.1 and introduce the multiclass Gaussianization for non-factorial distributions, which
represents the main topic of this chapter, in Section 3.1.2.

3.1.1 Gaussianization for factorial distributions
When the observed random variable can be factorized, the sought non-holistic multivariate
Gaussianization becomes a set of 1D Gaussianizations, each of them finding the nonlinear func-
tion that can transform the corresponding 1D density to a GMM with as many modes as the
number of classes in the feature space.

For univariate multiclass Gaussianization, the task is to find a function(transformation) g(x)
such that the pdf of the transformed viable y becomes p(y) = γ(y), where γ(y) = ∑L

i=1 Piφi (y)
is a weighted sum of Gaussians, with L the number of classes. The weights are given by the
a-priori probabilities Pi of each class. According to equation (3.1) we then need to solve:

p(x) = γ (g(x)) · |g′(x)| .

The solution of this equation is:
g(x) = Γ−1 (F (x)) ,

where Γ (·) is the cumulative distribution function (CDF) of y and F (·) the CDF of x1. Usually
p(x) is in turn approximated with a GMM. A bimodal example is shown in Figure 3.1.

There are several difficulties related to such an approach. To make these more clear, a
productive model is established. According to this model, the data was originally a collection
of independent variables (naïve Bayes) such that for each variable, each class was Gauss dis-
tributed. Each variable was then transformed non-linearly and then the results were mixed to
produce the observed distribution, which is sampled in the training set. The number of random
variables (i.e., the dimension of the corresponding vectorial random variable) was preserved by
the transformation. Such a model, with a linear mixing step, is illustrated in Figure 3.2. In this
example the classes are separable along each axis.

Now the difficulties related to such an approach become apparent: first, due to the nonlin-
earity, we will be able – under optimal circumstances – to recover the GMM up to a projection,
as the true means and variances cannot be recovered anymore (see Figure 3.3); second, we need
to correctly unmix the components and third, the class information is only implicitly taken into
account. Being unable to recover the true means and variances is less important for patter-
recognition purposes, however, class information and properly unmixing the components is
paramount to success. Extensive research has been dedicated to the latter problem within the
framework of ICA and solutions exist for both linear and nonlinear mixing of the components.

1This gives us a way to generate a sample form any disitribution for which we can compute Γ−1(·). For
this purpose we need only to generate a sample according to the uniform distribution and then to transform it
accordingly.
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Figure 3.1: 1D Gaussianization for a feature space with two classes. The inverse Γ−1 is com-
puted by reflecting Γ over the first diagonal.

a) b) c)

Figure 3.2: Separable Gaussian 2D data (a), nonlinearly transformed (b) and linearly mixed (c).

However, nonlinear ICA is somewhat limited with respect to the type of nonlinearity that can
be unmixed and is therefore less general. As previously discussed in Section 1.1.2, even linear
ICA has to be used with care, as various algorithms are available, some of them concentrating
too strongly on lower order moments of the analyzed distributions. The class information
is considered here only over a sum (see Figure 3.1) and as such it is not explicitly taken into
account, with negative consequences. We look for a way to fit L modes with certain priors on
our data, but we do not enforce that each mode should be responsible for data points with the
same label. Should the classes overlap we will get a GMM but there is no guarantee that it will
have one mode per class. It can happen that each Gaussian mode will include data-points with

a) b) c)

Figure 3.3: Observed data (a), linearly unmixed with ICA (b) and Gaussianized (c).
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different class label. Therefore, this type of Gaussianization is rather unsuited for practical ap-
plications because, even if the original distribution is factorial, it is difficult to properly unmix
the components and link Gaussian modes to classes.

3.1.2 Gaussianization for non-factorial distributions
The reminder of this chapter is dedicated to describing a Gaussianization method that works also
for the case when no independent components are available and that is not holistic. At the core
of this approach is an elastic transform between nonparametric and parametric pdf estimates of
a training sample. Free of any type of productive model, we will concentrate on making the
input data as Gaussian as possible, with as few assumptions as possible. In a way it may be said
that we work with a descriptive model as the accent lies now on gaussianizing the data given
the training set, irrespective of how this data was generated, e.g., even if it was not Gaussian to
begin with. This approach will be demonstrated on both real and synthetic pattern-recognition
problems.

3.2 Elastic transform-based multiclass Gaussianization
In the supervised multiclass Gaussianization proposed here, the pdf of the available labeled
training data is first estimated nonparametrically, then parametrically as a GMM with one com-
ponent per class, as described in Section 3.2.1. Then, an elastic transform is computed such
that the nonparametric estimate is ”morphed“ on the GMM, minimizing the sum of squared
differences (SSD) between the two functions. The displacement field corresponding to the elas-
tic transform defines the way the input data should be modified such that its distribution is a
GMM. Clearly the displacement field is properly defined only over a region Ω close to the sup-
port of the training sample. We extend this to RN by means of the identity transform, such
that data points outside this support remain unchanged. The elastic transform is discussed in
Section 3.2.2.

In contrast to other Gaussianization methods, pdf-distance measures inspired from the per-
formance analysis of kernel density estimators [183] are used here. However, no explicit pre-
caution to conserve probability is taken – or in the elastic-transform terminology, mass con-
servation issues in the sense of Monge-Kantorovich [154] are ignored – even if the obtained
density is properly scaled (i.e., such that it integrates to one over RN ). This strategy keeps the
computational burden at a level acceptable for practical applications.

Probability conservation issues. As shown in equation (3.1), the density in the transformed
space depends also on the Jacobian of the used transformation, which follows from the proba-
bility conservation constraint. The probability conservation constraint takes care that the prob-
ability of a certain event remains constant even if the way the event is expressed changes. These
issues will be discussed next with the help of a scalar random variable, the extension to vectorial
random variables being straightforward.

Next, it is assumed that there exist two random variables x and y that are related by an
injective function g(·) such that y = f(x) and f−1(x), the inverse of f(·) exists. Now, in
light of the relationship among the random variables, we would like to find the relationship
among their densities. As f(·) is an injective function, we start from the observation that, by
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the probability conservation constraint P
{
x ∈

[
x− dx

2 , x+ dx
2

]}
= P

{
y ∈

[
y− dy

2 , y+ dy
2

]}
.

In other words, the probability of x taking values in the interval

x− dx

2 < x ≤ x+ dx

2
equals the probability of y taking values in the interval

y− dy

2 < y ≤ y+ dy

2
We may thus write

|px(x)dx| = |py(y)dy|
from which it follows that

py(y) =px(x)
∣∣∣∣∣dxdy

∣∣∣∣∣
=px(x)

1∣∣∣∣∣dydx
∣∣∣∣∣

=px(x)
1

|f ′(x)| ,

with x = f−1(y). As it can be noticed, to conserve the probability between the original and
the transformed space, the derivative of the function f(·) needs to be handled. Equivalently,
for vectorial random variables, the determinant of the Jacobian matrix of the transform needs
to be handled. In our case, such a course of action would strongly increase the computational
complexity of the transform, thus severely hampering the practical usability of the method.
Therefore, the probability conservation constraint is ignored here.

3.2.1 Estimating the probability density function
The pdf is estimated from the available sample (see Section 2.1.1) both nonparametrically and
parametrically under the Gaussian assumption. This procedure works irrespective of the number
of classes. An example is shown in Figure 3.4. In a multiclass scenario, the nonparametric es-
timate is carried out for the entire training set, ignoring the class labels, whereas the parametric
estimate considers the class information.

Nonparametric estimation

For nonparametric estimation the Parzen estimation procedure is used. The estimate p̃O(x) is
computed using the N vectors of the training sample with the help of equation (2.17). With
γ(·) the Gaussian isotropic kernel and m the size of the feature space p̃O(x) can be rewritten
according to equation (2.18) as:

p̃O(x) = 1
N · hm

N∑
i=1

γ
(x− xi

h

)
.

Now we need to establish the bandwidth, which, with the kernel choice from before, is just a
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TargetOriginal

Deformed
Original

Figure 3.4: Example of non-Gaussian 2D data. The Original (nonparametric pdf estimation)
and the Target (Gaussian, parametric pdf estimation) are computed. The displacement field
of the elastic transform (defined over the fixed transform grid) is also shown as well as the
deformed template.
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Figure 3.5: Shown here are first the original non-Gaussian data, then the transform grid defined
over the target region, with initial positions of the data points (cyan) and final position after
applying the transform (magenta). The displacement vectors are also marked (black) as well as
the principal components (light green). Finally the transformed data is shown.

scalar value. As discussed in Section 2.1.1, for scalar random variables, the bandwidth param-
eter h – which is again a scalar value – is computed (see Equation (2.15)) as

h =
[

8 ·
√
π ·R(γ)

3 · µ2
2(γ) ·N

] 1
5

σ̂ (3.2)

with σ̂ a parametric estimate under the Gaussian assumption. In Reference [183] it is shown
that a better choice for σ̂ is

σ̂ = SIQR

Φ−1
(

3
4

)
− Φ−1

(
1
4

) (3.3)

with SIQR the Sample Interquartile Range, and Φ−1(p) =
√

2·erf−1(2·p−1) for p ∈ (0, 1) the
quantile function of the univariate Gaussian distribution, a choice that minimizes the estimator
error for kernels with fixed bandwidth. Conversely, for multivariate kernel based estimates
a good choice for the bandwidth of a Gaussian anisotropic kernel depends on the standard
deviation of each component, as shown in Equation (2.19). Here, with Gaussian isotropic kernel
the parameter h is computed as described in equation (3.2) and σ̂ is approximated with the help
of equation (3.3) computed for the component of z with the largest variance. R(γ) is defined as
R(γ) =

∫
γ2(z)dz and µ2(γ) =

∫
‖z‖2 · γ(z)dz.

Parametric estimation

The parametric estimate for the multiclass case is computed as

p̃T (x) =
L∑
l=1

Pl · p(x|ωl),

where L is the number of classes. The values Pl = Nl/N , with Nl being the number of
training vectors in class ωl, are the a priori probabilities of the classes, and the class-conditional
likelihoods p(x|ωl) are multivariate Gaussians. We use the maximum-likelihood estimate µl =
1
Nl

∑Nl
k=1 xlk and the unbiased estimate Σl = 1

Nl−1
∑Nl
k=1(xlk−µl)(xlk−µl)T for the class means

and covariance matrices.
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3.2.2 Transformation

The nonlinear Gaussianization transform is computed in a variational approach from the elastic
transform [141] that modifies the nonparametric pdf estimate such that it becomes as similar
as possible to the Gaussian parametric one (see Figure 3.4). As discussed before, probability
conservation effects are ignored to keep the computational complexity manageable. The com-
putation of the elastic transform relies on the pdf estimation. The pdf is estimated at the knots
of a grid laid over the support of the training sample in the feature space (i.e., a discretization
of Ω).

Elastic transform

Next the nonparametric estimate pO(x) will be denoted with O(x) (for original) and the para-
metric pdf estimate pT (x) with T (x) (for target). The sought transformation is φ : Rd → Rd,
with d the dimension of the input. The transformed original O(φ(x)) is as similar as possible
to the target T (x). The transformation φ = x − u(x) has two parts: the identity x, and the
displacement u(x).

Given T and O the displacement u is sought such that

I[u] = D[T,O;u] + αS[u]→ min, (3.4)

where D[T,O;u] is the distance between T and O with respect to u, S[u] is a regularizing term
and α is a positive real constant. α controls the influence of the data term on the solution of
the optimization problem in relation to the constraint. Clearly, the higher α the less influence
the data term has. A usual value for α is α = 1. The distance measure used here is the SSD,
computed as

D[T,O;u] = 1
2‖O(φ(x))− T‖2

`2(Ω),

with Ω being the region under consideration. The linearized elastic potential

S[u] =
∫
Ω

µ

4

d∑
j,k=1

(∂xjuk + ∂xkuj)2 + λ

2 (div u)2dx,

with λ and µ being the Lamé constants [141] is used as regularizing term. These constants
control the rigidity of the elastic deformation, such that high values lead to increased rigidity.
The linearized elastic potential takes care that the solution remains smooth.

The solution of the optimization problem (3.4) is obtained by numerically solving the cor-
responding Euler-Lagrange equations

f = µ4u+ (λ+ µ)∇div(u), (3.5)

with2 f the force term, which is related to the distance measure D and depends thus also on the
displacement u. For this purpose equation (3.5) is rewritten in the form

f(u) = A[u], (3.6)

24 is the Laplace operator,∇ is the gradient operator and div is the divergence.
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with A[u] = µ4u+ (λ+ µ)∇div(u) a partial differential operator related to the regularizer S.
To solve this, a fixed-point iteration scheme is used

A[uk+1](x) = f(x, uk(x)), (3.7)

with A[uk+1](x) = A[uk+1(x)], x ∈ Ω and k ∈ N. For stability purposes the displacement u
may be made time dependent and the sought minimizer is obtained as the steady-state solution
of the corresponding time-dependent partial-differential equation3 [141]:

∂

∂t
u = f(u)−A[u]⇔

uk+1(x)− uk(x)
ρ

= f(x, uk(x))−A[uk](x)⇔

uk+1(x) = uk(x) + ρ
(
f(x, uk(x))−A[uk](x)

)

The transform thus obtained is diffeomorphic, for appropriate values4 of the Lamé constants.

Transform grid

To ensure numerical tractability, the elastic transform is computed over a discretization5 of the
target region Ω. This discretization is called the transform grid. In practice the grid is in the
form of a hyperrectangle whose sides are double the standard deviations of the training sample
in the corresponding directions. The grid is centered on the training sample and it thus spreads
over the margins of the sample.

As previously discussed, the grid is fixed for the standard Gaussianization and adaptive for
the accelerated Gaussianization. A fixed grid with displacement vectors is shown in Figure 3.4
and superimposed on the training data in Figure 3.5. An adaptive grid is shown in Figure 3.6.
The gird is defined at integer positions, the displacement u is computed at non integer positions
with the help of interpolation, like for example bilinear interpolation.

For the standard Gaussianization, the size δ of the grid (i.e., the distance between two grid
points along an axis of the feature space) is an important parameter. It is related to the total
variance of the training data. Empirically it has been found that δ = log10(tr(Σ)), where Σ is
the covariance matrix of the training data.

For the accelerated Gaussianization, the adaptive grid is comped with the help of a heuristic,
as described in Section 3.3.2.

3.3 Gaussianization speed up
The density of grid points in the analyzed feature space is set in relation to the variance of
the available training data and can be very high. This, corroborated with the dimension of

3This is equivalent ot finding the extremum point of the function g(u) =
∫
f(u(t)) − Au(t) dt by applying a

gradient method.
4Assuming α = 1, if the values of both constants are chosen to small in relation to f , it may lead to a transform

that is not diffeomorphic.
5This is equivalent to say that the involved derivatives are approximated with finite differences and solved

numerically.
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the training space (i.e., the hyper volume of the grid), leads in many cases to an extremely
large number of grid points. For a feature space with d dimensions and with g grid points per
dimension we have dg grid points. Therefore, even for relatively small (for a pattern-recognition
problem) dimensions of the feature space, like for example 15, and with a low density of grid
points of 10 per dimension, we have large numbers of grid points – in our example∼ 5.76 ·1011

grid points.
It is then clear that the multiclass Gaussianization described above is computationally de-

manding and thus slow, having to determine the displacement field at each grid point. For
practical purposes, we need thus to increase the speed of the standard Gaussianization.

To speed up the Gaussianization there are in principle three main possibilities:

1. Apply a dimensionality reduction technique, before the Gaussianization.

2. Come up with a faster numerical solver to the system of equations (3.7).

3. Reduce the computational burden by decreasing the number of parameters.

The most straight forward way to reduce the complexity of the Gaussianization is to compute
the transform on a feature space with less dimensions. In this case we need a suitable projection
operator from the original high-dimensional feature space to a low-dimensional one. In other
words, we need to find a transformation to be plugged in before the Gaussianization to enable
us to reduce the dimensionality, while keeping the information we are interested in from the
original feature space.

The majority of dimensionality reduction methods, like the linear PCA or the nonlinear
Locally Linear Embedding [156], work properly only under a set of assumptions that in many
cases go against the entire argumentation that followed here. These assumptions are in general
stricter for linear dimensionality reduction than non-linear dimensionality reduction methods.
However, the latter are usually tailored to certain problems, being specifically designed for
them.

For these reasons, dimensionality reduction before Gaussianization should be considered
only as a last resort solution, to be used when nothing else works. Nevertheless, this solution is
always available and it would be interesting to find out which transformations are best suited to
be used in this role.

Next we will concentrate on the remaining two ways to speed up the Gaussianization. There
are several ways to devise a faster numerical solver. In the context of partial differential equa-
tions, these include also multigrid methods and adaptive grid methods. Although adaptive grid
methods are a subset of the multigrid methods, they will be treated separately here, as they
represent the inspiration for the accelerated Gaussianization, proposed here as a solution to the
problem of increasing the speed of the standard Gaussianization. Thus, we discuss next in more
detail faster numerical solvers in Section 3.3.1, including multigrid methods and then introduce
in Section 3.3.2 the accelerated Gaussianization, which is an adaptive grid-based approach to
reduce the computational burden of the multiclass Gaussianization by decreasing the number of
parameters.

3.3.1 A faster numerical solver
Solving the Euler-Lagrange equation (3.5) involves computing the at each iteration k (see equa-
tion (3.7)) a solution to a linear system of equations of the form ϕ = Aν that results from the
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finite differences approximation of the partial differential equation over the transform grid.
In general, depending upon how complicated a system of equations is, we may chose dif-

ferent methods to solve it. In practice we need to use numerical methods (i.e., algorithms), and
thus our choice is really between direct and iterative methods. Direct methods like Gaussian
elimination return the true solution in a certain number of computation steps. Iterative methods
like the Jacobi method and the Gauss-Seidel method, improve at each iteration step an initial
poor approximation of the true solution. In general, the iterative methods would need a very
large number of steps to reach the true solution, however approximate solutions are available
from the very first iteration. This leads to the following consideration: if the system to be solved
is very complicated, such that a direct method would take too long to compute, we use an iter-
ative method with a number of steps n chosen such that it takes less time to compute than the
direct method and the approximation at the final step is satisfactory. The Conjugate Gradient
(CG) method [94] is an example for a numerical method that is direct, but admits also iterative
implementations. By a complicated system of equations we meant until now a large system of
equations, with a high number of individual equations. If the matrix of the system of equations
is not rectangular or it has a low rank, then we have another type of complications in that we ei-
ther have no or to many solutions. There are several ways to proceed in these cases as well: use
the pseudoinverse, or SVD, or again use iterative methods. It appears thus that iterative methods
represent a general solution for many types of problems related to systems of equations.

For the multiclass Gaussianization, even if considering only the sheer size of this system of
equations, it seems that the only option is to search the solution in an iterative manner and settle
for a close approximation of the true solution. This is in general true for dimensions d > 3
and all but the smallest systems. For d = 2, 3 and with periodic boundary conditions, there
exists a FFT-based technique [72] able to efficiently diagonalize the matrices arising from the
finite difference discretization of the Euler-Lagrange equations that is faster and more accurate
than iterative solutions. Nevertheless, in our case, typically we have d > 3, and thus we need
to proceed with the iterative strategy. However, to reach a satisfactory coarse approximations
to the true solution, the standard iterative methods will simply take too much time to be of
practical use for the large systems that typically appear in our case. Therefore, the speed of
iterative methods needs to be increased, which usually means reducing the number of iterations
that are needed to reach the satisfactory solution, while the procedure that enables us to do so
requires less computations than those needed for the saved iterations. Multigrid approaches
allow us to do just that.

Multigrid approaches

The main problem of the iterative methods is the initialization. A poor initialization (i.e., the
initial solution is very far from the true one) leads to a large number of iterations that need to be
computed to reach the vicinity of the true solution. Thus, to speed up such algorithms a good
initialization is needed. Multigrid considerations [185, 177] are instrumental on this path, in our
context of numerical solutions to partial differential equations (PDE). With multigrid methods,
we would first find a direct solution to a reduced system of equations that we obtain by simply
disregarding some equations (and equivalently some unknowns). Then, we would extrapolate
this reduced solution to the entire system and use this as initialization for the iterative scheme.
The difficulty with this approach is related to the frequency characteristics of the error. If
the error is smooth, then everything is alright, as the multigrid methods can cope with low-
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frequency errors. Conversely high-frequency errors cannot be well approximated on a coarser
grid. However, there are solutions that work well with high-frequency errors and bad with low-
frequency errors, showing thus a complementary behavior to the naïve multigrid approaches.
State of the art multigrid methods combine both these strategies.

Dealing with low-frequency errors. Within the PDE context, the multigrid approach comes
naturally when considering discrete approximations, like for example the method of finite dif-
ferences. Discrete approximations are either used to approximate the solution numerically, with
the help of a computer, or they arise naturally for example in the field of digital signal process-
ing, as in the case of image registration or our nonlinear Gaussianization.

For a coarse grid ΩC , we have the system of equations ACνC = ϕC . If we go to a finer grid
Ωf we have the system of equations:

Afνf = ϕf . (3.8)

The solution νf that we compute here is a better approximation of the true solution νT , but is
achieved with a more complicated system of equations. Next we seek to improve the approxi-
mation while keeping a manageable complexity.

With νAf some approximative solution on the fine grid Ωf , we have:

Af (νAf − νf ) = Afν
A
f − ϕf .

If we define the defect
df = Afν

A
f − ϕf (3.9)

and the error ef = νAf − νf we obtain:

Afef = df . (3.10)

Computing the error by ef = A−1
f df gives us the possibility to compute νf = νAf − ef , but

solving equation (3.10) is in no way more simple than solving equation (3.8). The breakthrough
is achieved when we project the error back on the coarse grid ΩC with the help of a restriction
operator r : Ωf → ΩC and solve there the less complicated system of equations:

ACeC = r(df ). (3.11)

The coarse error
eC = A−1

C r(df ) (3.12)

allows us to compute an improved approximation of the true solution on the fine grid as

νIf = νAf − p(eC), (3.13)

where p : ΩC → Ωf is the prolongation operator, that projects the coarse error eC (that can be
understood now as a correction term) on the fine gridΩf . We achieve thus a good approximation
with reduced complexity. Considering that usually an error has both high-frequency and low-
frequency components, this method can successfully cope with the low-frequency components.
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Figure 3.6: Shown here are: first the original non-Gaussian data (the class affiliation is color
coded), then the adaptive grid as red dots with the subregions Ri, drawn with black lines (the
smaller subregions are not drawn for display purposes) and finally the adaptive grid.

Dealing with high-frequency errors. For a useful solution strategy for systems of equations,
we need now to find some way to reduce the high-frequency component of the error as well.
However, the methods we employ should not add more complexity than what we have gained
by working on the coarse grid. It can be proven that standard iterative methods like the Jacobi
method (see Chapter A) are proficient at reducing the high-frequency components of the error
but have problems with the low-frequency components. At the same time, the additional com-
plexity brought by executing a few steps from such an iterative method is small, smaller than
what we have gained by working on ΩC .

We are now ready to introduce the two-grid approach [90] as an iterative sequence of several
steps aimed at rapidly finding a good solution for the system of equations (3.8):

1. Smoothing: On Ωf apply a few steps of an iterative method for numerically solving a
system of equations, to compute νAf .

2. Defect: Compute the defect with equation (3.9).

3. Restriction: Use the restriction operator to compute dC = r(df ).

4. Coarse error: Compute the coarse error with equation (3.12).

5. Prolongation: Use the prolongation operator to compute ef = p(eC)

6. Correction: Compute the improved estimate of the true solution with equation (3.13).

Repeat these steps until
∥∥∥AfνIf − ϕf∥∥∥2

< ε, for a small tolerance ε or for a predefined number
of steps. We go from two-grid to multigrid approaches, by applying the two-grid approach to
compute the coarse error in step four.

3.3.2 Adaptive multigrid methods for accelerated Gaussianization
Adaptive grids are usually employed to decrease the computation burden (but also to increase
the accuracy) of multigrid methods applied to the solving of PDEs. The core idea is to spend
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computational power only where it is needed, i.e, around the areas of interest, where the change
occurs. There are two main ways to implement this idea [177], in the form of (i) static (or
predefined) adaptive grids and (ii) dynamic (or self-adaptive) adaptive grids. In the former case,
the structure of the grid is defined before the computation starts and in the latter case, the grid
modifies its structure during the computation.

Adaptive grid numerical methods represent efficient and general ways to solve systems of
equations and were used here as inspiration for an accelerated Gaussianization. The idea fol-
lowed now is simple, being based on the observation that in the training set the data points are
not uniformly distributed over Ω. Therefore, instead of computing the displacement field over
a fixed grid, they will be computed over a variable grid that is dense where the data is dense and
sparse where the data is sparse. The grid size δ becomes now the lower bound of an adaptive
grid. To compute the multiclass Gaussianization transform, the fixed-point iteration scheme
(3.7) is adjusted to the adaptive grid.

The iteration

For the purpose of Gaussianization a predefined adaptive grid is introduced next. The grid is
defined in such a way that in the regions where the data is sparse, the grid is sparse as well,
while in the regions where the data is maximally concentrated, the density of grid points re-
mains constant in comparison to the fixed grid. As a consequence the total number of grid
points decreases, while still ensuring a proper link to the feature space. We start by constructing
the adaptive grid, for which purpose we determine the granularity of the grid in non-overlapping
hypersquare-sub-regions of Ω. Grid points are positioned at the corners of these regions. Then,
this adaptive grid is used with the fixed point iteration (3.7). The iteration is conducted first at
the coarsest grid, over the entire Ω and then hypersquare-wise at finer grids, using as initializa-
tion the extrapolated result from the previous coarser grid. At each iteration, the corresponding
systems of equations are solved with the CG. Once a hypersquare-sub-region reaches its finest
granularity, no further computations are conducted there. A accelerated Gaussianization dis-
placement field is shown in Figure 3.7(b).

The adaptive grid

There is no standard solution for the problem of defining an adaptive grid in this context. Here
a heuristic is used that is derived from the field of image segmentation. The heuristic stems
from the region splitting image-segmentation algorithm [81]. This is a region-based procedure
that makes use of a homogeneity criterion H(R) to find out if a certain region Ri of the input
image is part of the object or of the background. As a result, the image I is divided into non-
overlapping regions Ri, i = 1, . . . , NR, such that

⋃NR
i=1 Ri = I , while ∀ i : Ri ⊆ I and

∀ i , j : Ri∩Rj = 0. Each region satisfies H(Ri). For a 2D image, region-splitting procedure
begins by considering the entire image one region. If H(R) is not fulfilled, then R is divided
into four new regions, by halving each side of the initial region. This division step is repeated
as long as H(Ri) = false. A data structure similar to a quad tree is thus obtained.

To implement the variable grid, the region-splitting procedure needs to be adapted. It should
separate the data into foreground and background. The foreground is there where the data is
concentrated, while the background is there where the data is sparse. Therefore, the homogene-
ity criterion has to measure how concentrated the data is in a region, and to do so H(Ri) is
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(a) (b)

Figure 3.7: Displacement field for the standard, static-grid transform (a) and for the fast,
adaptive-grid transform (b), for the two-class input data from Figure 3.6

defined as

H(Ri) :

true, if #{Ri} ≤ τ

false, otherwise

where #{Ri} is the number of data points in Ri and τ is a threshold. τ is defined with the help
of δ, the size of the static transform grid, as the maximum of the number of data points that
can be found in a hypercube of side δ. This definition is used such as to ensure that at its finest
granularity, the adaptive grid is similar to the static grid and thus a true reduction of the number
of grid points is achieved in comparison to the standard Gaussianization. This procedure is
illustrated in Figure 3.6.

3.4 Experiments and discussion
The multiclass Gaussianization was tested on synthetic and real data. The tests on synthetic data
in Section 3.4.1 are meant to demonstrate exemplary the benefits and limitations of the approach
described above. The real data, used for the tests whose results are shown in Section 3.4.2, is
Fischer’s ”Iris“ dataset [18].

During testing the available data was randomly divided into a training and a test set, each
containing 50% of the initial data points. The Gaussianization transform (both standard and
accelerated) is computed using the training set and then applied on the test set.

The experiments were conducted with binary classifiers. The data was classified before
(Org.) and after both the standard (Gauss.) and the accelerated (acc. Gauss.) Gaussianization
with five types of classifiers: (i) a white Gaussian Bayesian classifier, computed under the as-
sumption of equal, unit class covariance matrices (W); (ii) a linear Gaussian Bayesian classifier,
computed under the assumption of equal class covariance matrices (L); (iii) a nonlinear Gaus-
sian Bayesian classifier (nL); (iv) a SVM with a Radial Basis Function (rbf) kernel (SVM); and
(v) a linear perceptron (P).

The elastic transform has several parameters, some are computed from the training data
while others need to be set in advance. From among the latter, the magnitudes of λ and µ are
related to the magnitude of the force term f . Here, the elastic transform is used to register
densities that must integrate to one over the definition domain, and thus their values at every
grid point are much smaller than one. Accordingly, the magnitudes in the force term will also be



3. GAUSSIAN NONLINEAR FEATURE EXTRACTION 109

(a) (b)

Figure 3.8: Standard Gaussianization: Linearly-separable data (a) and corresponding displace-
ment field (b). The class affiliation is color coded.

small as will the values of the two parameters6. All experiments were satisfactorily conducted
with the same parameter choice (α = 1, λ = 4 ·10−5 and µ = 16 ·10−5), established by six-fold
cross validation on the linearly separable data set.

In all experiments the number of grid points for both the standard and the accelerated Gaus-
sianization was also computed and the training time, i.e., the time needed to compute the pa-
rameters of the transform, was measured. The results are shown in Section 3.4.3. Finally in
Section 3.4.4 the results obtained are discussed.

3.4.1 Experiments on synthetic data

Tests have been conducted on data sets with dimensions of up to 10 and with various numbers of
classes between two and five. Here the findings are summarized on 2D examples, a dimension
that is most convenient for visualization. There are two classes present. For each experiment
800 manually generated data points were used, 400 per class. The synthetic data is separable,
differentiating between linearly separable data and nonlinearly separable data. The separable
case was chosen for the tests such as to have a reference in the sense that error-free classification
is possible there.

Linearly separable data

The linearly-separable data and the displacement field of the standard Gaussianization transform
are shown in Figure 3.8. The result of standard Gaussianization on the test set is shown in
Figure 3.9. The elastic transform parameters were δ = 2.1 and h = 1.6. The same h was used
for the accelerated Gaussianization as well. The classification results for both the standard and
the accelerated Gaussianization are shown in Table 3.1. Only after Gaussianization does the
linear Gaussian classifier find the separating surface. The accelerated Gaussianization clusters
the data better thus yielding a transformed space with better Gaussian-separability properties,
that are accordingly exploited by the classifiers.

6By comparison, in the case of image registration, assuming for example eight-bit images, the values at each
and every grid point and the corresponding magnitudes in f will clearly be larger. Accordingly larger values for
λ and µ are customary in this case. This should be understood as another proof that each problem has its own
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Figure 3.9: Standard Gaussianization: Linearly-separable test dataset before and after transfor-
mation.

W L nL SVM (SVs) P
Org. 1.75 0.75 0.75 0 (15) 0.25

Gauss. 0.25 0 0 0 (11) 0
acc. Gauss. 0.25 0 0 0 (12) 0

Table 3.1: Error rates (%) on the linearly separable dataset.

Nonlinearly separable data

We have also generated nonlinearly separable data, shown in Figure 3.10. The transform pa-
rameters for the standard Gaussianization were δ = 1.8 and h = 1.4. The same h was used for
the accelerated Gaussianization as well. The classification results for this case are shown in
Table 3.2. The quadratic and linear Gaussian classifiers provide identical results, because the
class-covariance matrices are very similar, as it can be seen in Figure 3.11.

particular solution even if the solution strategy is similar.

(a) (b)

Figure 3.10: Standard Gaussianization: Nonlinearly separable data (a) and corresponding dis-
placement field (b). The class affiliation is color coded.
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Figure 3.11: Standard Gaussianization: Nonlinearly separable test dataset before and after
Gaussianization.

W L nL SVM (SVs) P
Org. 5.25 4.25 4.25 1.25 (17) 3.75

Gauss. 2.25 1.75 1.75 0.25 (12) 1.75
acc. Gauss. 2.75 2 2 0.25 (14) 1.75

Table 3.2: Error rates (%) on the nonlinearly separable dataset.

3.4.2 Experiments on real data

The ”Iris“ dataset contains 150 feature vectors from three classes, with 50 vectors each. The
classes are not separable. There are four features per vector. To adapt the binary classifiers to
a multiclass scenario, a majority voting rule was used. The results are shown in Table 3.3. The
elastic transform parameters for the standard Gaussianization were δ = 0.7 and h = 0.6. The
same h was used for the accelerated Gaussianization as well.

3.4.3 Complexity reduction with multigrid methods

The accelerated Gaussianization works by reducing the size of the grid where the elastic trans-
form is computed and offering better initialization locally for the CG solver, but the parameters
of several gird points (i.e, those also present on the coarser previous grid) are recomputed each
time the grid turns finer in the respective region.

To investigate the decrease in computational complexity of the Gaussianization when using
the adaptive grid, the number of grid points (the size of each grid) was computed for each of
the tested datasets: linearly separable (2D-lin.), nonlinearly separable (2D-nlin.), and the ”Iris“
dataset (4D). The results are shown in Table 3.4.3. The time needed for each type of Gaus-

W L nL SVM (SVs) P
Org. 8 2.66 2.67 1.33 (20) 10.66

Gauss. 10.66 1.33 0 0 (17) 14.66
acc. Gauss. 8 1.33 0 0 (15) 8

Table 3.3: Error rates (%) on the ”Iris“ dataset.
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Dimension Type Grid size

2D-lin.
std. 1056
acc. 563

2D-nlin.
std. 924
acc. 589

4D
std. 2520
acc. 2157

Table 3.4: Grid complexity for various datasets.

sianization was measured under MATLAB on a dual-core Opteron 8222 machine at 3GHz with
16GB of RAM in each scenario. The results show a decrease in computational time of at most
10%, even if the number of grid points is halved. The computation of the displacement field of
the standard Gaussianization for the 4D ”iris“ dataset takes approximatively two minutes.

3.4.4 Discussion
The experiments on synthetic data show that after standard Gaussianization, the tested classi-
fiers work better, in the sense that they make less errors. Also in comparison to other classifiers,
the improvement of Gaussian classifiers—in terms of reduction of the error rate—is larger. For
rbf-SVMs the number of support vectors diminishes. In the case of real data, the perceptron and
the white Gaussian classifier misclassify three, respectively two more vectors after Gaussianiza-
tion, but the nonlinear Gaussian classifier perfectly separates the data. Thus, the Gaussianization
transform brings improvements only for the more powerful classifiers.

The same observations can be made for the accelerated Gaussianization as well. As in
the case of the standard Gaussianization, the accelerated Gaussianization effectively makes the
data more Gaussian, as shown by the improved performance of Gauss-related classifiers in the
transformed space. The small increases of the error rate on the nonlinearly separable data set are
due to the fact that in the regions where the adaptive grid is sparse, the displacement vectors of
the nonlinear transform are larger – which follows from the very way the transform is computed.
Test-set points falling in regions of the feature space covered by a coarse section of the adaptive
grid will tend to travel further away, potentially over the linear separation surface, but they do
so in a grouped manner, such that in the case of the SVM, new SVs placed there lead to the
group being correctly classified. Still the number of SVs is smaller than for the original data, as
it may be observed in Table 3.2. Conversely the same behavior works to our advantage on the
”Iris“ dataset.

The main purpose of the accelerated Gaussianization is to reduce the training time (i.e., the
time needed to compute the parameters of the elastic transform), such as to be able to apply
the Gaussianization to features spaces of higher dimension. The accelerated Gaussianization
works by reducing the size of the grid where the elastic transform is computed and offering
better initialization locally for the conjugate-gradient solver. On the other hand, the parameters
of several gird points (i.e, those also present on the coarser previous grid) are recomputed each
time the grid turns finer in the respective region. Furthermore, with the adaptive grid some
time is spent during the computation of the transform with the generation of the adaptive grid
and then with the management of the adaptive grid. Therefore, the time reduction can not be
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linear in the number of grid points. Nevertheless, as a whole, the time needed to train the
Gaussianization is reduced, because, even if some grid points are recomputed several times, as
a total, a smaller number of equations needs to be solved. Furthermore, the CG solver coverages
in a smaller number of steps due to the improved initialization. The process can be sped up even
further if solvers faster than the CG are used.

The transformation has several parameters. The grid size δ for the standard Gaussianization,
the grid sizes (i.e., structure of the adaptive grid) for the accelerated Gaussianization, as well as
the kernel size h can be computed from the training data. δ is a parameter to which the standard
Gaussianization is particularly sensitive. The formula proposed here for this parameter was
established empirically, therefore better choices are possible. The rest of the parameters, i.e.,
α, λ and µ, should be established by cross-validation. As the experiments show, the method is
largely insensitive to the these three parameters, which is to be expected, because always only
densities are registered.

3.5 Conclusions, outlook, and summary

A nonlinear multiclass Gaussianization transform was described in this section. Its purpose is
to support the Gaussian assumption often made in many classification problems. The multi-
class Gaussianization is computed as the displacement field of an elastic transform that makes
the nonparametric pdf estimate of the training data as similar as possible, with respect to the
SSD between the two functions, to a GMM with one component per class. The Gaussianization
transform is defined at discrete positions over a region of interest centered on the training sam-
ple. Data points outside this region are left unmodified. The analysis is conducted only over
the support of the available training set. Interpolation is used to compute the displacement at
positions between the knots of the grid where the transform is defined. Two methods have been
discussed: the standard Gaussianization that works on a fixed grid, and the accelerated Gaus-
sianization (see also Section 3.5.1) that decreases the computational burden during training by
working on an adaptive grid.

The classification strategy implicitly proposed here with the introduction of the Gaussianiza-
tion includes a nonlinear transform followed by a relatively simple classifier. In the experiments
only binary classifiers were used. Still, Gaussian discriminant function-based multiclass classi-
fiers can be also easily used in the transformed feature space. This strategy is arguably similar
to that used by a SVM, however the Gaussianization described here is an explicit transform, as
opposed to the kernel trick and is not limited to binary classifiers.

A nonlinear transform has complete control over the original feature space and theoreti-
cally, with such a transform perfect Gaussianization is possible. As discussed in Section 3.5.2,
the algorithmic choices made here make perfect Gaussianization impossible, but arguably, in
this case perfect, reasonable Gaussianization is anyway impossible, thus nothing is lost while
obtaining acceptable Gaussianization and improved usability.

In summary, here for the first time a complete nonlinear multi-class Gaussianization solu-
tion was described and demonstrated on several examples. The practice will show if the precise
algorithms used to implement the Gaussianization represent truly the best choices. Even if the
general steps of the Gaussianization (i.e., parametric and non-parametric density estimation,
nonlinear, diffeomorphic transform and adaptive grid) are universally valid, the precise imple-
mentation of each step can be optimized for specific problems.
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3.5.1 Accelerated Gaussianization

A major issue with the multiclass Gaussianization is the very long training time, related to
the dimension of the processed feature space. For Gaussianization it is possible to reduce the
computation burden and thus the training time, by making use of problem-specific informa-
tion in the sense that we use the fact that the training data does not have a constant density
everywhere over its support. Following this train of thought, the accelerated Gaussianization
that uses an adaptive grid, was introduced. Then, the number of positions where the vectors
of the displacement field need to be computed decreases, being correlated to the data density
as this data density can be inferred from the training set. A predefined adaptive grid was used
here, whose structure is found with a heuristic derived from the field of image segmentation.
The adaptive grid is computed such as to ensure that the same number of training-set vectors
is present in each hyperrectangle with grid-points at its corners. The adaptive grid accelerated
Gaussianization effectively makes the input data more Gaussian, while reducing the computa-
tional complexity. The accelerated Gaussianization is an iterative multigrid method. There are
also direct methods – developed in the context of image registration – to solve the system of
equations (3.6) that, at least for relatively small sizes (up to 10242 and dimension d = 2, 3)
decrease the computation time approximately by a factor of three in comparison to a multigrid
approach [141]. In principle, at least for large dimensions of the processed data (as often en-
countered in pattern recognition as opposed to image registration) an adaptive grid method will
outperform a direct method as a direct method will pointlessly spend computation power on
parts of the feature space where the training data is sparse. A last resort solution to achieve a
significant reduction in complexity for problems of very large size would be to make use of a
dimensionality-reduction transform before Gaussianization. It remains to be investigated if this
is a viable solution in this context.

3.5.2 Perfect Gaussianization

A most important fact that should be take into account is that on the way towards Gaussian-
ization, we need to pay attention not to lose the important data-contained information in which
we are interested. For example, in the case of classification and multiclass Gaussianization that
were discussed here, this important information is about the differences between classes, be-
cause these differences allow us to shatter the feature space and conduct classification. If we
completely destroy data/feature-space cohesion only to reach Gaussianity, we may find out that
we nolonger can conduct classification in the Gaussian feature space. More precisely, the prob-
lem is that there where two classes overlap, we simply don’t know in which direction to push to
make each class Gaussian. Hence the decision to make the smallest possible modifications such
that each class becomes more Gaussian than before. In other words, in order to keep data co-
hesion a regularizer is used that favors such a behavior, namely the linearized elastic potential.
Probability conservation would also play a role to alleviate such problems but in turn would
also increase computational complexity and thus decrease usability. This issue is also related to
the fact that the class labels of the training data are not explicitly considered while computing
the Gaussianization.

As already mentioned, with a nonlinear transform, should another regularizer been chosen,
the data could possibly have been turned into a perfect GMM. However, even if we have had
the same number of modes in the mixture as the number of classes and the proper priors, we
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probably could not have guaranteed that one mode is responsible for just one class, without
explicitly considering the class-label information while computing the transform. An unreason-
able Gaussianization could have thus been obtained, were a class would have been generated
by several different modes.

New means and variances for the transformed data could have also been imposed with the
aim of increasing separability. However, this practically destroys the cohesion of the data with
negative influences on the classification performance. At the same time, the transform is gen-
erally diffeomorphic and the elastic constraint used supports data cohesion in the transformed
space. In other words, the transform works well when each class in the original space is close to
Gaussian and the new class means and covariances are close to the old ones. The more dissimi-
lar the original class-conditional distributions are to the target Gaussian distributions, the larger
the displacements the data term requires to minimize the SSD and the stronger the opposition
of the elastic potential regularizer. On top of this, probability conservation issues are ignored
and the multiclass Gaussianization is susceptible to the curse of dimensionality, as it relies on
pdf estimation. It is thus clear that the methods described here can not achieve perfect Gaussian
class-conditional pdfs. However, this is not the purpose here, but rather it is desired to make
these class-conditional pdfs more Gaussian than before, such that Gaussian methods are more
appropriate on the new data. This goal is achieved, as shown by the superior performance of
Gaussian methods after Gaussianization.
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Chapter 4

Improved hysteresis classification

Classification in a skewed feature space, where there is a strong disproportion between the
number of representatives of each class, is a challenging task in particular for high-accuracy
classifiers, which strive to achieve a minimal number of false decisions. Classification in the
presence of strong overlap is difficult irrespective of the chosen method, however, good results
can be achieved if prior knowledge is used. A set of classifiers will be introduced here that share
the same principled approach constituting together a classification paradigm able to effectively
deal with these types of problems. This paradigm will be demonstrated on the problem of
retinal-image segmentation, as it represents a good example where both these types of problems
arise. Furthermore retinal-image segmentation is needed in retina-based person authentication,
as discussed in Section 5.1.2. Within the paradigm, the accent will be set on new, more powerful
classification methods.

The purpose of image segmentation is to separate objects from background, where by ob-
jects one understands items of interest in the analyzed images. As a binary pattern classification
problem, where each pixel needs to be assigned to either the background or the object class,
image segmentation is usually afflicted by class skew, as there are often much more background
pixels than object ones. Also, in many cases, there is a strong overlap between object and back-
ground in the pixel feature space, usually due to the variations of the object and background-
defining properties. Therefore, a paradigm is introduced next, which makes explicit use of the
prior knowledge about the connectivity of objects, to provide a framework for easily and suc-
cessfully designing binary classifiers for such purposes. These classifiers return good results
despite large class skew and overlap. The accent is set here on binary classification, as in a large
number of cases segmentation implies the separation of a single object – or class of objects –
from the background. Should several object classes be present, binary classifiers can still be
used, e.g., one for each class.

A particularly challenging problem is the segmentation of retinal vessels in photographies
of the retina. Photographies of the retina showing its vasculature are used both in medical and
security applications. For such purposes, the retinal vessels need to be segmented to compute
measures like vessel area and length, vessel width, normal and abnormal branching, and also to
provide a localization of vascular structures. The contrast of vessels in the analyzed images is
related to the quantity of blood found therein. Hence, small vessels have a weak contrast. Also
differences between vessels and background pixels are localized in the vicinity of the vessel.
The background is usually inhomogeneous and can be locally similar to the vessels. All these
lead to poor separability between vessels and background. Conversely vessels are connected
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structures, as the blood flows from the large vessels through smaller ones to the capillaries.
Vessel segmentation in 2D-projection images, including among others retinal images, is a

topic of high interest in the machine-vision community [112]. Owing to the typical separa-
bility problems of vessel images, the first step in extracting the vessels is to enhance them,
i.e., increase their contrast/separability to the background. For this purpose a large variety of
techniques have been proposed including matched filters [150, 98], Hessian measures [74] the
wavelet transform [34, 169], line detectors [155], often this methods include multiscale com-
putations to compensate for the large variety of vessel sizes [133]. Particularly successful have
been approaches where various vessel measures, aiming at different vessel properties have been
combined to generate multidimensional pixel-feature vectors [172, 40, 155] or new vesselness
measures [170, 117].

Vessels can be then segmented in a supervised manner based on a pre-labeled set of exam-
ples, e.g., using k-nearest neighbor classification [172], hysteresis classification [38], centerline
detectors [170], Gaussian Mixture Models-based Bayesian classifiers [169], SVMs [155] or in
an unsupervised manner by, e.g., tracking [34], clustering [40, 39], centerline detection and
region growing [138, 133], as well as by unsupervised hysteresis classification [37, 143] and
multi-thresholding methods [105, 98]. In particular such multi-threshold methods can achieve
good results being especially designed to deal with the large overlap of the vessel and back-
ground pixel classes.

The solution to the vessel segmentation problem, which is proposed here is the Hysteresis
Classification Paradigm that makes use of the connectivity of vessels to return fast and accu-
rate classifiers. The methods described here are used to label each pixel individually. Most
vessel segmentation algorithms are unsupervised and semiautomatic [148], but there are some
important applications in which supervised methods are well suited and automatic methods
are needed, like e.g., retina-based person identification and screening for diabetic rethinopathy
[113]. The hysteresis paradigm can be used to generate both types of methods for either scalar
or vectorial inputs. It uses two classifiers:

1. The pessimist, which is characterized by high specificity, working with a practically zero
false-positive rate, which with overlapping classes implies a high false-negative rate.

2. The optimist, which is characterized by high sensitivity, working with a practically zero
false-negative rate and a high false-positive rate.

Then, using the connectivity property of vessels, the pessimist classification can be used to
select true vessels from among the optimist classification. This last connectivity-based step is
in a way similar to region growing techniques, where the seeds are generated by the pessimist
and the optimist helps define the logical predicate needed for the growing process. However,
the hysteresis methods are significantly faster.

Next, a hysteresis classification method for scalar inputs will be denoted as a hysteresis
threshold, while a hysteresis classification method for vectorial inputs will be denoted as a hys-
teresis classifier. By design the hysteresis paradigm yields for scalar inputs two thresholds [41]
and it is thus a multi-threshold method [163]. Typical multi-threshold methods are actually local
thresholds, where various image regions (varying in size from large portions of the input image
to one pixel [2] [1], [105]) get different thresholds when conducting segmentation, as a way to
compensate for varying background. The hysteresis threshold however always generates only
two global thresholds, the final segmentation being then generated based on the connectivity
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relationships among object pixels. The discussion here is centered on hysteresis classifiers that
by comparison to hysteresis thresholds yield better results.

Hysteresis methods are not new to neither image processing nor vessel segmentation, how-
ever, no consideration was given before to the way the two classifiers should be chosen in rela-
tion to the available data. The hysteresis classification paradigm includes methods to properly
establish the parameters of hysteresis classifiers by training.

For image segmentation in general, the hysteresis-classification paradigm yields two types
of classifiers the absolute and the relative hysteresis classifiers that will be described in more
detail next. The absolute hysteresis classifier has already been proposed in Reference [36],
while relative hysteresis classifiers, which as shown in Section 4.3 yield improved results, are
new developments, being proposed for the first time in References [49] and [50]. For the specific
problem of retinal vessel segmentation, hysteresis classifiers return results that are comparable
or slightly better but computed faster than some of the most powerful state-of-the-art methods
specially designed for this problem [98], [105], [169], [172], [138], [155], [117].

Next, in Section 4.1 the hysteresis classification paradigm is discussed together with its
application to vessel segmentation. In Section 4.2 a feature extraction process is described
that results in the computation of a feature vector for each pixel of an analyzed image. In
Section 4.3 various hysteresis classifiers are tested and compared to state of the art methods.
Finally Section 4.4 gives a critical review of the proposed methods.

4.1 A hysteresis binary-classification paradigm applied to im-
age segmentation

The concept of hysteresis thresholding for image analysis is not new, being used successfully
for edge segmentation by Canny [28] and even before this to construct motion masks [52]. With
respect to the design of the hysteresis threshold, Canny only mentions that the high-confidence
threshold should be some two times larger than the low-confidence one, as in the edge map
the edges are always brighter than the background. Such considerations are characteristic for
the way the hysteresis threshold is currently used. The two thresholds usually stay in a fixed,
predetermined relationship to one another. The hysteresis classification paradigm introduced
here provides means for the design of flexible hysteresis methods that can adapt to the analyzed
data and return thus better results.

The set of concepts related to the hysteresis paradigm is described beginning with Sec-
tion 4.1.1. Particular implementations of these concepts lead to various types of hysteresis
classifiers. Hysteresis classifiers consist of a high- and a low-confidence classifier and may be
used for both scalar and vectorial inputs, assuming that a condition about connectivity of the
object-class pixels holds. A major hysteresis concept is that of percentile-based classification,
which is discussed in Section 4.1.2. This leads to highly accurate and robust relative hystere-
sis classifiers. In Section 4.1.3 the hysteresis framework will be used to construct classifiers
for the particular problem of image segmentation, which are then applied to the segmentation
of vessels. In Section 4.1.4 a set of rules is introduced that permits the training of hysteresis
classifiers.
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4.1. A HYSTERESIS BINARY-CLASSIFICATION PARADIGM APPLIED TO IMAGE

SEGMENTATION

4.1.1 Hysteresis classification
In the hysteresis classification paradigm, the high- and low-confidence classifiers are called the
pessimist and the optimist, respectively, and they represent the base classifiers. When applying
the paradigm to image segmentation, connectivity is defined over neighborhood relationships
among pixel sites. A border-separability constraint is introduced that is supposed to ensure that
the connectivity condition leads exclusively to the selection of object pixels. For image segmen-
tation, the paradigm yields two types of classifiers, the absolute one, taking into consideration
only individual pixels, and the relative one, considering also the analyzed image. Finally, for im-
age segmentation it is shown how to conduct feature extraction using object maps. A flowchart
of the hysteresis-classification paradigm is shown in Figure 4.1.

feature space A

optimist
base-classifier

pessimist
base-classifier

result

connectivity in B 

input

separability 
 constraint

Figure 4.1: Flowchart of the hysteresis classification paradigm.

Base classifiers. If the two classes of a binary classification problem overlap strongly but not
completely in some feature space (denoted next by A), then error-free classification is impos-
sible there. If the components of one class do exhibit some type of connectivity in a different
feature space (denoted next by B), where there is no overlap (i.e., the classes are disjoint), then
the hysteresis paradigm is used to design methods that may achieve error-free classification.
Two classifiers working in feature space A (i.e., the pessimist and the optimist), coupled over
the connectivity constraint in B, build a hysteresis classifier. However, if the connectivity and
disjointness in B can be described by some numerical features, then these should be included in
A, where a standard classifier can then be used to achieve error-free classification. Thus, those
cases are considered in which the connectivity and disjointness in feature space B cannot be
easily described numerically.

Hysteresis classification for image segmentation. For the particular case of image segmen-
tation, the features in feature space A are computed from the intensity levels of the analyzed
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image, such that for each pixel there is a point in the feature space. The feature set B is given
by the set of pixel sites S = {s1, s2, . . . , sN} with N = m× n for an image with m lines and n
columns. Each pixel site is represented by a 2D position vector si = [xi, yi]T with i ∈ {1 . . . N}.
A neighborhood system N k = {Ns, s ∈ S} is introduced as a collection of pairs of pixel sites
Ns. For a site sA, a pair is defined asNsA = {sA, sB}, such that sB ∈ NsA ⇔ sA ∈ NsB and the
distance between them satisfies d(sA, sB) ≤ dN , with d(sA, sB) = [(xA− xB)2 + (yA− yB)2] 1

2

being the Euclidean distance. If dN = 1, then we have a four-points neighborhoodN 4, as there
are four pairs for each site. If dN =

√
2 we have an eight-points neighborhood N 8.

Each base classifier returns a sets of labels L = {ls, s ∈ S} with ls ∈ {0, 1}, for a total
of two different label configurations Loptimist and Lpessimist. With respect to a set of labels, B
fulfills a disjointness condition, as each site receives one of two possible and mutually exclusive
labels: object (ls = 1), or background (ls = 0). The object connectivity in B is expressed as a
proximity relationship, i.e., object points are neighboring other object points according to their
labels and the neighborhood system N k.

For vessel segmentation, vessels are considered to be connected objects, with each vessel-
pixel site being linked over an N 8 neighborhood to another vessel-pixel site. Therefore an
image is segmented by selecting from Loptimist all those vessel-pixel sites connected over a
chain of N 8 neighborhoods to a vessel-pixel site from Lpessimist.

The border-separability constraint. In order to select all object points from A, assuming
overlapping classes, the “optimist” will falsely classify many background points as object
points. For the hysteresis classification to work without without making any errors, these false
objects must be situated in B at a distance larger than the chosen threshold dN from true ob-
jects. In other words, they may not be connected to true objects, and more precisely, they may
not be in the neighborhood of true objects. Therefore, the borders of objects have to be suf-
ficiently separable from the surrounding background such that there exists a classifier which
yields a segmentation result where true object pixels are separated from false object pixels by
dmin > dN in B. This property is called the border-separability constraint. In practice, of
course, the border-separability constraint will not always hold, and it should be enforced prior
to segmentation in the feature-extraction process.

Relative and absolute hysteresis classification. For image segmentation, the hysteresis clas-
sification paradigm returns two types of classifiers: the absolute hysteresis classifier, and the
relative hysteresis classifier. For the absolute hysteresis classifier, the training returns the pa-
rameters for two separation surfaces, one for each base classifier. During testing and operation,
these surfaces are used to decide for each pixel, irrespective of the image it comes from, whether
it is a background or an object pixel. For the relative hysteresis classifier, during training two
percentile values are found. These values are used during testing and operation to compute for
each analyzed image two individual separating surfaces that are in turn used to decide for each
pixel in the respective image whether it belongs to the background or to the object class.

Feature extraction: the object map. In the case of image segmentation, feature extraction
implies a chain of processing steps aimed at improving the separability between the two pixel
classes, like, for example, improving the contrast and the homogeneity of the pixel-intensity-
level representation of objects and background. For hysteresis segmentation, special care has
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to be taken during feature extraction to preserve and enhance the objects’ borders, in support of
the border-separability constraint. To avoid undesired bias, the features should be normalized.
The result of feature extraction is an object map, in which each pixel has an intensity value
attached as feature.

4.1.2 Relative hysteresis classification and percentiles

To design the base classifiers for relative hysteresis classification, percentiles will be used ex-
tensively. Percentiles will be introduced in this context starting from a significance test on scalar
inputs, i.e., in the case of a hysteresis threshold.

The k’th percentile is defined as that value of a 1D random variable, which is larger than k
percent of all other realizations in the available sample. As we are on the real axis, it is self-
evident that the two margins of the sample are the maximal and the minimal value. Therefore,
the percentile spans the real axis between these two extreme values, defining thresholds to select
in uniform steps percentages of the number of realizations in the sample. For scalar feature
spaces, each base classifier can be such a threshold. These concepts will be used to adapt the
notion of percentile for vectorial inputs. Thus, for multidimensional feature spaces, we will
discuss two ways to design the base classifiers: (i) by extending the notion of percentile with
the help of a linear classifier, and (ii) by applying a feature extraction transform that maps the
original feature space onto a line, where we can again work with the usual percentiles.

Percentile-based hysteresis threshold. We would like to determine the pessimist and the
optimist for a hysteresis threshold. This is achieved by means of significance testing.

For the pessimist, the null hypothesis is that the pixel under investigation belongs to the
background class. Hence, it is imposed that P (xb < tp) = α with xb being an intensity value in
the background class, tp a threshold, and α the significance. We then have

P (xb < tp) =
tp∑

i=vbmin

nbi
Nb

= α, (4.1)

where vbmin represents the minimum intensity value on the histogram (see Section 2.1.1) of the
background intensities, nbi denotes the number of background pixels with intensity value i, and
Nb is the total number of background pixels in the image. The value tp is then the α’th quantile
of the histogram of the background’s pixel-intensity levels.

The histogram of the image is the discrete approximation of the mixture of vessel and back-
ground class-conditional probability density functions (pdfs). Therefore, tp is also a quantile of
the histogram of the image and can be found via

P (x < tp) =
tp∑

i=vmin

ni
N

= αim (4.2)

where x is a pixel intensity level in the image, vmin is the minimum intensity level on the
histogram, ni is the number of pixels with intensity level i, and N denotes the total number of
pixels in the image. The threshold tp is then the αim’th quantile of the histogram of the image,
and it should be chosen such that it selects practically only vessel pixels.
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Similarly, the optimist is computed using the object’s class-conditional pdf. This time, it
is hypothesize that the pixel under consideration is an object pixel. To compute the threshold,
again a small significance level β is imposed,

P (xo > to) =
vomax∑
i=to

noi
No

= β, (4.3)

where xo is a pixel-intensity level in the object class, vomax is the maximum intensity level
on the histogram of the object’s pixel-intensity levels, noi is the number of object pixels with
intensity level i, and No is the total number of object pixels in the image. The value to is some
quantile of the histogram of the object’s pixel-intensity levels and it is also a quantile of the
histogram of the image. It can be found from

P (x < to) =
to∑

i=vmin

ni
N

= βim. (4.4)

The threshold to is then the βim’th quantile of the histogram of the image, and it should be cho-
sen such that it selects practically all vessel pixels. For the purpose of hysteresis classification
percentiles (i.e., 100’th quantiles) are used. An example showing the thresholds tp and to and
the two class-conditional pdfs can be seen in Figure 4.2 (a).

The linear-classifier percentile. The linear-classifier percentile (LCP) is introduced next for
the 2D case. An extension to more dimensions is straightforward, with the LCP turning from a
line into a hyperplane.

To define the LCP, one should first establish the margins of the sample. Optimally, these are
along the axis of largest separability. Then, one should also define a way to select percentages
of the total number of realizations in the sample. For this second purpose, we need a type of
separating surface. A “linear” percentile is obtained when this separating surface is a line. Thus,
a LCP is defined by a linear separating surface and by its position on an axis perpendicular to
it, i.e., the axis of largest separability.

A linear separating surface
hl(x) = bTx + c = 0 (4.5)

is defined in 2D by the vector of weights b = [b1, b2]T and the position c. By modifying c,
the separating surface is moved over certain distances on the axis defined by b, such that it
selects percentages of the available sample in unit steps. The scalar product bTx can also be
seen as applying a transformation b to the data vector x that maps it to a scalar value (see also
Section 1.1.1).

We need now to define also a direction on the axis, i.e., an orientation of the separating
surface. This is defined from the mean of the object class towards the mean of the background
class, which is equivalent in the 1D case to considering objects dark. Therefore, the k’th LCP
separates k percent of the data from the rest, and for a relatively small k, most of this data will
belong to the object. Then, the pessimist and the optimist are chosen from the set of decision
surfaces given by the LCPs from zero to 100. The weight vector b, encodes both the axis of
largest separability and the orientation of the separating surface. An example of the LCP is
shown in Figure 4.2 (b). Depending on the way b is computed, various types of LCPs may be
constructed, as discussed later in Section The relative hysteresis classifier in more detail.
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The transformation-based percentile. In an alternative setup, the notion of percentile is
extended to vectorial inputs in an indirect manner, by means of a transformation. Thus, in
the beginning a feature extraction transform is applied, such that a scalar random variable is
obtained, where the usual percentiles may be used again. If a linear transform is used, we are in
a setup similar to that of the LCP.

4.1.3 Hysteresis classifiers for vessel segmentation

In this section the absolute and the relative hysteresis classifiers are discussed in detail. While
a hysteresis threshold works directly on an object map, which for vessel segmentation is called
a vessel map, a hysteresis classifier works on a pixel feature space (see Section 4.2), which
represents a collection of vessel maps such that each pixel is described by a vector. For the
purposes followed here, a training set represents a sample from such a pixel feature space,
corresponding to some or all pixels from the labeled images typically available for supervised
image segmentation.

(a)

b

(b)

Figure 4.2: Schematic representation of an object-map histogram with the pessimist and opti-
mist thresholds, tp and to respectively (a) and schematic representation of a 2D pixel feature-
space with the axis of largest separability b (that ideally goes through the two class means), the
margins of the sample (dashed line) and the optimist O and pessimist P classifiers (b).

The absolute hysteresis classifier

The absolute hysteresis classifier is a supervised, automatic method. It needs a labeled set of
examples from the two classes, viz. vessels and background. This set is extracted from the
pixel feature space and it is used to compute the parameters of the hysteresis classifier. These
parameters remain constant for all analyzed images.
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Inputs: all images in the training set, number_iterations, classifier_type
idxmax ← number_iterations;
idx← 0;
pessimist(idx)← 0;
classifier_set = RAW_CLASSIFIER(l = 0 to 100, classifier_type);
ROC ← BUILD-ROC(classifier_set);
optimist(idx)← arg max

l
(DISTANCE-TO-ROC-BASELINE(ROC, l));

while idx ≤ idxmax do
idx← idx+ 1;
pessimist_classifier_set = RAW_CLASSIFIER(k = 0 to 100, classifier_type);
hROC ← BUILD-HYSTERESIS-ROC(pessimist_classifier_set, optimist(idx− 1));
pessimist(idx)← arg max

k
(DISTANCE-TO-ROC-BASELINE(hROC, k));

optimist_classifier_set = RAW_CLASSIFIER(m = 0 to 100,classifier_type);
hROC ← BUILD-HYSTERESIS-ROC(optimist_classifier_set, pessimist(idx));
optimist(idx)← arg max

m
(DISTANCE-TO-ROC-BASELINE(hROC,m));

if pessimist(idx) == pessimist(idx− 1) & optimist(idx) == optimist(idx− 1)
exit loop

end if
end while
return hysteresis-classifier(pessimist,optimist)

Figure 4.3: Pseudo-code for the iterative training algorithm. For classifier_type
= “absolute classifier”, the RAW_CLASSIFIER(d,classifier_type) is a threshold. For
classifier_type = “relative classifier”, the RAW_CLASSIFIER(d,classifier_type)
is a percentile. RAW_CLASSIFIER(d,classifier_type) denotes a classifiers that separates
d% of data from the rest (100− d)%. By varying d from 0 to 100 we obtain a set of classifiers.

Absolute hysteresis classification and LDA. The absolute hysteresis classifier uses the Lin-
ear Discriminant Analysis (LDA) [78] [124]. In [38] a supervised absolute hysteresis classifier
is described, where the pessimist and the optimist are two Fisher classifiers with parameters
(w, Tp) and (w, To) respectively. For the binary classification problem here, w defines an LDA
transformation from a multidimensional pixel-feature space to a 1D feature space. Tp, To rep-
resent thresholds in this 1D space. w, Tp, and To represent the parameters of the hysteresis
classifier.

During LDA, one looks for a transformation such that in the transformed space, the separa-
bility criterion

F = (µ1 − µ2)2

σ2
1 + σ2

2
(4.6)

where µ1, µ2 and σ1, σ2 are the means and variances in the transformed space, is optimized.
Using a labeled input feature space, the transformation weights are

wT = (m1 −m2)T
(
n1

n
Σ1 + n2

n
Σ2

)−1
(4.7)

where m1, m2 and Σ1, Σ2 are the class-conditional means and covariance matrices, respec-
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tively. n1 and n2 are the numbers of components in each class and n is the total number of com-
ponents. w is computed in the pixel-feature vector space, as described above, with m1 = mb

the mean of the background class and m2 = mo the mean of the object class. Tp and To are
found during hysteresis training on the pixel-feature vector space that includes all pixels from
the available labeled images.

The relative hysteresis classifier

The relative hysteresis classifier is defined with the help of percentiles. Each image i is consid-
ered independently, hence the sample over which the percentiles are computed is given by all
pixels in one image at a time. Thus, even if the percentile values obtained during training re-
main constant for all analyzed images, the parameters of the corresponding separation surfaces
change from image to image, thus better adapting to the analyzed data and ultimately providing
better results.

Two LCPs are used as base classifiers. Thus, for an image i we have

hip = bTx + cip
hio = bTx + cio

(4.8)

The parameters cp and co represent the positions of the corresponding linear separation surfaces
along the axis defined by b such that they separate certain percentages of the available sample
from the rest.

In the following, two types of relative classifiers will be described in detail. Depending on
the way b is computed, the first uses the Gaussian LCP [49], and the second uses the LDA
percentile [50]. The percentiles are found during hysteresis training.

The Gaussian linear-classifier-percentile-based relative classifier. In the case of the Gaus-
sian LCP, to compute b it is assumed that in each image i of the training set the class-conditional
pdfs of the object and the background are Gaussian, with equal covariance matrices. Starting
from the likelihood ratio

l(x) = p(x|ωo)
p(x|ωb)

we obtain under this assumption the decision rule

biTx + c

ωb
>
<
ωo
T,

which is based on the linear separation surface biTx + c = 0, where

bi = 2Σ−1(mi
b −mi

o)

with mi
b being the mean of the background class and mi

o denoting the mean of the object class.
Σ describes the variance in both classes and can be for example the average scatter matrix, the
minimal scatter matrix, etc. The vector b is then computed as

b = 1
M

M∑
i=1

bi, (4.9)

whereM denotes the number of images in the training set. The two percentiles that yield cip and
cio for each image are found during hysteresis training based on the images of the training set.
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LDA-percentile-based relative classifier. For the LDA percentile, the LDA is used to com-
pute the axis of largest separability. As shown in equation (4.7), the LDA returns a vector w
as separability-optimal transform for two-class problems. The vector wi is computed for each
image i in the training set, and then, b is computed as the mean over all wi:

b = 1
M

M∑
i=1

wi. (4.10)

The base classifiers are now Fisher classifiers, but defined in a relative manner, as the cor-
responding thresholds T ip ≡ cip and T io ≡ cio are computed from percentile values that are set
during hysteresis training on the images of the training-set.

Considering the implicit Gaussian homoscedastic assumption of LDA [124], the LDA-based
percentile can be considered a type of Gaussian percentile. More precisely, the LDA percentile
is the Gaussian percentile where Σ was chosen to be the average scatter matrix.

4.1.4 Hysteresis training
The purpose of training is to establish the parameters of the base classifiers. A set of labeled
examples is needed for training. The training is thus supervised. Assuming that b, or w have
already been computed, we will discuss here how to compute the other parameters. For ab-
solute hysteresis classifiers, two thresholds have to be determined, and for relative hysteresis
classifiers, two percentile values are needed.

The training algorithm is shown as pseudo code in Figure 4.3. For better understanding,
the training algorithm is described in detail separately for the absolute and the relative hys-
teresis classifiers respectively. Nevertheless, the principles of hysteresis automatic training are
common to both classifier types.

Training absolute classifiers. To compute the two thresholds the Receiver Operating Char-
acteristic (ROC) is used. For the beginning a ROC is determined by varying the threshold T of
a Fisher classifier (w, T ) between the minimum and the maximum values in the transformed 1D
space and computing each time the percentage of true positives or correct classifications (TP )
and that of false positives (FP ) on the pre-labeled training set. The thresholds Tp and To are
then determined the following way:

1. Starting from a standard Fisher classifier used as “optimist” – with T corresponding to the
ROC-point that is most distant to the baseline linking the ROC-points with FP= 0% and
FP= 100% (i.e., the straight diagonal baseline across the ROC graph, corresponding to
random performance) – try all “pessimists” by varying Tp between the minimum and the
maximum value, building thus a hysteresis-ROC (this is the BUILD-HYSTERESIS-ROC
(pessimist_classifier_set, optimist(i)) method in Figure 4.3). Using the hysteresis-ROC,
choose the “pessimist” threshold corresponding to the point most distant to the baseline.

2. Apply the same procedure – this time keeping the “pessimist” constant (this is the BUILD-
HYSTERESIS-ROC (optimist_classifier_set, pessimist(i)) method in Figure 4.3) – to find
the “optimist”.

3. Repeat for a predetermined number of steps, or until the thresholds do not change any-
more.
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Training relative classifiers. Training is conducted in this case in a manner similar to that
used for absolute classifiers. The difference being that now, a percentile is used instead of
a threshold. To compute the two percentiles, ROCs of percentile-based decisions are used
now. A percentile-based decision implies running all percentiles from zero to 100, each time
segmenting the available images. The corresponding ROC is constructed from the FP and TP
rates of each percentile. The training procedure has then the following steps:

1. First, the ROC of a percentile-based decision is used to initialize the optimist as that
percentile corresponding to the point which is most distant from the baseline. Then, the
ROC of a hysteresis decision is built, using the previously established optimist and all
possible pessimist classifiers corresponding to the percentiles from zero to 100 (this is the
BUILD-HYSTERESIS-ROC (pessimist_classifier_set, optimist(i)) method in Figure 4.3).
The pessimist corresponding to the point that is most distant from the baseline is selected.

2. The procedure is repeated, this time to find the optimist (this is the BUILD-HYSTERESIS-
ROC (optimist_classifier_set, pessimist(i)) method in Figure 4.3).

3. Iterate for a predetermined number of steps, or until the base classifiers remain unchanged
for two consecutive iterations.

4.2 Feature extraction for retinal-vessel segmentation
The purpose of feature extraction is to compute vessel maps (see Section 4.2.1) in which the sep-
arability of the vessel and object pixel classes is improved, while obeying the border-separability
constraint. In the vessel map, each pixel has an intensity value attached as feature.

As discussed in Section 4.2.2, several maps can be used together in a pixel-based multidi-
mensional description of vessels. In this case feature selection may be conducted to find out
which vessel maps should be used.

4.2.1 Vessel maps
Five vessel maps [39], [40] have been used during experiments. These are:

1. The Bothat: the result of a Bothat transform, used to select contrasted structures of a
certain size;

2. The Hessian single scale: the first eigenvalue of the Hessian matrix, to select elongated
structures;

3. The Hessian multiscale: the result of the analysis of the eigenvalues of the Hessian ma-
trix extended in a multiscale approach to also reach the small vessels and improve the
homogeneity of the vessel class;

4. The Band-pass filter: the result of a band-pass filter, to select only vessels based on their
size;

5. The Laplacian pyramid: the result of a multi-resolution analysis using the Laplace pyra-
mid, to select only fine-detail vessel structures and improve the homogeneity of the vessel
pixel class.
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In each vessel map, the vessel pixels are characterized by smaller intensities than the back-
ground. Each vessel map has been processed to have unit variance and smallest positive mean,
such that all pixel intensities are larger than zero. This has been achieved by normalizing first
to zero mean and unit variance and then subtracting the smallest value. An example showing
the vessel maps computed for an input image is depicted in Figure 4.4.

Original Bothat Band pass Laplacian 
 Pyramid

Hessian 
single scale

Hessian 
multiscale

Figure 4.4: Retinal image and corresponding vessel maps.

Enforcing the separability constraint

Each vessel map depends on a set of parameters. These parameters were chosen using quality
measures defined specifically for hysteresis-based vessel segmentation. These quality measures
were designed such as to enforce the separability constraint, i.e., they get larger values for vessel
maps where the vessels can be better separated from their immediate vicinity. An example of
such a measure is the background-less partial area under the ROC (background-less pAROC).
To compute this quality measure for a vessel map, a labeled ground-truth image is needed. First
a ground-truth mask is defined by morphologically dilating the ground-truth image, thus being
able to select only the vessels and their immediate vicinity. Next, the vessel map is segmented
by a set of thresholds corresponding to the intensity-level percentiles from zero to 100, and a
modified ROC (mROC) curve is built. The false-positive rates of the mROC are computed only
from the region selected by the ground-truth mask. The quality measure is given by the pAROC,
computed using a 2% bound on the false-positives rate. The pAROC was chosen because for
”good” vessel maps, it is expected that the true-positives rate increases more rapidly at small
false-positives rates in the direct vicinity of a vessel. More details and a discussion over various
such measures can be found in [36].

4.2.2 Pixel-based multidimensional description of vessels
A multidimensional feature space is obtained by combining the results of several different
vessel-enhancement methods. For each pixel, a feature vector is built by ordering its scalar
features (i.e., intensities) in each object map into a vector [40, 38].

In each object map the separability between the background and object pixel-classes is in-
creased. If possible, the border-separability constraint is also enforced. The strategy in this case
is to combine the results of several different enhancement methods, in the hope that together
they constitute a more separable representation of objects and background than any of them
taken alone. It is believed that a multidimensional pixel feature space is better than a single
vessel map, as it includes more information about vessels, acquired from different perspectives.
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A schematic representation of the way a pixel-based feature vector space is computed is shown
in Figure 4.5.

Figure 4.5: Schematic representation of the method to achieve a pixel-based multidimensional
description of vessel and background.

Feature selection. The ROC of various decision rules can be used to characterize the feature
space. Clearly, the larger the area under the ROC (AROC), the more separable the feature space
is. In the limit the two classes are linearly separable when AROC is one, i.e 100% TP for 0%
FP . If several features have been computed, then those which build the best feature space will
also yield the largest AROC.

In the case of hysteresis classification we are interested also in the derivative of the ROC
curve, especially in the region where the FP rate is small. A hysteresis classifier trained on a
ROC curve with a large integral, but a comparatively mild increase over the region with small
FP rate, will yield rather poor results, because the “pessimist” classifier will select too few
true vessels. Thus, it is better to consider only a pAROC. During experiments only the AROC
bounded by a 30% FP rate was computed.

Several strategies can then be followed. For example, a full search strategy where all possi-
ble combinations of features are investigated, or a sequential search strategy [151], where first
the single best feature is selected, then the best combination between that feature and another
one and so on, until the optimal feature set is found.

4.3 Experimental evaluation
Two publicly available databases were used during experimental validation: the DRIVE database
[172], and the STARE database [98]. The DRIVE database contains 40 images, divided into a
training and a test set. Each of these two sets contains 20 images. For the test images there are
two sets of hand-labeled ground-truth images, marked as first and second observer, respectively,
as they were generated by different groups of persons. For the training images, there is just one
set of ground-truth images, marked first observer. The first-observer set was used as ground
truth during the experiments.

The STARE database contains 20 images. As there is no training and test set, the seg-
mentation performance on this database is computed by means of the leave-one-out method.
The STARE database contains two sets of hand-labeled ground-truth images, again marked as
first and second observer respectively. The first-observer set was used as ground truth during
experiments.



4. IMPROVED HYSTERESIS CLASSIFICATION 131

Using the training set of the DRIVE database, the parameters of the enhancement methods
used to generate the vessel maps were computed such as to optimize a quality criterion for
vessel maps [36]. This quality criterion considers both the border-separability constraint and
the separability between the two pixel classes. The same parameters were used for the STARE
database as well.

For feature selection, the pixel-feature space built from the training images of the DRIVE
dataset was used, and the ROC is computed as in the case of training absolute hysteresis classi-
fiers. The ROC is determined by varying a threshold between the minimum and the maximum
values in the transformed 1D space and computing each time the percentages of TP and FP
on the pre-labeled training set. Having only five features to choose from, a full-search strategy
was employed. After feature selection, only the Hessian multiscale, the Hessian single scale
and Laplacian-pyramid based vessel maps remained. This type of feature vector was used on
the STARE images as well.

For the Gaussian LCP-based relative hysteresis classifier, Σ was computed as the smallest
of the object and background scatter matrices.

The performance of the classifiers was measured by the AROC. The corresponding ROC is
computed by fixing the pessimist and modifying the optimist such that it assigns to the vessel
class between 0% and 100% of the available test samples. Accuracy, sensitivity and specificity
were computed as well. The accuracy is defined as

Ac = NTP +NTN

NTP +NFN +NTN +NFP

, (4.11)

with NTP being the number of true positives, NTN the number of true negatives, NFP the
number of false positives, and NFN the number of false negatives. The sensitivity is defined as:

Se = NTP

NTP +NFN

. (4.12)

The specificity as:

Sp = NTN

NTN +NFP

. (4.13)

The performance measures rely on the manual ground truth. For image segmentation in
general [22], and for vessel segmentation in particular, such a ground truth is difficult to com-
pute. While conducting hand-labeling experiments in a larger group, including students, image
processing experts, and physicians, it has been noticed that the human observer usually tends to
ignore very thin vessels and to enlarge thick vessels. Therefore, some false positives may still
be true vessels, and some false negatives may actually be background. However, such problems
are at least partially alleviated by using publicly available databases to conduct comparisons
among vessel-segmentation methods.

4.3.1 Results
Table 4.1 and Table 4.2 contain the results for the two databases. All results are average values
over all test images in the respective database. Some classification examples are shown in
Figure 4.6. Table 4.1 contains results obtained by some state-of-the-art vessel-segmentation
methods on the DRIVE database, as reported in the respective articles. The sensitivity and
specificity entries for the other methods (except for [131]) have been taken from the work of
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Classifier type AROC Ac Se Sp
Hysteresis absolute 0.9642 0.9484 0.9053 0.9517
Hysteresis relative LCP 0.9713 0.9509 0.9086 0.9580
Hysteresis relative LDA 0.9726 0.9516 0.9094 0.9591
Soares et al.(2006) [169] 0.9614 0.9466 - -
Staal et al.(2004) [172] 0.9520 0.9441 0.7194 0.9773
Jiang and Mojon(2003) [105] (from [117] ) 0.9327 0.8911 - -
Mendonca and Campilho(2006) [138] - 0.9463 0.7315 0.9781
Ricci and Perfetti(2007) [155] 0.9633 0.9595 - -
Lam et al.(2010) [117] 0.9614 0.9472 - -
Marin et al.(2011) [131] 0.9588 0.9452 0.7067 0.9801
Second observer - 0.9473 0.7761 0.9725

Table 4.1: Results achieved on the DRIVE database by different segmentation methods. Values
written with bold characters represent best results.

Mendonca and Campilho [138]. The specificity is not directly mentioned there, but instead the
false positives fraction (FPF ), defined as the fraction of pixels erroneously classified as vessel
points that is interpreted as FPF = 1− Sp.

4.3.2 Discussion

In the following, the various hysteresis classifiers are discussed. Relative hysteresis methods
show better results than absolute hysteresis methods. The LDA-based relative hysteresis clas-
sifier shows the best performance on the test images. On the DRIVE database, with respect to
sensitivity at a significance level α = 0.02 and with respect to specificity at a significance level
α = 0.005, it is significantly (see Appendix B) better than the LCP-based relative classifier. The
observations with respect to the AROC and the accuracy remain valid on the STARE database
as well. However on this database, the LDA-based relative hysteresis classifier is more spe-
cific and less sensitive than the LCP-based relative hysteresis classifier. This means that it will
yield a smaller number of correct classifications but also less false positives. The LCP-based
relative hysteresis classifier has a slightly more pronounced tendency to oversegmentation in
comparison to the LDA-based relative classifier. This is interpreted as an indication that the
explicit Gaussianity assumption made in the case of the former classifier is less likely to hold
by comparison to the implicit Gaussianity assumption made in the case of the latter classifier.
Also, considering that for the LCP-based relative classifier the smallest scatter matrix is used
to describe the variance in the both classes, this shows that the class-conditional covariance
matrices are dissimilar.

As the results in Table 4.1 show, the hysteresis methods have the best sensitivity from among
the automatic segmentation methods, but they tend to trade this in for specificity, thus being
more likely to return slightly oversegmented results. Nevertheless, they show a very good
accuracy, which means that the tradeoff is worth it. The hysteresis classifiers perform better than
other vessel-segmentation methods with respect to the AROC. Only the SVM-based method by
Ricci et al. [155] has an improved accuracy, but a smaller AROC. This shows that the training
algorithm is not yet optimal – during experiments the training was halted after a predetermined
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Classifier type AROC Ac Se Sp
Hysteresis absolute 0.9650 0.9569 0.8879 0.9652
Hysteresis relative LCP 0.9757 0.9574 0.8907 0.9654
Hysteresis relative LDA 0.9791 0.9595 0.8902 0.9673
Soares et al.(2006) [169] 0.9671 0.9480 - -
Staal et al.(2004) [172] 0.9614 0.9516 0.6970 0.9810
Jiang and Mojon(2003) [105] (from [117] ) 0.9298 0.9009 - -
Mendonca and Campilho(2006) [138] - 0.9479 0.7123 0.9758
Ricci and Perfetti(2007) [155] 0.9680 0.9646 - -
Lam et al.(2010) [117] 0.9739 0.9567 - -
Marin et al.(2011) [131] 0.9767 0.9526 0.6944 0.9819
Second observer - 0.9351 0.8949 0.9390

Table 4.2: Results achieved on the STARE database by different segmentation methods. Val-
ues written with bold characters represent best results. Values written with italic characters
represent best results achieved without human intervention.

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Image of the STARE database (a), the corresponding ground truth (b) and segmen-
tation result achieved by the relative hysteresis classifier (c). Image from the DRIVE database
(d), ground truth (e) and result of segmentation by the relative hysteresis classifier (f).
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(a) (b) (c)

Figure 4.7: Result on a pathological image: input image (a), manual ground truth (b) and
segmentation result computed with the relative LCP-based hysteresis classifier (c).

number of steps. However, the strategy based on computing pixel-features from vessel maps
is most promising, because theoretically, the achieved results could be further improved by
improving the separability in the feature space, i.e., designing better vessel maps.

The STARE database includes relatively many images showing pathological retinas. The
vessel-map based hysteresis approach is not designed to handle such images. Nevertheless, it
is relatively successful in some cases. Such an example is shown in Figure 4.7. The strong
background variation caused by the large bright spot is reduced during feature extraction to a
level that does not afflict the segmentation. Large bright background structures can be elimi-
nated in vessel maps computed for example with the help of morphological image processing
algorithms.

On a machine with a Core 2 Duo E6700 processor and 2 GB memory under MATLAB, the
training time for a relative LDA-based classifier was one and a half hours on the DRIVE data
set. The time needed to reach a result by the same classifier in the test and operation phase is
0.8 seconds per image from the DRIVE database. The time needed to compute the pixel-feature
vector set for the same image is six seconds. Therefore a new image is segmented every 6.8
seconds. The absolute hysteresis classifier is a few milliseconds faster. Hysteresis methods
yield classifiers that are significantly faster than other state-of-the-art methods. An overview of
running times for various vessel segmentation methods is given in Table 4.3.

Supervised vessel segmentation can be achieved also by a general-purpose classifier like an
SVM working on the pixel-feature space described in detail in Reference [36]. However, the
strong overlap has various negative consequences. First, there will be a rather large number of
support vectors, therefore, it should take a relatively long time to segment an image. There is
also the danger of overfit, particularly if the size of the sample used for training is too small.
Conversely, if the entire available training database is used (i.e., all pixels from all images in
the training set), the time needed for training is very long, which makes designing the SVM a
tedious job. Ricci et al. [155] successfully use a linear SVM to conduct vessel segmentation
(on a different feature space). For training they used only 20000 pixels randomly chosen from
all images in the training set. There is no mention of the time needed to segment one image in
their paper, except for a comment that the method should be very fast, being based on a linear
SVM. Marin et al. [131] propose neural networks (NNs) to segment vessels on a newly for this
purpose designed feature space. Their feature space bares resemblance to ours, as it assigns
to each pixel a feature vector consisting of intensity-level-based features, but also of moment-
invariants-based features. For training they use a set of 30000 manually selected pixels from
the DRIVE database, fairly divided between vessels and background.
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Training
time (h)

Execution
time (s)

PC configuration Software

relative LDA 1.5 6.8 Core 2 Duo, 2.66GHz,
2GB RAM

MATLAB

Soares et al. [169] 9 180 Athlon XP, 2.17GHz,
1GB RAM

MATLAB

Staal et al. [172] – 900 P3, 1GHz, 1GB RAM –
Jiang and Mojon [105] – ∼19 P3, 600MHz C
Mendonca et al. [138] – 150 P4, 3.2GHz, ∼1GB

RAM
MATLAB

Lam et al. [117] – 780 Core 2 Duo, 1.83GHz,
2GB RAM

MATLAB

Marin et al. [131] – 93 Core 2 Duo, 2.13GHz,
2GB RAM

–

Table 4.3: Running times for different vessel segmentation methods on the DRIVE database.
Values written with bold characters represent best results.

4.4 Conclusions and summary

In this chapter, the hysteresis classification paradigm for binary classification was discussed in a
unitary manner and new powerful relative hysteresis classifiers were introduced. The hysteresis
paradigm returns methods that are well suited to solve problems afflicted by large class skew
and strong overlap. For this it makes use of available prior knowledge. The paradigm is rooted
in the field of image segmentation and analysis, and was demonstrated successfully for the
segmentation of retinal vessels. In this case there is a large class skew, because there are a lot
more background pixels than vessel pixels and there is a strong overlap as the vessels and the
background are inhomogeneous. The paradigm successfully uses the prior knowledge that the
vessels are connected structures.

Hysteresis segmentation can successfully segment objects of inhomogeneous intensity-level
representation found on an inhomogeneous background, as long as there is a slight difference
between object and background at a local level around the object’s borders, and the supports of
the two classes in the pixel feature space do not overlap completely. These conditions should be
enforced during feature extraction also. For the particular problem of vessel segmentation, the
feature-extraction process was designed such that the vessels are not too thick when segmented
by the optimist. This was done mainly by taking care to improve the contrast of vessels at their
borders.

The case of pathological retinal images is not treated separately here. In general the perfor-
mance of the methods described above on pathological images is worse than on normal images.
However, the hysteresis paradigm can be used to handle such problems as well. In such a
case, special vessel maps need to be devised to improve vessel separability on images with
specific pathologies. This represents an indication of the versatility of the vessel-map-based
feature-extraction process. The feature extraction is aimed at ensuring the border separability
constraint and improving the overall separability.

For retinal vessel segmentation, the hysteresis methods tend to trade specificity for sensi-
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tivity. However the good accuracy obtained shows that it was a good trade and that the danger
of oversegmentation is small. Furthermore, these considerations need to be weighted by the
fact that manually labeled gold-standard images used to compute these quality measures may
themselves by afflicted by errors.

Requiring the pessimist to have a zero false positives rate is practically equivalent, in the
case of a linear classifier, to selecting that region in the feature space A that intersects with the
support of the object class and it can be separated from the support of the background class
by a linear hypersurface. If only nonlinear separation is possible, then a nonlinear classifier is
needed as pessimist.

Sometimes, the set of separating surfaces computed by percentiles is too sparse such that the
optimist and the pessimist can not be defined correctly. For the pessimist, this means that there
is no percentile-based separating surface to select only object points, although such a separating
surface exists. For the optimist, this means that there is no separating surface to fulfill the
border-separability constraint, although such a separating surface exists. Then, instead of using
percentiles, one should use other quantiles (larger than 100) which yield a sufficiently dense set
of separating surfaces.

Even though it has been demonstrated here only for vessel segmentation, the hysteresis
paradigm is a more general method, readily applicable to other types of segmentation and
binary-classification problems as well.



Chapter 5

Person identification and event detection

After introducing in the previous chapters new methods related to the two main parts of any
pattern recognition system, namely, feature extraction and classification, we are now ready
to dwell into the “raison d’etre” of such a system, i.e., the applications. Pattern recognition
systems are designed for specific applications and in this work the accent lies on the particular
case of security applications, more precisely person identification and event detection.

In the case of person identification two applications are discussed, which differ with respect
to the biometric characteristic used to conduct the identification, namely: fingerprints and vas-
cular nets, more precisely retina vessels. When conducting person identification using vascular
nets, the relative LDA-based hysteresis classifier described in Section 4 is used for the purpose
of vessel segmentation.

In the context of security applications, event detection is mostly encountered while con-
ducting surveillance. Accordingly, two simulated scenarios are discussed, which are related to:
person surveillance, and traffic surveillance. Besides complete algorithmic solutions to such
system applications, novel general-purpose event-detection algorithms are introduced as well.
Thus, several novel event-detection algorithms of different complexity levels will be introduced
with the help of an exemplary medicine-related surveillance application.

Next, the focus will be set on two main topics: the sparse classifier, and stochastic methods
for event detection. In Section 5.1 it is argued that specifically the sparse classifier is very well
suited for security applications and it is shown how to use it for the purpose of both person
identification and event detection. In Section 5.2 we will then concentrate on the analysis of
random signals for the purpose of detecting events. In this context, besides new significance-
test-based methods, a novel linear-predictors mixture is described and the conditional random
fields are adapted for event detection.

5.1 Sparse classifiers for identification and surveillance
The sparse classifier is particularly robust to noise afflicting a large portion of the feature vector.
This type of disturbance is often encountered in biometric applications, where, for example, a
person may use sun glasses to mask his eyes and make the task of recognizing his identity more
difficult for a face-recognition system working appearance-based1 [187]. This property remains

1An appearance-based system uses the image directly as feature vectors. It uses thus only the raw features,
renouncing any transform-based feature extraction.

137
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useful for systems using a feature extraction transform as well, in particular when this is a
unitary transform and the disturbance is such that it cannot be captured in just a few transform
coefficients. Such is the case of poor fingerprints collected from various items, as for example
a fingerprint collected from the pages of a book. By its ability to deal with noise, but also by its
other characteristics, like robustness in particular with respect to a small-size training set, the
sparse classifier is well suited for person identification tasks and we show in Section 5.1.1 how
it can be applied to fingerprint-based person identification and in Section 5.1.2 to retina-based
person identification.

At the same time, the sparse classifier has the inbuilt ability to detect outliers with the
help of the SCI (see Section 2.3.2), which makes it well suited for the task of event detection.
Furthermore, events are by definition sparse and it seems only natural to use sparse methods to
detect them, as described in Section 5.1.3.

5.1.1 Fingerprint-based person identification
The pattern of ridges and valleys of the skin covering the interior side of distal phalanges (at the
tip of a finger) represents a fingerprint. The fingerprints represent unique characteristics of each
human being and as such have been the biometric feature of choice for a long time. Currently
they receive attention from the machine vision community in the quest for automatic person-
identification systems to be used for various purposes ranging from access control to electronic
banking.

A typical fingerprint identification algorithm consists of a feature extraction step followed
by a classification step. During classification, the query fingerprint is assigned to one of the
available classes – one for each person in the target group – of enrolled fingerprints. The finger-
prints are considered to be available in the form of digital images coming either from a sensor
or from digitized latent fingerprints. The latent fingerprints are collected by forensic modalities
from various items. Person identification with respect to a target group/database is achieved
only if the classification can be conducted with sufficient confidence.

There are several types of features that can be extracted from a fingerprint [104]. Level-
1 features are related to general characteristics of the fingerprint, like the location of singular
points (e.g., points characterized by large ridge curvature). Level-2 features include more par-
ticular characteristics, these so called minutiae features are, for example, the locations of ridge
bifurcations and endings. Level-3 features are related to fingerprint details like ridge width,
edge contours or pores.

The classification step is usually conducted with the help of either image correlation, phase
matching, skeleton matching or minutiae matching [104]. Minutiae-based approaches are most
commonly used [30], [29]. They mimic to a certain extent the way a human expert usually goes
to work on classifying a fingerprint.

It is considered that for fingerprint identification Level-2 and Level-3 features are needed
[104], and under such circumstances, there are many effective solutions to the problem of fin-
gerprint identification [130]. However, the problem space is not yet fully covered, as there are
still some unanswered questions that lead to new research opportunities [104]. Major diffi-
culties are encountered when working with poor quality fingerprints, yet another difficulty is
represented by the small overlapping area between a query fingerprint and the enrolled finger-
prints. Fingerprints are additionally afflicted by nonlinear distortions and in the case of latent
fingerprints, a complex background. Under such circumstances, the extraction of fingerprint
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features of Level-2 and Level-3, and hence fingerprint identification by methods based on these
types of features, becomes challenging.

Here, a fingerprint identification method is proposed that works despite the above mentioned
difficulties. However, it is assumed that for each enrolled user, at least a few fingerprints of one
finger are available.

From the above-mentioned feature categories, only one Level-1 feature is used, i.e., the
location of the core point. The core point is the most central point of the fingerprint, around
which the ridge orientation changes rapidly [102], [123]. The core point is used as reference
to select around it a region of interest (ROI) of the fingerprint image. The ROI serves the
purpose of concentrating the analysis on the same area of the fingerprint, irrespective of how
it was positioned over the imaging sensor. From the ROI, a feature vector is extracted that
includes a certain selection of Discrete Cosine Transform (DCT) coefficients. The feature vector
concentrates information that is less-likely to be afflicted by image noise, difficult backgrounds
or scars and scratches. Such information is related to the global pattern of a fingerprint.

A query fingerprint is then assigned to a specific finger from the target database, with the
help of a sparse classifier that works well despite the availability of a very small number of
training samples per class, which is usually the case for fingerprint identification. The sparse
classifier has been previously used in the context of fingerprint analysis, but for the purpose
of pore-matching in high-quality fingerprints [122]. The sparse classifier naturally offers the
possibility to compute the confidence in the computed result. If this confidence is not high
enough, the identification of the respective fingerprint should be conducted – in the case of
poor-quality fingerprints – by a human expert.

To correctly identify a finger despite small fingerprint overlap area, or the availability of
a partial or partially corrupted fingerprint, the abilities of both the sparse classifier and the
feature vector to handle occlusions are harnessed. To handle distortions, it is assumed that,
in general, the training set includes fingerprints with the usual linear and nonlinear geometric
transformation caused by the acquisition procedure. At the same time, the feature extraction
is designed to offer a feature vector with additional invariance properties to some geometric
transformations but also to point-transformations of the fingerprint-image’s gray levels.

The novel concepts introduced in this section are the following: first, a new definition of
the core point is given and methods are described to detect it; second, a transform-based feature
vector is defined that captures basic fingerprint-information that is available even in the most
difficult fingerprint images; and third, the sparse classifier of Section 2.3.2 is introduced for the
problem of fingerprint identification.

The methods described here can be combined to construct an automatic fingerprint identifi-
cation system for low-quality fingerprints, like for example those acquired in forensic applica-
tions. When combined in such a system they are meant to support a human expert at identifying
a fingerprint with the help of a database of fingerprints. By tuning the confidence rate of the
system, a human operator can decide what percentage of the available database should be in-
vestigated automatically at a certain accuracy.

Feature extraction

For each fingerprint image, from a ROI placed at the core point, a feature vector is computed.
The sparse classifier then assigns a feature vector to the class whose training vectors span the
subspace closest to it. For sparse classification, the dimension of the feature space is also
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(a) (b) (c)

Figure 5.1: Various types of fingerprints: loop (a), whorl (b) and plain arch (c).

important. It needs to be chosen in relation to the number of training samples and the number
of representatives per class (see Section 2.3.2).

To detect the core point, the orientation of the ridges is used. The features used are some
DCT coefficients of the core-point-centered ROI. The particular choice of DCT coefficients
offers mild rotation and translation invariance and at the same time robustness to changes in the
mean of the fingerprint image. To find out which DCT features to include in the feature vector
a feature selection procedure [84] is applied.

The detection of the core point. The core point is currently defined as the point of maximal
curvature of the concave ridges of a fingerprint [102]. Initial approaches to detecting the core
point were based on the Poincaré index [110]. They work well only for good-quality finger-
prints. To detect the core point in poor-quality fingerprints, robust methods are needed. Such
methods are proposed in [102], [11], [123] but they have difficulties with arch-type fingerprints
(see Figure 5.1), due to the definition used for the core point.

Under such circumstances, a new definition of the core point is proposed next. Under the
assumption that the available fingerprints are approximately vertically oriented, it may be ob-
served that starting from the top of the fingerprint and going down, the ridges are less and less
flat – whereby flat means similar to a horizontal line (see Figure 5.1). The core point is then
defined as the point where such ridge flatness becomes minimal.

Next ridge-flatness is measured by the sine of the angle between the orientation vector and
the x axis in a fingerprint image (see Figure 5.2 (a)). The orientation vector is evaluated from
a local neighborhood Ω at each pixel as the eigenvector of the orientation tensor corresponding
to the minimal eigenvalue. The orientation tensor is computed as [3]

J =
[
B(Ry ·Ry) B(Rx ·Ry)
B(Rx ·Ry) B(Rx ·Rx)

]
,

with B being a smoothing kernel whose impulse response is related to Ω, and Ri being the
directional derivative in the direction i. Therefore, the grey-level variation along the orientation
vector is minimal.

The sine image (with the values of the sine function of the orientation angle at each pixel) is
considered to exhibit two classes, one for orientation angles close to π

2 and one with orientation
angles close to zero. Using Otsu’s method for unsupervised binary classification [147] – that
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(a) (b) (c) (d) (e)

Figure 5.2: Processing chain for core-point detection: sine image (a), binarization result (b),
breaking at the core-point region (c), upper central object-part with skeleton and detected ter-
minations – the core point is marked by a disc and the reference position by a circle (d), final
result (e).

optimizes a separability measure – the sine image is binarized, defining labels such that the
class of pixels with orientation close to zero represent the object and the rest the background
(see Figure 5.2 (b)).

The binarized sine image is then morphologically processed [65] to detect the core point.
First, it is broken into two parts at the region of the core point by eroding with an appropriate
disc-like structuring element of diameter d1 and then dilating with a similar structuring element
but with a diameter d2 < d1 (see Figure 5.2 (c)). Then the object region in the upper central
part of the image is selected. For this purpose the object pixels in the upper quarter (along
the y axis) of the image are used as seed points. As the pixels may be divided among several
object structures in the upper quarter, only those pixels belonging to the structure closest to
the image center are considered. All object points linked to these over an eight-neighborhood
(i.e., all neighboring pixels situated at an Euclidian distance d ≤

√
2) are selected. Then, the

morphological skeleton of the result is computed and the termination points (see Figure 5.2 (d))
are detected. The (usually) lowest most central termination point is the sought core point. We
find this point as the termination point closest to the empirically established reference position
given by

[
5m
6 ,

n
2

]
, with m the number of lines and n the number of columns in the image.

The feature space. The purpose followed here is to design a system robust to partial occlu-
sions of the fingerprint as well as to partial and total corruptions (like e.g., overlays). Therefore,
the feature vector must also exhibit such properties. At the same time, we would like to reduce
the number of dimensions with respect to the size of the training sample to avoid additional
problems related to the curse of dimensionality. Therefore, in contrast to other appearance-
based methods [102] transform features will be used next. LDA and other related methods are
not appropriate, because we want a method unrelated to the number of classes – i.e., the number
of fingers in the query database. The PCA is of limited use, as there are hardly any common
high-eigenvalue variation modes, considering how dissimilar the various types of fingerprints
are (see Figure 5.1). Furthermore, with PCA we would theoretically need to recompute the
transformation matrix with each new finger enrolled in the database. Thus the DCT will be
used. The precise DCT coefficients to use, are found by feature selection.

The feature vector is computed from an ROI centered at the core point (see Figure 5.3 (a)).
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(a) (b) (c)

Figure 5.3: ROI (a), DCT coefficients – the marked region gives the feature vector (b) and ROI
reconstructed with the selected coefficients (c).

The size of the ROI should be chosen in relation to the resolution of the fingerprint imaging
device. For some fingerprint images the ROI may go over the boundaries of the image. Then,
the corresponding region is filled with zeros, being thus treated as a total occlusion. The vector
contains DCT coefficients of the ROI from a certain region of the DCT space (see Figure 5.3
(b)).

By eliminating the coefficients corresponding to DC and very low frequencies, the feature
vector is invariant to changes in the mean of the gray-levels of the fingerprint image. The
specific choice of DCT coefficients represents a sub-sampled, alias-pledged representation (see
Figure 5.3), that in comparison to the original ROI is largely invariant to translation and has mild
rotation invariance properties, as shown below. The feature vector contains thus mainly infor-
mation on the global pattern of a fingerprint, the most general and often available fingerprint
information.

Feature selection. Assuming a small labeled data set is available, it may be used to con-
duct fast feature selection, as described in Reference [84]. The objective function is the squared
training error of a set of linear discriminant functions with one function per class. The proce-
dure starts from a vector with k DCT coefficients randomly selected from the DCT space with
a total of N � k coefficients. For each selected coefficient, the objective function for a feature
vector including it with that obtained for a feature vector excluding it are compared. At the
same time, the coefficients are ranked by the value of the difference between the two objective
functions. The least relevant coefficient is eliminated and replaced with another one randomly
chosen from the remaining N − k coefficients. The procedure is repeated q times. After q
repetitions, the better coefficients will be selected more often (see Figure 5.5). The final feature
vector is computed from that region of the DCT space, which has the coefficients most often
selected during feature selection. This region of feature concentration is selected, instead of
using precisely the selected features, because it can not be assumed that the data sample used
for feature selection is optimally representative for the random variable feature vector.

Mild rotation invariance. Under mild rotation invariance it is understood here that for
relatively small rotations, the selected DCT coefficients of the original and the rotated image
differ insignificantly. To better understand what this means, the analogy of a fingerprint to a
planar wave will be used. It can be observed that a planar wave of frequency ω1 is less variant
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(a)

(b)

Figure 5.4: Image (first column), its rotation (second column) and their difference (third col-
umn) for a low-frequency planar wave (a) and for a higher-frequency planar wave (b).

to rotations than a planar wave of frequency ω2 > ω1, when both are considered within the same
finite area. This is illustrated in Figure 5.4 for a rotation of five degrees (with the center of the
coordinate system at the center of the image). The squared error between the original and the
rotated image increases with the frequency of the corresponding planar wave.

A similar phenomenon takes place as well in the case of the DCT-based feature vector. It
contains a low-frequency representation of the ROI, similar to the low-frequency planar wave
form above, while the original ROI behaves similar to the higher-frequency planar wave.

Experiments and discussion

In the last decade fingerprint-based biometric applications have received a lot of attention from
the machine vision community. Fingerprint Verification Contests (FVCs) have been organized
in 2000 [129], 2002, 2004 [30] and 2006 [29]. These are mainly geared towards fingerprint
verification and not fingerprint identification/recognition as is the case with this contribution.
Therefore, a direct comparison is not possible.

Furthermore, the sparse classifier offers the possibility to default a decision in favor of a
higher-accuracy classifier or of a human observer, if the confidence is not high enough. This
has a major influence on the way the algorithm described above is used. The test setup is
designed to take into account such particularities.

Experiments are conducted on the DB3 database. This database has been used within the
FVC 2004 [30] and is currently available online. The DB3A database contains 800 fingerprints,
eight fingerprints for each of 100 different fingers and is meant for test purposes. The DB3B
database contains 80 fingerprints, eight fingerprints for ten different fingers. They have been
acquired with a thermal sweeping sensor (Atmel FingerChip), at a resolution of 512 dpi and an
image size of 300×480 pixels. To test the algorithm the data from DB3A is divided into eight
equal parts, each part containing 100 different fingerprints and an eight-fold cross validation is
conducted. The establishment of various parameters for the method has been done with the help
of DB3B. The size of the ROI was 141×141 pixels.
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Figure 5.5: Results of feature selection. The chosen coefficients are those in the white rectangle.
The brighter a pixel is the more often the DCT at the corresponding position has been selected.

For the algorithm described here, the enrollment time for a fingerprint is approximately 0.4
seconds. This includes 0.39 seconds for detecting the core point and 0.016 seconds for com-
puting the feature vector. The match time for a fingerprint with respect to a database containing
700 fingerprints, i.e., seven fingerprints per finger and 100 different fingerprints is 1.29 sec-
onds, including about 0.88 seconds for classification. The experiments were conducted under
MATLAB R2010b on a Core 2 Duo E6600 (2.66 GHz) machine with 4 GB of RAM.

Core-point. The parameters of the core-point detection method are: Ω = 11 , d1 = 5, and
d2 = 4. The filters implementing the directional derivative had a length ld = 9. For testing a
manual ground-truth of core points [45] has been used. To account for human imprecisions, a
core point is found successfully if it falls into a region of 21×21 pixels centered at the manual
core point. Within this setup, the core point is successfully detected in 720 cases from 800.

Feature vector. To find out which DCT coefficients are optimally suited, feature selection
has been conducted using DB3B. The number of potentially available DCT coefficients is N =
1412. For feature selection, k = 500 coefficients, and the number of iterations was q = 1500
times. The results are shown in Figure 5.5.

The brighter the pixels, the more often the respective DCT coefficient was selected. The
DCT region of the feature vector corresponds with the concentration region of the most selected
DCT coefficients. The region Rb has the size 17 × 35. Thus, a feature vector with dRb = 595
dimensions is obtained. Experiments have also been conducted with the DCT coefficients from
a smaller region Rs of the size 17 × 17, such that it covers approximately the left half of Rb.
With the resulting vector of dRb = 289 dimensions, similar identification results are obtained.
For the experiments, a number of n = 700 fingerprints, corresponding to 100 fingers with
t = 7 fingerprints per finger have been used, therefore in both cases (i.e., for both Rb and Rs)
d respects the bound (2.77) on the minimal number of features in relation to the number of
example per class in the training set needed with a sparse classifier (see Section 2.3.2).
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Figure 5.6: Left: the ROC for automatically detected core-points and right: the ROC for man-
ually detected core-points. Target gives the ”uncertain“ rate and output the ”correct decision“
rate.

Finger identification. During eight-fold cross validation, the data has been divided into eight
chunks each of 100 different fingerprints. 700 fingerprints are used for training and the remain-
ing 100 fingerprints for testing. The procedure is repeated eight times, each time with different
sets, until each set has been used at least once as test set. A type of ROC is computed by vary-
ing the confidence threshold τ between zero and one in steps of 0.01 and computing for each
threshold the mean rate of correct decisions and the mean rate of “uncertain“ decisions, where
the means were taken over the cross-validation results

To investigate the dependancy of this method on an accurate detection of the core-points,
two ROCs have been computed. For the first, features computed based on the set of automati-
cally detected core points are used and for the second those based on the manually selected core
points. The results are shown in Figure 5.6. As it can be seen, the accuracy of the detection of
the core point influences the results up to an ”uncertain” rate of 0.5.

80% correct decisions is considered here to be the minimal rate for successful fingerprint
identification from poor-quality fingerprints. Using the automatic core points, 80% correct
decisions is obtained for a 30% “uncertain“ rate. This means that from the 70% of the data for
which a decision is obtained, 80% are correct decisions. With manual core-point detection, the
80% correct decision rate is reached for 0% ”uncertain” rate.

To simulate bad fingerprints, the images have been low-pass filtered using a Gaussian kernel.
The performance of the method described here remains unchanged when using filters up to a
minimal 3dB bandwidth of π

6 . The method can handle occlusions up to 30% of the ROI. Such
occlusions are encountered in the used database for those fingerprints whose core points were
placed near the borders of the analyzed image, such that only about 70% of the ROI was filled
with fingerprint information, the rest being filled with zeros. As long as the core point was
correctly detected, all these images were correctly classified.

Besides the DCT, several other feature extraction methods have been tested on DB3B, these
are: the LDA, the PCA, and also a feature vector that contains a downsampled (by a factor of
three) ROI. As expected, none of them worked well, with correct-decision rates of under 15%
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for τ = 0.

Summary, conclusions, and outlook

In this section, a fingerprint-identification framework was discussed, which is designed to work
with poor-quality fingerprints. Under these circumstances only one of the most basic finger-
print features is used, namely the core point. At the same time, a feature vector is built that
captures only part of the information found in the ridge-pattern of a finger, namely that part that
is imprinted on a grabbed item under most difficult conditions for the subsequent fingerprint
acquisition. Therefore, the feature-extraction process yields a feature vector that is not partic-
ularly rich in information, and to obtain satisfactory results, we need to compensate for this in
the classification phase. By its properties the sparse classifier is optimally suited to work under
such conditions. It works well with a less-informative feature vector (as long as the size of the
feature space is well chosen and the training set covers most of the variability to be expected in
the test sample) and with a small number of training examples per class. The system proposed
here can handle occlusions or corruptions of large parts of the analyzed fingerprint.

The novel definition of the core point proposed here is able to deal with all types of fin-
gerprints, i.e., including arch-type fingerprints, however, the particular method used for the
detection of the core point leads to slightly imprecise results. This makes the core-point detec-
tion method described here not optimally suited to detect core points for fingerprint alignment
(with respect to rotation and translation). The algorithms discussed here profit from the ability
to work with arch-type fingerprints and are designed to be robust to such imprecision. While
the method is not heavily influenced by small errors in positioning the core point, a complete
failure definitely leads to a wrong decision for the analyzed fingerprint. Furthermore, the au-
tomatic core-point detection method proposed here may still be improved, as shown by the
superior performance achieved when using manually-selected core points. Improved core-point
detection methods and enrollment-failure detection methods that evaluate if the core point can
be detected at all in a given image need to be investigated.

The feature vector contains actually a downsampled band-pass representation of the finger-
print ROI. The low frequencies related to average gray level and large, low-frequent structures,
like, e.g., a cut or bruise, are ignored as are high-frequency noise structures. At the same time
the ridge pattern is blurred (and undersampled). The autocorrelation of the fingerprint ROI
remains high over larger rotations and/or shifts after the blurring as opposed to before the blur-
ring. Therefore the algorithms described here are insensitive to both small translations of the
ROI due to imprecise core-point detection and small rotations due to differences in placing the
fingerprint over the sensor. The precise choice of DCT coefficients has been established by
feature selection.

In contrast to many previous approaches, here it is implicitly assumed that several finger-
prints of the same finger are available. This assumption becomes increasingly valid the more
ubiquitous fingerprint-based systems become. Even if in the beginning a finger gets just one
impression stored, the more often the respective person uses the system, the more impressions
of the same finger – under various transformations/influences – become available. Clearly this
information should be harvested. Until now it has been assumed that the query fingerprint is
bad, but the enrolled fingerprints are relatively good. Should bad fingerprints also be available
we expect an improvement of the results of this method.

The “uncertain“ decision, which comes naturally for the sparse classifier, should be inter-
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preted as there is not enough information to make a decision with enough confidence, thus,
in this case, a human observer should analyze the respective fingerprint. This is the setup for
which this algorithm has been designed. Clearly, under such circumstance the combined cor-
rect decision rate of the fingerprint-based person identification framework described here will
be greatly improved.

5.1.2 Retina-based person identification

The pattern of vessels supplying blood to the retina is a unique feature in each eye and can be
used to authenticate an individual [168, 96]. This feature is impossible to forge and the blood
vessels decay too fast to allow the eye of a deceased person to be used to deceive the system.
Furthermore, the vascular pattern is virtually constant over the entire life span of the enrolled
individual, the most often exceptions being pathological cases like diabetic retinopathy. Even
though it enjoys such desirable features in comparison to other biometric traits, it is by far the
least used. The reason for this is the acquisition procedure that is considered intrusive and re-
quires a relatively high degree of user cooperation (for example eyeglasses must be removed).
From a historical perspective there has been a tradeoff between the quality of the acquired reti-
nal scans and the amount of data analysis needed for the purpose of identification. The first
commercial retina-based person identification systems acquired high-quality images in a tightly
controlled environment, for which purpose they used visible light to illuminate the retina [95].
This procedure was very uncomfortable for the user and as a consequence a near-infrared light
source replaced the visible-light source shortly afterwards. Later, the amount of energy radi-
ated by this source, as well as the acquisition time, was decreased more and more with each new
retinal-scan system on the market to improve acceptance. However, as a direct consequence, the
quality of the obtained images deteriorated. Thus, the improved acceptance generated the need
for more powerful data analysis tools to accomplish the intended identification task. Besides a
decreasing signal-to-noise ratio (SNR), the acquired retinal scans may be afflicted by geometric
transforms like rotation and translation but also a small amount of scaling due to the eye move-
ment or head placing with respect to the sensor. Clearly, retina-based person identification must
be invariant to such disturbances. Additional difficulties are encountered with persons suffering
from astigmatism and under some circumstances with person wearing contact lenses.

With high-quality retinal scans, conducting person identification is usually a relatively easy
task. The first solution, described in Reference [96], simply used the Fourier transform for fea-
ture extraction, to deal with some of the imaging-related issues, followed by simple correlation
to measure the similarity between two images. More modern approaches still use correlation
[108, 132, 79, 69], but the preprocessing is different. Geometric distortions due to the image
acquisition process are dealt with using polar coordinates [108], or image registration [79, 132]
with vessel parts as cues. In Reference [69], a more complicated feature extraction process is
used, with a polar transform followed by a wavelet-based multiresolution analysis of segmented
vessels, also modified correlation coefficients over several scales are used together to reach a de-
cision. In other approaches [8], vessel segmentation together with a simple orientation analysis
on the segmentation result using an angular partition are used for feature extraction. The feature
vectors thus obtained are compared with the help of the Manhattan distance. In [146, 145], two
retinal images are matched based on a set of feature points of the vessel pattern. These feature
points are anatomically interesting points of the vascular network like bifurcations and cross-
overs, that can be easily detected despite low SNR. After extracting them, the optimal transform
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that registers/aligns the two feature-points clouds is found. Then, the number of landmark-pairs
(i.e., pairs of feature points that are considered to be the representation of the same anatomical
point in each image) is untied to compute the similarity between two images. A similar feature
point-based strategy is used in Reference [119] as well.

The approach followed here is based also on feature points, extracted from the vessel seg-
mentation result computed with a hysteresis classifier (see Chapter 4), that is particularly robust
to noise. From each image one feature vector is generated. The extracted features exhibit all the
invariance properties required by retina-based person identification. Unlike other approaches,
the feature extraction process lifts the need to align a query image with a database image to
find out if they come from the same eye, which clearly reduces the computational burden. To-
gether with the subsequent sparse classifier based decision (see Section 2.3.2), which is very
well suited considering the typical small-size training set encountered in person-identification
applications, this results in a particularly robust algorithm.

SIFT-based point-cloud features for retinal vascular networks

For each retina image, a cloud of feature points is computed. The subsequent feature extraction
process has as its aim to provide a vector-based description of this point cloud. Then, person
identification is conducted in this feature space with the help of the sparse classifier.

The feature-point cloud should offer a unique and compact description of the target retinal
vessels. Highly informative points in this context are the vessel bifurcations, as they are related
to anatomical characteristics of the vascular network [36], but also the vessel crossings, i.e., the
points where a retinal vessel goes over or under another one. At the same time, such points
offer a set of invariance properties, like rotation invariance, that makes them well suited for our
purposes here.

Therefore, the feature points used here are the vessel bifurcations and crossings. These are
detected on binary images with vessel centerlines. The vessel centerlines are computed with
the help of morphological image processing methods from segmented vessels. The vessels
are segmented with the help of a hysteresis classifier. After detecting the feature points, from
small neighborhoods centered at the location of a feature point the corresponding Scale Invari-
ant Feature Transform (SIFT) features [125] are computed. The SIFT feature vectors of each
component of a feature-points cloud are then used to empirically estimate the corresponding
covariance matrix. The final retina-image feature vector is computed from the corresponding
log-covariance descriptor.

Vessel bifurcations and crossings, together with many more other interesting feature points,
can be detected by applying SIFT directly to the original retinal image. However, in this case
we obtain besides the sought points a large set of other points whose relationship to the vascu-
lar network is questionable (e.g., points in the background), even though their relationship to
each analyzed image is strong. This in turn decreases the descriptive power of the covariance-
based feature vector. This will be related more to the background than to the vascular network,
and thus each retinal-vessel network will appear to be similar to any other one (see also the
discussion on the ”Ugly-duckling“ theorem in Section 1.2). We are therefore interested in a
feature-point selection procedure that is rather specific with respect to crossings and bifurca-
tions.
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Computing the feature-point cloud. As shown in Chapter 4, the hysteresis classifier together
with the corresponding feature extraction procedure successfully segments the retina vessels
for medical applications. In this case, special care is taken to segment small, barely detectable
vessels. For security applications our interest shifts from detecting small vessels to reliably
detecting crossings and bifurcations (i.e., we want to detect only points where we are highly
confident that they are at a vessel crossing or bifurcation). Thus, the hysteresis classier is used
in a modified feature space in comparison to the one discussed in Section 4.2. Now, instead
of concentrating on small vessels, the feature extraction process is conducted with the aim of
increasing the separability of mid and large-size vessels, where crossings and bifurcations can
be reliably detected (see Section 4.2). Additionally, the segmentation result is morphologically
processed such as to eliminate small vessels, before detecting crossings and bifurcations, again
with the help of binary-morphological image processing methods.

Binary-morphological processing of segmented retinal vascular networks. Starting
from a segmentation result, our aim is to obtain the feature-point cloud, i.e., the locations of
crossings and bifurcations. The first step is to open the original segmentation with a disk-like
structuring element of a radius larger than the smallest vessels (see Figure 5.7 (b)). After this
we need to select only the main vessels. To this end successive erosion steps are applied to the
result of the opening until all vessel points are eliminated and then the vessel points from the
last but one erosion result are used as markers for the large vessels. More precisely, these points
are used to select from the opening result only the large vessels. For this purpose all points
linked to the markers over an eight-neighborhood (i.e., the 3 × 3 region of interest centered at
the keypoint) are selected (see Figure 5.7 (c)).

(a) (b) (c)

Figure 5.7: Original vessel segmentation (a), result of the opening (b) and final result after
elimination of the small vessels (c)

After eliminating the small vessels, the large ones are thinned until they are one-pixel thick.
On the thinned vessels, the crossings and bifurcations are easily detected by counting the object
points in the eight-neighborhood of each object pixel. If the count is larger or equal to three,
then we detect a feature point. A feature-point cloud, with the corresponding vascular network,
for one of the images used during experiments, is shown in Figure 5.8.

The log-covariance matrix of SIFT features. After computing the locations of the points
in the feature-point cloud, the corresponding SIFT descriptor is extracted for each component
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Figure 5.8: Feature-point cloud (white) and the corresponding vascular network (gray).

of the cloud. For this purpose the SIFT is applied to the retinal image and from the detected
keypoints only the descriptors of those in the feature-point cloud are selected. The SIFT de-
scriptor provides a unique and largely invariant representation of the local neighborhood of the
corresponding point [126]. This representation is based on the local orientation [3] including
gradient-vector magnitudes and angles with respect to the Cartesian coordinate vectors, encod-
ing also angles relative to each of the present orientations. By local orientation we understand
that the orientation is analyzed in a certain region of interest centered at the respective keypoint.
The size of this region of interest is related to the scale at which the keypoint can be optimally
described.

The final feature vector is related to the statistical properties of the SIFT-descriptor sam-
ple in the feature-point cloud. Working this way leads to robustness with respect to potential
outliers, for example, in the form of cloud components that are neither bifurcations nor cross-
ings, or spurious cloud components, like those appearing when new vessels are formed due to
pathological reasons (e.g., diabetic retinopathy).

The size of the final feature vector depends on the size of SIFT descriptor. Depending on the
maximal number of examples per class, i.e., the maximal number of available retinal scans of an
enrolled person, the minimal size of the final feature vector can be established such as to ensure
the appropriateness of the the sparse-classifier framework for this problem. According to the
theory of the sparse classifier (see Section 2.3.2) the number of examples per class c is related
to the dimension of the feature vector m, while at the same time the m × n training matrix T
usually needs to be underdetermined, such that n > m. As the SIFT descriptor is rather large,
its dimension is reduced with the help of PCA. This has the benefit of both an improved fit in
the sparse-classifier framework and of a smaller computational burden. The PCA is computed
form all SIFT descriptors from all images in the training set only once.

The final feature vector is computed from the diagonal of the log-covariance matrix [85] that
is estimated from the available PCA-transformed feature-point cloud SIFT descriptors. The log-
covariance matrix is the reconstruction of the covariance matrix from its eigen decomposition
where the eigenvalues have been replaced with their natural logarithms. This procedure is
needed to ensure that the feature space is a true vector space, such that linear combinations of
vectors from this feature-space lead to a vector that is itself a component of the feature space,
i.e., the feature space has the property of being closed under linear combinations, and the sparse
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classifier may be used here. This type of feature extraction offers an additional set of invariance
properties to some simple transformations of the SIFT descriptors.

Experiments and discussion

The qualities of this retina-based person identification system are demonstrated on two databases.
The first database is a publicly available database, the VARIA [100], the second one was con-
structed on purpose for such applications from the DRIVE database [172] (see also Section 4.3).

The VARIA database has 233 images from 139 different individuals, out of which 59 had
two or more samples. The optic-disc centered images have been acquired over a period of
several years with a TopCon NW-100 model non-mydriatic2 retinal camera at a resolution of
768x584. These images have a high variability in contrast and illumination.

The DRIVE for Retinal Authentication (DRIVERA) database [42] contains 280 images.
These were generated from the 20 test-set images of the DRIVE database, with a resolution of
576 × 560 pixels. For this purpose for each DRIVE image 14 more images have been created
while applying various types of distortions. These distortions are supposed to simulate different
image acquisition-related problems that may appear when the same retinal vasculature is im-
aged at different times.The distortions were divided into three categories: person-related, optics
related, and sensor related. The person-related distortions are small rotations, translations and
scalings of the original image, the optics-related distortion are blurring, barrel and pincushion
transforms applied to the original image and the sensor-related distortions are changes in illumi-
nation, white and ”salt&pepper“ noise. The new images were generated by randomly applying
these distortions, such that an image may be affected by one or by several such distortions. The
original DRIVE images are all color images, in the DRIVERA database there are only gray-
level images obtained by selecting and then processing only the green channel of each original
image. The way the DRIVERA database was generated is depicted in Figure 5.9.

During morphological processing, the diameter of small vessels is needed, such as to elim-
inate only these from the original segmentation. This depends on the hardware used for image
acquisition. For example for the images of the STARE database, this was two pixels. To com-
pute the SIFT descriptors of the feature-point cloud, the SIFT transform is applied to the entire
analyzed image and only those SIFT keypoints are selected that correspond to points in the
cloud. Usually, the positions of feature points in the cloud can be found among the SIFT key-
points, should this not be the case, we simply take the closest SIFT keypoint to a cloud point.

To validate both the feature extraction and the classification process, tests have been con-
ducted in three scenarios: (i) with manually selected crossings and bifurcations (manual), (ii)
with SIFT keypoints (SIFT), and (iii) with segmentation-based, automatically selected cross-
ings and bifurcations (segmentation). In each scenario three types of classification algorithms
have been applied: the first one is based on the sum of squared differences between the scale-
aligned query image and the train-set image (SSD); the second one is based on the number of
landmark pairs between the query image and the train-set image, similar to the algorithm used
in [145] (RANSAC); and finally the third one is the sparse classifier of Section 2.3.2 using the
covariance-based feature vector (Sparse). The leave-one-out cross-validation results are shown
in Table 5.1 for the DRIVERA database and in Table 5.2 for the VARIA database.

As previously discussed, for the sparse classifier, the dimension of the feature space must be
chosen in accordance with the maximal number of examples per class in the training set. For the

2Non-mydriatic cameras can image the retina without induced dilation of the pupil.
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Figure 5.9: Generation procedure for the DRIVERA database.

VARIA database this is c = 7 and for the DRIVERA database this is c = 14. At the same time
the dimension of the feature space must be smaller then the total number of examples in the
training set. Cross-validation experiments on half of the DRIVERA database led to choosing
the dimension of the feature space to be m = 57 that was also used for the VARIA database.
All classifiers were tested on this feature space.

For the first and second classifiers landmark pairs are needed, to compute the parameters of
the scaling and the maximal number of landmarks respectively. The landmark pairs are found
with the help of a procedure similar to the RANSAC algorithm [73]. In the beginning, sets
of matched SIFT keypoints points from the two images [12] are found. Assuming we find
more than four matches, all possible sets of four matches are used to register the two images
with a scaling transform. The number of landmarks for this transform is counted. Landmarks
are feature points pairs that after the transformation have positions that are very similar, the
Euclidian distance between their position vectors being smaller than a small threshold. The
number of landmarks describes the quality of the transform. The optimal transform is the one
with the largest number of landmarks. Each image pair where more than four matches were
found is described by a certain transform and thus a number of shared landmarks. Image pairs
where less than four matches were found are discarded.

As the sparse classifier needs several images to work properly, only the four individuals
from the VARIA database with five or more images were used for testing. To ensure proper



5. PERSON IDENTIFICATION AND EVENT DETECTION 153

Setup Classifier correct (%)

manual
differences 78
RANSAC 100

Sparse 100

SIFT
differences 70
RANSAC 74

Sparse 82

segmentation
differences 74
RANSAC 83

Sparse 91

Table 5.1: Results on the VARIA database.

Setup Classifier correct (%)

manual
differences 92
RANSAC 100

Sparse 100

SIFT
differences 88
RANSAC 93

Sparse 94

segmentation
differences 90
RANSAC 95

Sparse 99

Table 5.2: Results on the DRIVERA database.

deployment of the sparse classifier however, all available examples were considered when com-
puting the sparse vector. For the DRIVERA database experiments have been conducted with
the sparse classifier in two scenarios: with seven images per eye, and with all 14 images. The
results improved from 90.71% to 99.29% correct decisions when using more images.

On the DRIVERA database, when the sparse classifier works on all SIFT keypoints it
achieves 94.64% correct classifications, while when working only on the anatomic-relevant
feature points it achieves 99.29% for the automatically segmented feature points and 100% for
the manual ones. A similar behavior has been observed on the VARIA database. This shows
that it is indeed advantageous to conduct person identification using only anatomically-relevant
feature points, thus completely ignoring the background. It also shows that there is room for
improvement with respect to the computation of the feature-point cloud.

The entire system is very fast, it returns a decision in six seconds, in comparison the
RANSAC-based algorithm needs 14 seconds, while the SSD-based classification 66 seconds
on an Intel Core i5 (3.1GHz) machine with 16GB RAM.

Conclusions and outlook

As it can be seen in Figure 5.8, some feature-point cloud components are neither crossings
nor bifurcations. However, this is far from critical considering that the final feature vector is
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computed from the log-covariance matrix of all SIFT descriptors. Finally, only a majority of
cloud points need to be true crossings and bifurcations.

The feature vector is related to the second-order statistical properties of the feature vectors
corresponding to the feature-point cloud. Clearly, other statistical descriptors could be used. It
remains to be investigated if relating the feature vector to higher-order statistics, or using other
types of statistical descriptions then moment-based, represents an improvement for this type of
feature extraction.

A feature vector based on anatomical feature points related to the vascular network of a
retina is very well suited for this task [146, 119]. The problem until now was that a reliable
vessel segmentation would take a rather long time. The relative hysteresis classifier is fast
enough to render such an approach feasible. Also by concentrating on the mid and large vessels
and extracting the final feature vector with the help of the log-covariance descriptor (that is
robust to outliers, meaning that a few additional crossings and bifurcations will not lead to
significant changes), the algorithm is robust to pathological changes of the retinal vessels such
as those encountered in the case of diabetic retinopathy [5].

The results obtained with the sparse classifier improve the more images are available for
each eye in the database. For a practically deployed retina-based identification system, one
should either acquire several images during enrollment, when setting up the system, or start
with one image per eye and use, e.g., the classifier based on the number of landmark-pairs
shared by two images to conduct classification, recording new images each time the respective
eye is imaged, until enough images have been acquired to be able to sensefully use the sparse
classifier.

Using the sparse classifier offers an easy way to deal (while the system is in use) with slow
changes in the anatomical structure of the retinal vasculature (should these appear) or other
changes in the acquired images occurring over a long period of time, due to various uncritical
problems with the image-acquisition hardware. To compensate for this, one should simply
update the train set of a certain eye by adding new images to the train set recorded at fixed time
intervals.

5.1.3 Sparse classifiers for event detection
In the context of security and surveillance applications, often, unusual human behavior needs
to be detected. The purpose of this Section is to prove that the sparse classifier is well suited
for such tasks and to describe the specific requirements that need to be met along the way.
Although sparse representations have been already used for video/signal analysis, the link to
event detection is new [51, 193] and here [47] it is shown for the first time how to use the
sparse classifier for this purpose. In comparison to standard, model-based approaches to action
recognition [188] and event detection [137] the modeling step is no longer needed in this case,
as only raw data will be processed. In the case of the sparse classifier, similar to [21], when
analyzing new data, the training data is searched for similar instances.

The underlying assumption here is that there exists a set of allowed behaviors or action
types for which sufficient video material is available for training in the form of action sequences
showing a person conducting one of the allowed types of actions. With the sparse classifier, a
test video is represented as a linear combination of the training data, (i.e., of the various actions
in the training data) and the action it shows is recognized if the representation contains mostly
data from one single training action. For event detection, if all actions in the training set are
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more or less equally present in this representation it may be concluded that an event has been
observed. Therefore, the sparse classifier works by recognizing normal actions and detecting
events when no normal action is recognized with sufficient confidence. An entire new setup is
needed to use the sparse classifier for event detection – beside its use for action recognition.

Also needed is a suitable feature extraction process. The feature-extraction process proposed
here is designed from the very beginning to generate a feature space with a set of properties
that are useful for event detection. These are mainly properties of invariance with respect to
anthropomorphic changes, but also to Euclidian motion in the image plane. At the same time,
as with all methods using the sparse classifier, the features need to be designed such that they
exhibit a set of mathematical properties that make them suitable for sparse-representations-
based event detection.

Since the main purpose is to prove that the sparse classifier is suited for event detection and
to set the frame for further research in this direction, the data sets on which the algorithms are
tested is less challenging than usual, but nevertheless related to real practical scenarios [83].

An event-detection setup for sparse classifiers

The sparse classifier as described in Section 2.3.2 will be used here for event detection. For this
purpose it needs to be adapted. These adaptations are described next.

Features. For each frame during feature extraction, a sequence-feature vector is extracted
from the chunk of video consisting of the analyzed and the last R − 1 frames. Therefore, a
single feature vector is extracted for each frame of video. This feature vector is computed on
the basis of the contours of the silhouettes of the acting person. As we work with an overlap of
R− 1, the labeling, may start only with the R’th frame.

The “unsure” decision. With the help of the sparse classifier we can assign class labels to
vectors. As described above, each frame generates one feature vector. If a vector cannot be
assigned with sufficient confidence to any of the available classes, then it receives the label
“unsure”. This label is assigned with the help of the SCI, as defined in equation (2.76), in
Section 2.3.2.

For this decision we need the parameters l and τ . The parameter l should be larger than one
and SCI(x) ≤ 1. Usually, τ is chosen such that τ ∈ [0, 1] and l is set accordingly. For a fixed
τ , the larger l the higher the specificity of the algorithm, i.e., only “obvious” events, when the
weights in x are equally distributed among the entries will be detected.

Labels for vectors and vector sequences. A vector can be labeled either with one of the
k labels corresponding to the classes in the training set or with the “unsure” label, when the
confidence in the classification result is low.

However, the data analyzed here consists of a sequence of vectors (as it comes from a video
sequence) and the decision-making process needs to be adapted accordingly. In this context,
time windows of L consecutive vectors need to be labeled with one of the labels that each frame
may get. Therefore, a vector-sequence of length L is assigned the label of the class that yields
a majority among the vectors composing it, while ignoring “unsure” decisions. If all frame-
decisions in a sequence are ”unsure”, then the sequence is classified as ’unsure”. Therefore,
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working frame based provides the possibility to refine the decision for an action, which usually
extends over many frames, by considering several frame decisions.

The detection of events. With the sparse classifier trained to recognize the normal case and its
various components, the sparsity concentration index is used to detect events. Should a vector
sequence be labeled as “unsure”, then this is equivalent to detecting an event starting at the first
vector of the L-length sequence.

Building the training matrix for the sparse classifier. The sparse classifier labels frames.
To compute the training matrix, various numbers of frames per class can be used. For the sparse
classifier, the number of frames per class has to be set in relation to the dimension of the feature
space. Furthermore, in this particular case, there are two possibilities to construct the training
set: (i) either by randomly selecting frames from different action sequences of the same action
type, or (ii) by taking consecutive frames from one or more action sequences of the same action
type. The former case is equivalent to using the sparse classifier to classify directly into action
types, i.e., with a number of classes equal to the number of action types. In the latter case,
the sparse classifier is used to classify first into action sequences, i.e., with a number of classes
equal to the number of different action sequences. The frame in question is finally labeled with
the action-type label of the action sequence to which it was classified by the sparse classifier.

Labeling action sequences, while having several sequences at our disposal for training, has
several advantages when using the sparse classifier for event-detection purposes (see also Sec-
tion 2.3.2). It has the advantage of increasing the sparseness of the sought coefficients vector.
Furthermore, event detection may be conducted while not using the sparse classifier as a one-
class classifier, even in the case when only a single type of action is defined as normal – in such
a case we simply construct the training set from several sequences of the same action type.

Invariant sequence feature extraction

The features are based on Fourier descriptors (FD) [6] computed from the contour of the acting
person. The final sequence feature vector that corresponds to one frame, contains information
from a set of R consecutive frames, including the current one. These features are chosen such
that they achieve a set of invariances needed for event detection. A feature vector is computed
for every frame of video starting with the R’th.

Feature extraction has to be devised to support the basic assumptions of sparse-representation
based classification about the linear relationship of vectors of the same class. The obtained sets
of features need to form a vector space [85]. Furthermore, for human-action analysis the fea-
tures need to be invariable to anthropometric changes like height, gait, hair style, clothing, face
traits, etc. [165]. Ideally they should also be invariant to scaling and viewpoint changes. How-
ever, here this is achieved during classification rather than during feature extraction, by adding
sequences obtained under various viewpoints and at various scales to the training set.

Contour extraction and Fourier descriptors. The features describe human actions. These
actions take place under various illumination conditions, and are conducted by persons wear-
ing differently-textured clothes. To achieve invariance over such conditions the features are
computed from the contour of the acting person.
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The contour-detection procedure used here assumes the human is the only object moving in
the analyzed video and the background is available. It starts with the computation of a binary
motion mask B by subtracting the background from the current frame and comparing the result
with a threshold [147]. The contour C = [(x1, y1), . . . , (xnC , ynC )]T , with nC contour points,
is obtained by subtracting the eroded motion mask from the original. For erosion a cross-like
structuring element A+ [65] is used.

C = B − (B 	 A+) (5.1)

The FDs for the contour are computed as

ϑ(ωp) = F(Cc) =
nC∑
i=1

uie
−jωpi, (5.2)

where Cc = [x1 + jy1, . . . , xnC + jynC ]T is the complex representation of the contour and F is
the Fourier operator. As features for frame f we keep only the magnitudes of Q descriptors –
half for the negative and half for the positive frequencies, excluding the DC component:

ϑf = [|ϑ1|, . . . , |ϑQ|]T . (5.3)

The FD magnitudes are invariant to starting point, rotation and reflection.

Invariant sequence features. Viewpoint changes, scale variations but foremost the anthro-
pometric characteristics of various persons lead to changes in the acquired contours. Invariance
needs to be achieved with respect to such changes. The needed invariances, are introduced with
the help of invariant integration [161]. Invariant integration returns features invariant to the ac-
tions of a group of transformations on an input signal. For this purpose a feature function f(·)
is defined on the signal space and integrated over the group of actions. In Reference [162] it
is shown that the set of monomials m(·) is a good choice for f(·). For a D-dimensional input
t = [t1, . . . , tD], the monomials are defined as

m(t) =
D∏
d=1

tbdd , (5.4)

where bd ∈ N. The number of product components from equation (5.4) that are different from
one gives the order of the monomial.

A model for anthropometric changes. The group of transformations to which invariance
is desired is defined in relation to the effects that anthropometric changes have on the contour
of the person. At this stage, anthropometric changes are modeled by the convolution of the
contour with pairs of Dirac pulses, where the distance between the two pulses is variable. Thus,
we would like to achieve invariance to sinusoids modulating the FDs. Multiplication of the FDs
with a sinusoid is equivalent to a shift of the Fourier coefficients of the FDs. Therefore, we need
to compute features invariant to shifts of the Fourier transform of the FDs. To begin with, the
Fourier transform of the columns of FDS is computed, obtaining thus

S = Fc(FDS) = [ϕ1, . . . ,ϕR],
with ϕ = [φ1, . . . , φQ]T . Next, invariant integration is applied on the columns of S and only the
magnitudes are taken into consideration. By integrating over all shifts from 1 to Q, while en-
forcing suitable boundary conditions, invariance is achieved with respect to a set of modulating
sinusoids of various frequencies.
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The feature function. Here, monomials of order two are used. Thus, bd = 0, for d ∈
{1, 2, . . . , Q}\{q1, q2} and bd , 0 for d ∈ {q1, q2}. For better separability, various monomial
features (i.e., different values for q1 and q2) are used, obtaining for each column of S an invariant
feature vector with one entry per monomial. Here, we need a scalar feature for each column
from S, thus, the feature functionM(·) is defined as a linear combination of monomials. To
obtain class-conditional distributions and thus a feature space that is better suited for the sparse
classifier, we need bd ∈ R, instead of bd ∈ N.

The feature function consists of a linear combination of three monomials mi, i = 1 . . . 3,
from various entries along the columns ϕr, r = 1, . . . , R of S. For m1, we have q1 = q and
q2 = q − 1 with bq1 = bq2 = 1.7, for m2 we have q1 = q and q2 = q − 3 with bq1 = bq2 = 1.5
and for m3 we have q1 = q and q2 = q − 5 with bq1 = bq2 = 1.3. The index q runs over the
entries of ϕr. The feature function is then

M(ϕr; q) = (φrqφrq−1)1.7 + (φrqφrq−3)1.5 + (φrqφrq−5)1.3, q = 1, . . . , Q,

with periodic boundary conditions.
The sequence feature may now be computed by integrating over this feature function. Inte-

gration is numerically approximated by summation, which is in turn unnormalized mean com-
putation. For increased robustness order statistics are used here instead of integration. The
sequence-feature vector is computed by taking the 25’th percentile over the combinations of
monomials:

vr = p25(M(ϕr; q)).
Therefore, for the entire S, an R-dimensional sequence-feature vector v = [v1, . . . , vR]T is
obtained, which is invariant to a set of anthropometric variations. The parameters of the feature
function and the precise percentile need to be established empirically using the available data-
set.

It is interesting to note the relationship that exists between invariant integration and the
log-covariance matrix-based feature extraction, described in Section 5.1.2, where, assuming the
mean is zero, we build with the help of the arithmetic mean as an expectation estimate, a robust
type of monomials. However in this case, we do not integrate anymore over the monomials, but
rather gather each monomial in the final feature vector.

Experiments

Next it will be assumed that the video data has 24 fps. This value will be used for several
parameter choices, which may otherwise appear random. The methods described above have
been tested on part of the KTH action database [160]. This database contains six types of human
actions (walk, jogg, run, box, hand wave and hand clap) performed by 25 persons, from which
the walk (W), jogg (J) and run (Rn) actions have been used. Each person performs the action
four times: three times outdoors, and one time indoors. Only the outdoor sequences where the
person moves parallel to the camera have been used. Therefore, for each action type there are
25 action sequences (one for each person) in the data set.

The experiments are divided into: feature extraction, action-sequence recognition, and point-
event detection. For action-sequence recognition, the query action sequence is already in the
training set. For point-event detection, the analyzed action sequence is not in the training set.
To compute the SCI , the parameter l had the value ten. For the “unsure” decision τ = 0.4 has
been used.
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Since a step during walking takes some ten frames, the number of columns of the FDS is
chosen to be R = 10. Accordingly, the maximal number of training-set vectors per class needs
to be five.

Feature extraction. The feature extraction process is demonstrated here with the help of
an example, illustrated in Figure 5.10 and Figure 5.11.

After motion detection, a motion mask is obtained, as shown in Figure 5.10 (b). This mask
is then used to detect the contour of the moving person as it can be seen in Figure 5.10 (c). The

(a) (b) (c) (d)

Figure 5.10: Motion region in a frame (a), motion mask (b) and its contour (c). Original contour
(continuous blue line) and and variations to which we are invariant after invariant integration
(interrupted lines), applied to the S (d)

contour is further used to compute the FDs with Q = 40 and the FDS with R=10, which, for
our example, is depicted in Figure 5.11 (a). That yields in turn the |S| shown in Figure 5.11 (b),
and after the invariance transform, the feature vector that is shown in Figure 5.12 (b). By using
the magnitudes of the FDs we are already invariant to a set of variations of the original contour.
The invariance transform achieves that the corresponding feature vector is invariant to several
more contour variations. Some of these additional variations are shown in Figure 5.10 (d).

Action recognition. The action-recognition performance of this algorithm is demonstrated
with the help of two experiments: in the first experiment it is investigated how is each video
frame classified, while in the second the frame decisions are used to classify action sequences.
In the latter case a decision is needed for video sequences more than L frames long, but show-
ing the same action. For this purpose, the vector sequence formed from the first L = 24 frames
of an action sequence is labeled as described in Paragraph Labels for vectors and vector se-
quences and this label is awarded to the analyzed action sequence. The results were computed
by means of the leave-one-out procedure.

After each experiment, permutation matrices have been generated. These matrices should
be read along lines, e.g., for the action of jogging, the first column contains correct decisions,
the second wrong decisions in favor of the class labeled “Running” and the third column wrong
decisions in favor of the class labeled “Walking”. For the frame experiment, on average 32%
of all frames in a sequence are labeled as “unsure”. In Table 5.3 (a) results are shown that
include the “unsure” frames. In Table 5.3 (b) only valid decisions are considered, thus ignoring
“unsure” frames. Therefore, in this table, for example, only 75% of all “Running” frames have
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(a) (b)

Figure 5.11: FDS (a) and |S| (b)

(a) Results including “unsure” frames

(%) J Rn W unsure
J 36.79 3.28 18.99 40.94

Rn 0 75 0 25
W 2.72 0.98 65.38 30.92

(b) Results ignoring “unsure” frames

(%) J Rn W
J 62.36 5.56 32.19

Rn 0 100 0
W 3.84 1.42 94.75

Table 5.3: Permutation matrices for frame decisions.

been considered, namely those for which a label other than “unsure” has been awarded; and as
it may be observed, all these valid decision have been correct for this class. For the sequence
experiment, the results are shown in Table 5.4. For the sequences labeled as “unsure”, all first
24 frames were labeled as ’unsure’.

Event detection. To demonstrate that the sparse classifier with invariant sequence features
is well suited for the purpose of event detection, two experiments have been conducted: for the
first one, two types of actions are used to simulate the normal case and the event was the third
(e.g., running and walking were normal and jogging was an event); and for the second one, one
type of action is used as normal case and the other two were the event. Similar to the action-
recognition case, action sequences that extend over more than L frames need to be analyzed. In
this case again, an action sequence is labeled with the label of the vector sequence generated
from its first L = 24 frames.

(%) J Rn W unsure
J 86.67 0 13.33 0

Rn 0 60 0 40
W 0 0 100 0

Table 5.4: Permutation matrix for action-sequence decisions.
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Normal J & Rn J & W Rn & W
Event W Rn J
(%) 100 73.33 86.67

Table 5.5: Event-detection results for the first experiment.

Normal J Rn W
Event Rn & W W & J Rn & J
(%) 96.67 100 86.67

Table 5.6: Event-detection results for the second experiment.

The results for the first experiment are shown in Table 5.5 and for the second, in Table 5.6.
These tables show the percentage of action sequences correctly classified as event. The results
are obtained by a modified type of five fold cross-validation. At each iteration, the training
matrix is composed of five different “normal” action-sequences and the testing event set is
given by all 25 “event” action-sequences. In the end we compute the average of the detection
rates.

Discussion

For each of the L = 24 frames needed to take a vector-sequence decision, a feature vector
is extracted from ten frames (nine previous frames and the current one). Thus, a decision for
an action sequence is taken after 34 frames have been recorded. Clearly, to analyze an action
sequence in the current setup, a minimum of at least ten frames is needed, in which case the
decision for the 11’th frame is the decision for the entire sequence. Deciding for an action
sequence based on a majority of frame-decisions from the first 24 frames proved well suited for
the current data set. Alternative decision strategies can also be used, like for example averaging
decisions over several overlapping or non-overlapping vector sequences. As a rule of the thumb,
the more frames are considered, the better the sequence-decision. The algorithm can also be
used online, in which case it would label chunks of video of 24 frames that can be taken with
or without overlap, depending on the application.

Extracting the sequence features from ten frames is well suited for the current data. The
number of frames to be considered for a sequence-feature vector should be chosen in relation
with the frame rate of the analyzed video and the length of an atomic part of the analyzed action
(in this case one step of the person executing the action) and validated on the training data.

During feature extraction,Q = 40 FDs left and right from zero are used and hence a minimal
contour length for a certain image resolution is implicitly assumed. This number of FDs is
well suited for the analyzed data, but it should be chosen according to these considerations in
practice. All parameters with no rules for determining them were established by six-fold cross
validation on a separated data set.

The feature vector is invariant to several variations of the person’s contour, some corre-
sponding to anthropometric changes, however, some can be thought of as corresponding to
viewpoint changes and to scale changes and thus we obtain also a mild viewpoint invariance in
the feature vector.



162 5.1. SPARSE CLASSIFIERS FOR IDENTIFICATION AND SURVEILLANCE

(a) (b)

Figure 5.12: The coefficient vector for a frame from a jogging sequence with decision regions
(a) and the feature vector (b).

As described in Paragraph Building the training matrix for the sparse classifier, the
sparse classifier is used to label each frame with an action-sequence label and not with an
action-type label. Finally, as discussed before, each frame is still classified into three different
action types, but this is now achieved by taking over the label of the sequence to which it was
assigned by the sparse classifier. This has several consequences. For the example illustrated in
Figure 5.12 (a), for a training space with two action sequences per action type and using for
jogging the first nine frames of each sequence, for running the first five of each sequence and
for walking the first eleven of each sequence, there are the following numbers of feature-space
vectors per class: cwalk = 22, crun = 10 and cjogg = 18. If we assume in this example that
we have one class per action type and therefore the sparse classifier works directly with three
classes, the minimal dimension R of the feature space needs to be R = cwalk · 2 = 44 such as
to use the sparse classifier properly. However, with one class per action sequence, the sparse
classifier works with six classes and the minimal R needs to be R = 22 such as to use the
sparse classifier properly. In this case, besides being able to work with a smaller R, the sought
coefficients vector is also more sparse (i.e., 11-sparse in comparison to 22-sparse in the former
case).

By assigning a frame first action-sequence labels and not directly action-types labels, the
sparse classifier can even be used as a one class classifier for action types, of course provided
several action sequences are available for the one action type. Experiments have been conducted
in such a scenario to test the limits of the sparse classifier for event detection. More precisely,
it has been attempted to detect events, while the normal case was given by one action type and
there were just two normal-case sequences in the training set. Therefore, considering that the
maximal number of training-set vectors per action sequence is five and the dimension of the
feature space is ten, there is an equal numbers of dimensions in the feature space and vectors
in the training set, i.e., the matrix of the corresponding system of equations is square. The
experiments were successful, which should be understood in relation with the fact that the
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components of the feature vector are correlated. Indeed, other practical applications of the
sparse classifier (like for example some of those discussed in Reference [187]) have shown that
sparse approximate solutions may still be found even for overdetermined systems. It appears
that what matters here is the rank of the training-space matrix that needs to be lower than the
number of training-set vectors.

Yet another interesting aspect is that the sparse classier works well enough in this case even
if the maximal number of training-set vectors per class is half of the dimension of the feature
space and not less than a third, as suggested by the equation (2.77). It seems that there is a large-
enough (even if not “overwhelming”) probability to recover the correct solution efficiently even
in such cases.

A decision for a sequence of around 50 frames is available after 47 seconds under MATLAB
on a 2.66 GHz dual-core machine. However, many of the algorithmic steps can be conducted in
a parallel manner.

Conclusions and summary

The sparse classification paradigm can be used for action recognition and to detect all sort of
point events. While not directly suited for context and collective events, it may represent an
action-recognition building block for such algorithms, other blocks being necessary for analyz-
ing the chains of individual actions [134]. The particular feature extraction process used here
is specific for the analysis of human behavior. The analysis is concerned with the behavior of a
person in a single track and the current feature extraction is adapted for this case. A prerequisite
for deploying these methods in more complicated scenarios is a successful tracking, irrespective
of the number of cameras used.

By using sparse representations, training-related advantages are obtained: the method de-
scribed here can be easily trained, as this is just a matter of gathering raw data; and in connection
with this it can be also easily extended, should the normal case change, by just adding corre-
sponding raw data to the training set.

The algorithm can be seen of consisting of two parts: feature extraction, and sparse clas-
sification. The feature extraction is targeted to certain invariances and tailored to the sparse
classifier. Sparse classification offers a set of advantages over other methods for the problem
of action recognition and event detection, being robust, adaptive and intuitive. The sparse clas-
sifier can not be used directly as a one-class classifier. However, in the event-detection setup,
provided the sub-cases of the normal case are available, the sparse classifier can detect events
by attempting to classify into these sub-cases and detecting an event when an out-of-training-set
vector is observed.

It has been shown that sparse classification as introduced in Reference [187] is well suited
for human event detection. In this context, the focus is now set on the extraction of suitable
features to enable the usage of such methods. Furthermore, even if the issue of invariance
can be addressed at the classifier level, when using sparse classifiers, many of the desirable
invariance properties that characterize a good human action recognition/event detection method
should be obtained by means of the feature extraction process. We have also discussed how to
use the invariant integration [161] to extract such features from the contour of the acting person.

A complete, sparse-classifier-based event-detection framework, has been thus introduced,
which follows largely the requirements for algorithms used in security applications, as described
in Section 1.3.3.
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5.2 Novel statistical approaches to event detection
The statistical framework has the advantage of a solid research foundation stretching over sev-
eral decades that led not only to a sound mathematical setup but also to a large number of
general yet powerful methods. This framework is the most often used in the event-detection
context, generating a true field of statistical event detection expressed in a large number of pub-
lications. Here, this field is expanded by introducing in Section 5.2.1 a novel linear-predictors
mixture and by adapting the LCCRFs for event detection in Section 5.2.2.

5.2.1 A linear-predictors mixture

As an event represents a deviation from the normal case, one possibility to detect events – in
particular for cases where a time component is present – is to build a model of the normal case
and look for deviations from the model. The model should be able to predict what would happen
at a future time point under the normal-case assumption. As long as the model is successful and
its prediction is similar to the observation made, it may be assumed that the normal case is
observed. When the prediction is very different from what is really observed, it is assumed that
an event has occurred.

To implement such an event detection setup, a linear-predictors mixture will be introduced
next. This method has several similarities with both GMMs and HMMs, in a way combining the
advantages of both. Assuming a sample from the analyzed signal has been observed, GMMs use
the position of the sample in its corresponding feature space to distinguish the “normal case”
from the “events”, as the probability of the normal case, given the normal-case-trained trained
GMM is larger. The GMMs ignore thus any type of temporal relationship among observations
(as long as this is not explicitly present in the observation). They throw thus away a lot of
context, as observations that are close in time are usually related (see Section 2). The decision is
made based on the affinity of the observation to a certain component of the mixture, affinity that
is actually measured with the help of the variance-weighted distance to that component’s mean.
In this case, the decision is made again with respect to the affinity of the observation to a certain
mixture component. However, now the mixture components are linear predictors and thus the
affinity is measured based on the success with which the observation is predicted based on the
training samples used to train the predictor. Thus, their temporal relationship is used implicitly.
It is interesting to note the conceptual relationship between the linear predictors mixture and
the sparse classifier. In both cases we use a linear function of a set of observations from the
training set to explain a new observation and decide based on how “good” this explanation is. In
comparison to HMMs (see Section 2.2.1), this method is simpler to implement while not being
compelled to follow the Markovian assumption. It is able to model more complex relationships
between observations, as the temporal connection is used directly, not over the hidden states.
The method described here concentrates on the observations, and in a certain sense the HMM
states are replaced by linear predictors thus going around the restrictions related to the discrete
state space.

In the context of filter theory, assuming the input signal is not stationary, adaptive filters [88]
are needed. However, linear adaptive filters include several strong assumptions with respect to
the observed data, like Gaussianity and linearity. As a bridge gap solution, linearity is assumed
over short intervals. This leads to methods like the extended Kalman filter. Here an alternative is
proposed, in the form of a mixture of linear one step predictors. This method has several advan-
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tages, for example less training vectors are needed to achieve comparable results. Furthermore,
for event detection, should what we define as the normal case change with time, this method
can be easily adapted. Of course, should the underlying linearity assumptions fail, we still need
to resort to more powerful methods such as the particle filter described in Section 2.2.1.

Linear predictor mixtures

The parameters of one-step linear predictors are computed from the Yule-Walker equations
[181, 190] (see Section 2.1.2). Next it is described how to build a mixture of several predictors
and use it for event detection. To construct the mixture the prediction errors of the individual
predictor components will be used. The parameters of the mixture are estimated with the help
of some training data that shows only the normal case.

Linear predictors and their errors. As described in Section 2.1.2, there is a strong re-
lationship between Linear Predictors (LPs) and AR models, a linear predictor working op-
timally when the input random signal is an autoregressive process of the same order [23].
For a sequence of observations x(i) ∈ RN ,∀i ∈ {1, . . . , t − 1}, a linear predictor a =
[a(0), a(1), . . . , a(p)]> will estimate the next observation x(t) as

x̂(t) =
p∑
i=1

a(i)x(t− i) + a(0)eN , (5.5)

with eN = [1, 1, . . . , 1]>. This follows also from x̂(t) = E {x(t)}, where

x(t) =
p∑
i=1

a(i)x(t− i) + a(0)eN + v(t), (5.6)

is a linear combination of p predecessors and v(t) a Gaussian error term such that v(t) ∼
N (0, Σ).

With X(t) = [eN ,x(t− 1),x(t− 2), . . . ,x(t− p)], we can rewrite equation (5.5) in matrix
notation as

x̂(t) = X(t) · a.

Therefore, for a sequence yn(t) =
[
x(t)>,x(t− 1)>, . . . ,x(t− n)>

]>
of n time-consecutive

vectors, we obtain
ŷn(t) = Y(t) · a,

where we have used the sequence of matrices Y(t) = [X(t), . . . ,X(t− n)]. From here, we can
compute an approximation of the linear predictor [23, 181, 190] at time t as

a(t) =
[
Y(t)> ·Y(t)

]−1
Y(t)>ŷn(t). (5.7)

The quadratic prediction error of a(t) at time step s is then

ε̂t(s)2 = (x(s)− x̂(s))>(x(s)− x̂(s)), (5.8)

including in x̂(s) the approximation uncertainties for a(t) as well. Essentially, next this error
term is going to be used for event detection, such that if the prediction error is high, an event
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is declared in an approach similar to the filter-based change detection, as discussed in Sec-
tion 1.3.3. However, with the Linear Predictor Mixture model (LPM) a new type of model is
introduced, which is able to better accommodate the normal case.

Using a matrix representation of the linear predictor

A(t) = [I,−I · a(0),−I · a(1), . . . ,−I · a(p)]

and denoting η(s) = [x(s)>, e>N ,yp(s−1)>]>, with p the length of the predictor, equation (5.8)
can be rewritten with the help of equation (5.5) as

ε̂t(s)2 = (A(t)η(s))>(A(t)η(s))
= η(s)>H(t)η(s),

with H(t) = A(t)>A(t), which will prove useful when introducing the LPM next.

Mixture model and detection of events. The LPM has similarities to GMMs (see Sec-
tion 2.1.3). For GMMs we have p(x) = ∑

i∈I w(i)gi(x), where gi(x) is a Gaussian distri-
bution, I is a set of indices, each referring to one Gaussian mode, and w(i) are weights with∑
i∈I w(i) = 1, w(i) ≥ 0. In the same manner, the LPM is a mixture of several linear predic-

tion error filters, and therefore an approximation to complex time series irrespective if this is
stationary or non stationary.

In order to introduce the LPM event detector, the exponential representation of the error
ft(η(s)) defined as

ft(η(s)) = exp(−ε̂t(s)2)
= exp

(
−η(s)>H(t)η(s)

)
is used in a weighted sum (similar to GMMs). The error of the LPM for the observation x(s) is
computed as

F (η(s)) =
∑
t∈T

w(t)ft(η(s)), (5.9)

where T is a set of time indices that refers to a training set and
∑
t∈T w(t) = 1, w(t) ≥ 0. An

event is detected if the score F is below a threshold θ with 0 ≤ θ ≤ 1. Clearly, 0 < ft(η(s)) ≤ 1
and the smaller ft(η(s)), the larger the estimated prediction error ε̂t(s).

Parameter estimation. The parameters of the LPM are a set of several linear predictors a(t),
and the corresponding weights w(t). These are computed from a training set in a procedure
involving several steps, as described next.

Let x0(i), i ∈ {1, . . . , l} be a training set of l observations, with l � p. At a certain time
point t(τ) > n,∀τ = 1, 2, . . . , τmax, equation (5.7) returns a unique linear predictor a(t(τ)). At
τ = 1, the first step of the procedure (usually such that t(1) = n + 1), we initialize the set T
of linear predictors of the LPM with the predictor corresponding to time index t(1), and thus
T ← {t(1)}. At each step predictors are added for those observations from the training set
that are not well predicted by any of the predictors already available in T . Thus, at iteration
τ > 1, τ ∈ N, a linear predictor a(t(τ)) is added such that this offers a better prediction for the
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training sample for which the prediction error of the predictors available in T at iteration τ − 1
is maximal. Hence, we set

t(τ) = arg min
t̃<T

τ−1∑
i=1

ft(i)(η(t̃)) (5.10)

and T ← T ∪ {t(τ)}. New predictors are added to the mixture for a fixed number of steps, until
a maximal preset size of the LPM, τmax is reached.

After finding the predictors, the weights in equation (5.9) are computed by

w(t(i)) =

∑
s
ft(i)(η(s))∑

t(j)∈T

∑
s
ft(j)(η(s)) (5.11)

for each t(i) ∈ T , with s ∈ {p + 1, . . . , l}. The estimated linear predictors and the weights
define the LPM, see equation (5.9).

Experiments and discussion

The LPM is tested on both real and synthetic data. The tests on synthetic data demonstrate that
the LPM is a viable improvement over both GMMs and HMMs with Gaussian state-conditional
distributions, for the purpose of event detection. This shows that the LPM is not that bounded
to the Gaussian assumption (see Section 1.1.1). The test on real data shows that the LPM
successfully detects events in real-life scenarios as well.

Experiments on synthetic data. To generate 5D synthetic data, a dynamic system was used.
It is defined as

x(t) = m(ψ) +
3∑
i=1

aψ(i) (x(t− i)− µ̂(t)) + v(t),

where µ̂(t) = 1
3
∑3
i=1 x(t − i) and v(t) ∼ N (0, Σ). The parameters of the dynamic system

are the coefficients aψ(i), i ∈ {1, 2, 3} and the offset m(ψ). The time-dependent variable ψ
represents the state of the system, and it is modeled as a first-order Markov chain.

The normal-case data was generated with the help of this dynamic system, using a prede-
fined set of parameters. To generate the event data, the parameters were changed. Three event
data sets were generated by changing the offsets m(ψ) (Set 1), using different coefficients
aψ(i) + r(t, i) with r(t, i) ∼ N (0, 1) (Set 2) and r(t, i) ∼ N (0, 2) (Set 3) respectively, and
finally by generating aψ(i) directly from a Gaussian distribution (Set 4). For each of these five
data sets (i.e., one “normal-case” and four “event”) 50000 observations were generated.

For testing, a LPM with τmax = 50 predictors is built. A number of p = 10 previous
observations is used to predict the following one, and in the training, 15 observations are used
to estimate one predictor, i.e., n = 14.

The LPM is compared on this data with a GMM and with a Gaussian HMM (GHMM). In
the case of the GMM, an event is detected if its probability given the GMM is smaller than a
threshold. The GMM is trained with the help of the EM algorithm (see Section 2.1.3) on some
“normal” data. To find out the optimal number M of mixture components, we have employed a
full-search strategy between five an 100 components. The best results have been obtained with
M = 10. The HMM (see Section 2.2.1) has ten Gaussian states. It has been also trained on
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Figure 5.13: ROCs of (a) the LPM, (b) the GMM, (c) the GHMM.

“normal” data. To detect events the evaluation problem is solved for new data, if the probability
of the observations given the model is less than a certain threshold, an event is detected.

In each and every case, for training half of the observations available are used as the “nor-
mal” data. The tests were then conducted on the rest of the “normal” data and on the “event”
data.

Results. As in the end event detection is a binary classification problem, the Receiver
Operating Characteristic (ROC) is used to compare the methods described above. To compute
the ROC, two probabilities are needed: p(TP ), the probability of detecting a true positive;
and p(FP ), the probability of detecting a false positive. These are computed while varying θ
between zero and one. p(TP ) is the probability of correctly detecting an event, defined as:

p(TP ) = #(Detected, simulated events)
#(Simulated events) .

p(FP ) is the probability that a normal observation is falsely classified as an event, defined as:

p(FP ) = #(Falsely detected events)
#(Normal observations) .

Figure 5.13 shows the performance of each of the tested methods on each “event” dataset.
Clearly Set 1 is the most difficult one, which suggests that the LPM is rather sensible to offsets,
even though not as much as the GHMM and the GMM. Nevertheless, this is a normal behavior
in a setup where the amplitude of the observation is the feature mainly used to decide on the
label. As it may be seen from the results achieved for Set 2 and Set 3, the more different the
event is from the normal case, the better the event-detection results achieved by the LPM. This
is the normal behavior of any event-detection algorithm, as illustrated by the results achieved
by the GHMM and the GMM.

In Figure 5.14, the overall performance (results using all event datasets as one set) of each
model is shown. Comparing the GHMM and the GMM, the GHMM performs better, but the
LPM outperforms both methods, showing that there are event detection problems where the
LPM can be successfully applied, and they perform better than GMMs or GHMMs.

Experiments on real data. The real data represents a video sequence recorded with a web
cam in a fixed position. A radio-controlled car is driven in the surveyed area. The car performs
several actions (see also Figure 5.2.1). The “normal case” consists of any combination of normal
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Figure 5.14: Comparison among various methods over all data sets.

(a) Turning left (b) Straight (c) Turning right

Figure 5.15: Frames from the training data: the car turns left (a), drives straight (b) and turns
right (c).

movements (driving straight, turning left or right), while an “event” is an arbitrary action that
differs from the “normal” actions, as for example, when the car hits an object.

As the car is the only thing moving in the analyzed video, the tracking is very simple,
needing only motion detection. For motion detection a background subtraction algorithm [149]
is used. This estimates for every image of a video sequence the foreground and updates a
background model. It uses one threshold for each pixel. The algorithm is applied directly to
color images. The result of motion detection is a blob of moved pixels corresponding to the car.
Some motion detection examples can be seen in Figure 5.16.

The observations of the LPM are 2D position vectors of the center of mass of the detection
blob in each frame of video. As the normal case includes three actions, the LPM has three
predictors: going straight, turning left, and turning right. If the score F is lower than the
threshold θ, an event is detected. In general, θ is an arbitrary threshold with 0 < θ < 1. For this
experiment the value of θ was set to 0.4 by analyzing the normal data (see Figure 5.17).

Results. In Figure 5.16 (a), several frames of one of the analyzed video sequences are
shown: first, the frame where a moving object has been detected for the first time, then the
frame immediately before an accident, followed by the frame that has been captured during the
accident, the following one, and at the last frame of the sequence. The mark on the upper left
corner of the video frames denotes an event. The event is detected right after the accident. In
Figure 5.16 (b) the car performs an S-bend. This action is correctly classified as normal activity,
and no event is detected.

In Figure 5.17, we can see the score F of several normal movements and an event. The
score of the normal activities is above the threshold. The same is true for the event video until
the accident happens, than the score drops below the threshold and keeps at this low level. The
separability in this F -space is good enough such that a simple threshold successfully separates
the normal case from the event.
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(a) Accident: the black square marks event frames.

(b) Normal case

Figure 5.16: Several frames from video and the binary motion detection result for an accident
(a) and for the normal activity of the car driving in an S-bend (b).
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Figure 5.17: The score F computed for various analyzed sequences.
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Conclusions

An event detection method was described, which is based on a mixture of linear predictions.
As shown above, this model outperforms a GMM and a GHMM in a set of tests. In contrast
to GMMs, the LPM uses time dependencies for an improved decision. Furthermore, the LPM
is a discriminative model, while the GMM and the GHMM are generative ones. However,
LPMs and GMMs have the same simplicity in the inference. In comparison to both GMM and
GHMMs, training a LPM is fairly easy and robust to a small size (i.e., number of observations)
of the training set, mainly because we do not need to estimate covariances. The ease of training
makes the adaptation of the LPM to changes of the normal case also easy.

Some problems with the LPM arise from the solution of the Yule Walker equations. For ex-
ample, in the presence of outliers, the accuracy of the predictor estimation decreases, and if the
variance in the data is too low, the number of values to estimate a linear predictor increases. So-
lutions to these problems are available within the frame of the Yule Walker equations. Because
the LPM builds upon these equations, these solutions are available for the LPMs as well.

5.2.2 Kernel density estimation and linear-chain conditional random fields
for event detection

The LCCRFs described in Section 2.2.2 are a type of LLM. They represent powerful stochastic
models that will be adapted here for the purpose of event detection. For an exemplary point
event detection application, starting with the simplest algorithm that may constitute a solution
we will work our way up to more complicated and powerful ones, culminating with LCCRFs.
Thus, the discussion begins by describing the point event detection application, followed by a
rather simple solution in the form of a significance test and concludes with the adaptation of the
LCCRFs to event detection.

Contrast injections in catheter interventions

Coronary arteries disease occurs when the vessels supplying oxygenated blood to the heart
muscle narrow as a consequence of plaque buildup. Treatment is facilitated by Percutaneous
transluminal coronary angioplasty. During such an intervention, the narrowing is eliminated
usually by inflating a balloon at that position in the vessel. The balloon is brought in place with
the help of a fluoroscopic imaging system. The imaging system functions in imaging sessions,
which usually differ from one another by the position of the imaging device. To make the vessels
visible under X-ray for a while, a bolus of radio-opaque contrast agent is injected through a
catheter positioned into the vessels. Algorithms have been developed in Reference [36] to use
the contrasted images, also called coronary angiograms (see Figure 5.18 (a)), to build a dynamic
vessel roadmap such that the physician still sees the vessels even after the contrast agent has
washed out, and can thus navigate better. In this context, it is needed to detect the moment
when contrast agent first appears in the fluoroscopic images and turns vessels visible during an
imaging session. Considering that previous to that moment only images without vessels (i.e.,
without contrast agent) have been recorded, this is a point-event detection problem.

The vessel area is measured in each frame of a fluoroscopic image sequence by a vessel-
area-related feature that reaches its maximal value as soon as two percents of all pixels in the
analyzed image are vessel pixels. As in the beginning of an analyzed sequence there is no
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(a) (b) (c)

Figure 5.18: Coronary angiogram (a), vessel-feature curve (b) and filtered vessel-feature curve
(c). The vessel event is marked on the filtered feature curve by a bullet.

contrast agent present, the typical appearance of the vessel-feature curve, showing the value
of the vessel feature over frame index, includes a region with small values in the beginning
followed by a region with higher values, once contrast agent appears. The appearance of vessels
is thus usually accompanied by a jump on the feature curve. An example of a typical feature
curve is shown in Figure 5.18 (b). Before looking for events, the feature curve is filtered by a
recursive low-pass filter, as shown in Figure 5.18 (c). This is supposed to eliminate outliers that
are sudden large variations of the feature due to other reasons than the appearance of contrast
agent, like for example, due to spurious vessels or the influence of the AGC.

This data has some interesting properties that make it challenging and representative for
other event detection problems. It depends on patient, machine settings and properties and
it may be influenced by the way the surgeon uses the fluoroscopic device. In particular the
interactions of the surgeon, but also patient motion may lead to strong changes in contrast
over a relatively small number of frames, and as a consequence to an atypical feature curve.
The contrast is set with the help of the automatic gain control unit (AGC). The AGC adapts
the contrast when for example, the field of view of the fluoroscopic device changes from one
position to another with respect to the body of the patient, or when the patient moves, such
that areas of the body with different X-ray absorption coefficients appear in the field of view.
Thus, the feature curve corresponding to each sequence may have different unknown statistical
properties.

Setup As all images recorded until the vessels appear show only the background, the problem
of detecting the appearance of vessels – and implicitly the injection of contrast agent – with the
help of the feature curve is reformulated like an event-detection problem. It is considered that
an image showing no vessels represents the normal case, and an image with vessels represents
the event. Usually there are 10 to 15 seconds from the moment a recording begins until vessels
appear. At a frame rate of at least 12 fps, this gives quite a large sample of background images,
i.e., a “normal” training set for event detection algorithms.

The database for this application includes 23 video sequences. The sequences were recorded
during 10 different interventions. All sequences were acquired under similar conditions, i.e.,
constant X-ray dosage, while patient and table movement was possible. The patients were
mostly allowed to breath freely, but in some cases they were required to hold their breath. Some
patients had also an open-heart surgery, and the sewing wires were visible in the analyzed
sequences. The analyzed sequences contained images with a resolution of 512× 512 pixels and
were quantized to eight bits. To compute the vessel-area-related feature, the same parameters
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Figure 5.19: The Epanechnikov kernel.

set was used for all sequences.

Nonparametric density estimation for improved point-event detection

In Reference [36] a method has been described to detect the first image of a contrast agent
injection by means of a significance test. As shown next, this method may be improved by
estimating the likelihood of the null hypothesis by means of nonparametric pdf estimation (see
Section 2.1.1), rather than parametric under the Gaussian assumption.

p(y(n)|H0) is estimated from the samples acquired during the first seconds of an imaging
session. Instead of assuming this pdf to be Gaussian and estimate it parametrically, next it will
be estimated nonparametrically by kernel smoothing. For this purpose the optimal Epanech-
nikov kernel will be used. The Epanechnikov kernel is defined as [68]:

KE =
{

3
4 · (1− x

2) for |x| ≤ 1
0 else . (5.12)

A plot of the kernel is known in Figure 5.19.
The nonparametric estimate of p(y(n)|H0) is then computed according to equation (2.13)

[183]. The bandwidth is fixed and is computed using equation (2.15), with σ̃ estimated with the
help of the SIQR as in equation (3.3).

The event-threshold T is determined such that the probability of y(n) exceeding T givenH0
is α, the significance level. A typical value for α is α = 1 · 10−4. T is computed by inverting
Pr(y(n) > T |H0) = α based on p(y(n)|H0). As soon as the vessel-area-related feature y(n)
exceeds this threshold, the event is detected at the corresponding image.

Experiments and discussion. The significance level used during the experiments was set to
α = 3 ·10−3. The size of the kernel was h = 2.3684. These values were established empirically
with the help of six sequences. During testing, α and h were held constant for all sequences.
Alternatively we have also conducted experiments where h was computed for each analyzed
sequence independently. The classification results do not change, however such an approach is
more robust, as the algorithm adapts better to the data.

For the learning phase 72 images were used, which are acquired over a period of six sec-
onds, with a frame rate of 12fps. This is justified by the need to sample at least one complete
respiration cycle, considering that under normal circumstances, a human breathes between 15
to 20 times a minute.
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The algorithm described above gives the solution to a classification problem – i.e. for each
new image decide if it shows any vessels. It is evaluated here using discrepancy methods [31],
[192], by analyzing the frequency of correct and incorrect decisions relative to a golden stan-
dard [171]. The golden-standard was achieved after detecting per expert-visual analysis the
first image which shows vessels. Taking into consideration the variability of such a visual seg-
mentation, it is considered that the automatic detection was successful if it falls in an interval
of plus/minus twelve images from the expert-reference. In 19 sequences the detection was
successful. In the remaining four sequences, the algorithm failed to detect the contrast burst
correctly. This was due to the fact that the feature curve did not show the typical behavior as
previously discussed.

By comparison to the algorithm described in Reference [36], where the likelihood of the
normal case is estimated parametrically under the Gaussian assumption, the new algorithm rep-
resents a 19% improvement, as the old one successfully detected the event in only 15 sequences.

Conclusions. This event detection algorithm works under a set of assumptions. The most
important one is that the first six seconds of an imaging session show no vessels. As in this
interval the “training” data is collected, it should include a good sample of the normal case and
cover a few heart beats and a full respiration cycle. This is particularly needed for projection
angles which permit also the visualization of the diaphragm, as in this case, the vessel-area-
related feature follows the variation of the projected diaphragm area. This is a consequence of
the AGC unit trying to compensate the variation of the image brightness caused by the moving
diaphragm.

The contrast agent that reaches the vessels mixes with blood and is carried away by this,
thus at the end of the imaging session, there is usually no contrast agent left into the vessels.
However, the contrast agent present in the catheter is not washed away by blood. If a new imag-
ing session begins with the catheter with contrast agent in place, then there will be something
similar to vessels visible from the very beginning. By handling each imaging session indepen-
dently, the algorithm described here is also robust against this case and can detect the moment
when contrast agent reaches the vessels, even if some parts of the catheter with contrast agent
in it are visible in the analyzed sequence.

Here the pdf of the feature given the normal case is estimated nonparametrically. Non-
parametric estimation provides a better, robuster statistical model for the specific problem we
are dealing with. This leads to better results in comparison to a parametric approach. Using
the Epanechnikov kernel, the estimation result does no longer have an infinite support. Fur-
thermore, this kernel was proven to fulfill some optimality criteria for nonparametric density
estimation [183], as it minimizes the mean squared error of the estimator.

Filtering the feature curve by a low-pass filter eliminates outliers and returns the analyzed
feature curve to its typical appearance. Nevertheless, there are cases when this is not enough,
and the feature curve still maintains an untypical appearance. Then, more powerful methods,
able to work with even less assumptions, or better said despite the lack of much prior informa-
tion, are needed.

Conditional random fields applied to event detection

Assuming the feature curve is “nice”, meaning that it shows the expected behavior of rising very
fast to a maximum and then decreasing slowly over time, relatively simple methods like the
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Figure 5.20: Original vessel feature curve (left hand side) and the filtered histogram feature
curves (right hand side) not entirely showing a typical behavior.

significance-testing based event detection algorithm of the previous section will work success-
fully. Nevertheless, there are instances when, the feature curves are more difficult to analyze,
as they do not show the expected behavior. Such examples are shown in Figure 5.20 and also
in Figure 5.24 (e). The event may still be detectable, but not according to the previous intuition
with respect to the feature curve. Thus, significance-test based methods are inappropriate and
more powerful methods are needed. Such methods are discussed in this section. They work on
feature vectors that are generated from the vessel-feature curve. For this purpose, the feature
curve is windowed and from each window a feature vector is generated. The feature curve is
thus transformed into a sequence of feature vectors.

LCCRFs and MEMMs, are finite state models [87, 182, 116, 136] used for classification
problems [136, 116]. Neither the MEMMs nor the LCCRFs can be used directly for event de-
tection, as they cannot accomodate a state not present in the training set. Next the LCCRFs will
be adapted to event detection, in the form of the Event Detection Log-Linear Model (edLLM).
Consequently, the edLLM is placed within the LLM [182, 116] framework and is related be-
sides the LCCRFs also to the MEMMs [136] that were discussed in Section 2.2.1. It will be
shown that the edLLM is able to properly detect events even in the more difficult contrast-agent
sequences sequences, where significance-based methods fail.

The path towards an event-detection LLM. When using a MEMM, the probability to ob-
serve a certain state depends only on the states before, while in LCCRFs, it depends on the states
before and after the actual state. Hence, in MEMMs, we pass forward information, while in LC-
CRFs, the information is passed forward and backward. This has two important consequences:
(i) the LCCRFs have potentially a higher accuracy because they use more information for each
time step and (ii) they cannot be applied directly for online problems, because the whole data
sequence needs to be measured before the inference. At the same time, similar to MEMMs, the
LCCRFs can use non-independent relationships extending over several observations.

LCCRFs need a labeled data set for training. The trained model is applied to new data sets to
generate a corresponding label sequence. All labels that are to be assigned during the operation
phase must be present in the training set as well. For event detection problems, as there are no
labeled event-samples in the training set, the usual training algorithms for LCCRFs [87] cannot
be used. There exist methods that are able to work with partly labeled data [106], but these still
assume that at least some labels are available for each class. Next, it will be described how to
extend the training such that it works when one label is not at all present in the training set.
Furthermore, new methods will be introduced to conduct the inference. This represents then



176 5.2. NOVEL STATISTICAL APPROACHES TO EVENT DETECTION

Extraction,
normalization

Inference

Feature
extraction

Figure 5.21: Schematic representation of the feature extraction process. Short sequences of the
vessel feature curve are selected, using a sliding window with T − 1 overlap. From each such
batch consisting of y(n + 1), y(n + 2) . . . , y(n + T ), we extract a normalized feature vector
x(n). This results in a sequence of feature vectors, which we analyze with the edLLM.

the edLLM. As the “normal” case can include several labels, this provides the opportunity to
correctly model a more complicated scenario, where several potentially very different things
are considered normal.

Feature extraction. As already pointed out, now the data is analyzed batch-wise. From each
batch a feature vector is extracted. For the contrast-agent detection problem, each batch consid-
ers several vessel features corresponding to a specific portion of the feature curve. This portion
is selected by means of a sliding window of length T with T − 1 overlap. Therefore, one batch
– given by the set of vessel feature corresponding to the frames y(n), y(n+1), . . . , y(n+T −1)
– corresponds to one frame of fluoroscopic video, and for each frame a feature vector x(n) is
computed.

The feature vector is related to the mean, curvature and slope in each batch. An ordered set
of feature vectors constitutes a feature vector sequence. A decision is returned for each feature
vector and thus for each frame of the video sequence, starting at frame T .

In the following, the components of the feature vector are introduced by describing the
functions used to compute the mean, curvature and slope. These features are general enough to
be applicable to many different time series and for our application describe local properties of
the vessel feature curve.

The feature vectors are normalized to reduce the influence of outliers. As previously dis-
cussed, a vessel feature is an outlier if it is either very large or very small in comparison to both,
the previous and next vessel feature on the feature curve. A schematic representation of the
feature extraction process can be seen in Figure 5.21.

Mean-related components of the feature vector. The first two components of the feature
vector are related to the mean of the feature curve. Let α and β be two scalars with α, β ∈ (0, 1).
Then µ(n + 1) = αµ(n) + (1 − α)∑T−1

m=0 y(n + m) is a slowly adapting mean value, and
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ν(n+1) = βν(n)+(1−β)µ(n) a fast adapting one. These are called “mean values” because for
stationary signals, the adapting mean values converge to the mean of the signal with increasing
T . α and β are adaptation rates and depend on the frame rate of the analyzed video. Further,
dn(m) = y(m) − µ(n) and d̃n(m) = y(m) − ν(n) are differences between those mean values
and a vessel feature.

As our intention is to compare the mean value of a batch to the adapting mean values, the
first two components of the feature vector are

ξ1(n) =
1−

√∑T−1
m=0 dn(m+ n)2

2 · T · σ̂2

 · 10,

ξ2(n) =
1−

√∑T−1
m=0 d̃n(m+ n)2

5 · T · σ̂2

 · 10,

where σ̂2 is the estimated variance of the training data. These functions are positive if the mean
of the batch is close to the adapting mean values, and negative otherwise. The scaling within
the roots control what is called “close”. The factor 10 is to emphasize these features, because
they act in a manner similar to the statistical test from the previous section.

Curvature-related components of the feature vector. The next components of the fea-
ture vector are related to the curvature. These features are computed as the difference of each
element of a batch to the mean of a batch. The next T components of the feature vector are then

ξ2+k+1(n) = y(n+ k)− 1
T

T−1∑
m=0

y(n+m),

for k = 0, 1, 2, . . . , T − 1.

Slope-related components of the feature vector. The last L components of the feature
vector are used to describe the slope of a batch. The slope of a batch is defined as the slope of
its linear regression, that is b̂(n) = arg min

b∈R

∑T−1
m=0 (y(n+m)− y(n)− b ·m)2. With its help, L

new components of the feature vector are computed. For this purpose a set of L sample slopes,
are used. A sample slope wl, l = 1, 2, . . . , L, is defined as wl = L−l

L−1bmin + l−1
L−1bmax. bmin is

the minimal slope that is observed in the training, “normal-case” batches, and bmax the maximal
slope.

Then, the slope-related components of the feature vector are computed as

ξ2+T+l(n) = 1−
 b̂(n)− wl
wl+1 − wl

2

for l = 1, 2, . . . , L. This function is positive if a new slope is close to the respective sample
slope, and negative otherwise.

Normalized feature vectors. For each batch y(n), y(n + 1), . . . , y(n + T − 1), a vector
ξ(n) = [ξi(n)]Ni=1 with N = 2 + T + L is defined. The functions ξ1, ξ2, . . . , ξN describe
properties of each batch, but are affected by outliers. Let v(n) = ∑T−1

m=1(y(n+m)− y(n+m−
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1))2 be the (unnormalized) local variation. Then, the normalized outlier-robust feature vector
is x(n) = 1

v(n)ξ(n). x(n) is then called the feature vector at lag n.
The local variation increases in the presence of large outliers. This normalization does not

remove the possibility to detect events in the feature vector sequence, because any real event is
visible for several successive frames.

Event detection LLM. The edLLM is somewhat similar to multiclass logistic regression (see
Reference [20] pp. 209). The LCCRF part consists in the way we compute the function Φ,
which relates states and observations at a specific time index. The idea of the edLLM is to label
a feature-vector sequence of a certain length at once. As each feature vector is computed from a
batch of vessel features, a larger context is thus used for an improved decision. The probability
of a state sequence, given a sequence of feature vectors is determined similar to the case of
LCCRFs [87]. The algorithm works with sequences of feature vectors that are defined again
with the help of a sliding window. Thus, it may be also used online.

The training data is considered to represent a single sequence of feature vectors, thus no
sliding window is used during training. Training is conducted similar to LCCRFs and MEMMs,
except for a penalty term that is defined such as to allow the introduction of a state that is not
present in the training data. Thus, we may train for event detection on “normal-case” data.

Let xi = {x(ti + 1),x(ti + 2), . . . ,x(ti + M)} with x(n) ∈ RN ,∀n be a feature vector
sequence of length M ∈ N, then the corresponding state sequence is si = {s(ti + 1), s(ti +
2), . . . , s(ti + M)}, with s(n) ∈ {ζ0, ζ1, ζ2, . . . , ζK}. Next it is assumed that ζ1, ζ2, . . . , ζK are
the states that describe the normal case, and ζ0 is the event state, which is related in our case to
the occurrence of contrast agent. The training data includes no events.

Log-linear model. The following notation is used here: xi = [x(ti +m)]Mm=1 represents
a feature vector sequence of length M , starting at ti ∈ N0. The training data represents a single
sequence of feature vectors; for the training data we have i = 0, therefore the training data is
contained in x0. For a shorter notation xi(m) = x(ti + m) is used. Similarly, for the states
si = [s(ti +m)]Mm=1 and si(m) = s(ti +m) are used.

The probability of si, given xi and si(0) is defined by [87]

p(si|xi, si(0)) =
exp

(
M∑
m=1

λ>Φ(si(m− 1), si(m),xi,m)
)

Z(xi)
, (5.13)

where Z(xi) is a normalization value such that p(si|xi, si(0)) is a probability.
The function Φ establishes the relationship between the feature vectors and the states. It is

defined by

Φ(s1, s2,xi, n) =


[xi(n) · [[s2 = ζk]]]Kk=1[

[[[s1 = ζj]] · [[s2 = ζk]]]Kk=1

]K
j=1

xi(n) · [[s2 = ζ0]]

 . (5.14)

with xi(n) ∈ RN , Φ(s1, s2,xi, n) ∈ R(N+1)K+K2 and [[·]] the Iverson bracket [87].
λ is a weighting vector. This vector contains information about: (i) feature-vector compo-

nents per state (including the event state), and (ii) state transitions. The entries in this vector are
established during training. In general, the entries in λ may be characterized as follows:
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• The first block of N entries is related to the first state.

• The second block of N entries is related to the second state, and so on until the K’th
block of N entries, which is related to the last possible state.

• The next K2 states describe the transition probabilities between normal-case states.

• The last block of N entries describes the event state.

For each sequence i, an initial label si(0) = s(ti) is needed. For the training data x0,
there is no information about s0(0) = s(0), so an arbitrary symbol is used, such that s(0) <
{ζ0, ζ1, . . . , ζK} [87]. For i = 1, the initial label is s1(0) = s(t1) is the label of the last feature
vector from x0. For i > 1, si(0) = s(ti) the label of the last feature vector of the previous
sequence.

Example. To illustrate the concepts described above, it is assumed that a sequence of
length M = 2 of 2D feature vectors (N = 2) has to be analyzed. First we will assume we are
in the trainig phase, thus i = 0. Then we will asume we are in the operative phase with i > 1.
In each case we will discuss several possible state sequences of length two for the observation
vectors xi(1) ≡ x(ti + 1) = [a, b]> and xi(2) ≡ x(ti + 2) = [c, d]>. Further, it is also assumed
that K = 2, that is, si(n) ∈ {ζ0, ζ1, ζ2}, n = 1, 2. With this parameters, (K + 1)M = 9
sequences are possible.

In the training phase, the initial state is s0(0) = ζx < {ζ0, ζ1, ζ2}. We will discuss two state
sequences.

• For the state sequence [ζ2, ζ1]> at lag one (i.e., for the first vector of the training se-
quence) the transitions are ignored and the entries from five to eight are all zero, thus
Φ(ζx, ζ2,x0, 1) = [0, 0, a, b, 0, 0, 0, 0, 0, 0]>. At lag two we have that Φ(ζ2, ζ1,xi, 2) =
[c, d, 0, 0, 0, 0, 1, 0, 0, 0]>. The first two entries are xi(2). The seventh entry is one due to
the transition from ζ2 to ζ1.

• For the state sequence [ζ1, ζ1]> at lag one Φ(ζx, ζ1,x0, 1) = [a, b, 0, 0, 0, 0, 0, 0, 0, 0]>.
Then Φ(ζ1, ζ1,x0, 2) = [c, d, 0, 0, 1, 0, 0, 0, 0, 0]>. The first two entries are again xi(2).
The fifth entry is one as the state is kept.

In the operative phase, assuming that the label of the initial state is si(0) = ζ1, we discuss
four different state sequences. In comparison to the training phase, things are different at lag
one and similar starting at lag two. Furthermore, we have the possibility of observing an event.

• For the state sequence [ζ1, ζ2]>, at lag one Φ(ζ1, ζ1,xi, 1) = [a, b, 0, 0, 1, 0, 0, 0, 0, 0]>. At
lag two, the state changes and Φ(ζ1, ζ2,xi, 2) = [0, 0, c, d, 0, 1, 0, 0, 0, 0]>, where the third
and fourth entry of Φ(ζ1, ζ2,xi, 2) are xi(2) and the sixth entry is one due to the transition
from ζ1 to ζ2.

• For the state sequence [ζ1, ζ1]>, at lag one Φ(ζ1, ζ1,xi, 1) = [a, b, 0, 0, 1, 0, 0, 0, 0, 0]>. At
lag two the state is preserved and Φ(ζ1, ζ1,xi, 2) = [c, d, 0, 0, 1, 0, 0, 0, 0, 0]>. The first
two entries are xi(2). The fifth entry of Φ(ζ1, ζ1,xi, 2) indicates a “transition” within the
investigated feature vector sequence from state ζ1 to ζ1 (i.e., the systems stays in state
one).
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• For the state sequence [ζ2, ζ1]> at lag one Φ(ζ1, ζ2,xi, 1) = [0, 0, a, b, 0, 1, 0, 0, 0, 0]>.
The third and fourth entries are xi(1). The sixth entry is one symbolizing a change
of state from ζ1 to ζ2. At lag two, the state changes and we have Φ(ζ2, ζ1,xi, 2) =
[c, d, 0, 0, 0, 0, 1, 0, 0, 0]>. The seventh entry is one due to the transition from ζ2 to ζ1.

• For the state sequence [ζ1, ζ0]>, thus assuming an event at lag two (that is s(2) = ζ0), we
haveΦ(ζ1, ζ1,xi, 1) = [a, b, 0, 0, 1, 0, 0, 0, 0, 0]> at lag one and at lag twoΦ(ζ1, ζ0,xi, 2) =
[0, 0, 0, 0, 0, 0, 0, 0, c, d]>.

The unnormalized probability is computed according to equation (5.13) as

p̃(s|xi, si(0)) = exp
( 2∑
m=1

λ>Φ(s(m− 1), s(m),xi,m)
)
. (5.15)

In the training phase, with the weighting vectorλ = [λ(j)]10
j=1 = [1,−1,−1, 1, 1, 0.5, 0.5, 1, 1, 1]>

we have that

p̃([ζ1, ζ1]>|x0, s0(0)) = exp
[
λ>Φ(ζx, ζ1,x0, 1) + λ>Φ(ζ1, ζ1,x0, 2)

]
= exp(a− b+ c− d+ 1)
= exp(a− b) · exp(c− d+ 1)

and

p̃([ζ2, ζ1]>|x0, s0(0)) = exp(−a+ b+ c− d+ 0.5)
= exp(b− a) · exp(c− d+ 0.5).

We analyze next the first sequence of observations in the operative phase. Under the same
conditions as above, with the same x1,λ and with s1(0) = ζ1 we have for the state sequence
[ζ1, ζ2]>:

p̃([ζ1, ζ2]>|x1, s1(0)) = exp
[
λ>Φ(ζ1, ζ1,x1, 1) + λ>Φ(ζ1, ζ2,x1, 2)

]
= exp(a− b+ 1 + d− c+ 0.5)
= exp(a− b) · exp(d− c+ 1.5).

Unde the same conditions as above we assume now we observe the state sequence [ζ1, ζ0]>.
Then, the unnormalized probability of an event at lag two in the operative phase is:

p̃([ζ1, ζ0]>|x1, s1(0)) = exp(a− b+ 1 + c+ d)
= exp(a− b) · exp(c+ d+ 1).

Depending on the values in each of the two observed feature vectors and on λ, a certain se-
quence of states will have the highest probability. Clearly the weighting vector λ regulates
which state sequence is the most probable. In this example, we can interpret λ as follows:

• The first N = 2 entries of λ describe the state ζ1. This means: (i) a positive value
“prefers” a corresponding positive value in xi (if an entry in λ is positive and the cor-
responding one in xi too, the probability for this state is higher than otherwise), (ii) a
negative value in λ “prefers” a negative value in xi, and (iii) a zero in λ can be inter-
preted as “no influence” on the probability.
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• The next N = 2 entries describe the state ζ2.

• The next K2 = 4 entries describe the transition probabilities between the normal case
states.

• The last N = 2 entries describe the event.

Training. The edLLM labels each observed feature vector as either normal or event. The
simplest thing to do would be to design a model with just two states, viz., normal and event.
Nevertheless, the normal case is usually rich enough to need more than just one label to be
able to achieve a satisfactory description for event-detection purposes. Therefore, the edLLM
includes several “normal” states and one “event” state.

Assuming that the training set includes data that is described as “normal” without additional
labels for the sub-cases of the normal case, in a first step the states corresponding to the “normal”
case need to be assigned to the training data. This is an unsupervised classification problem,
where each feature vector from the training set receives one label from the set {ζ1, ζ2, . . . , ζK}.
Within the context of the contrast-agent-detection application, let ymin be the minimum vessel
feature in the training data and ymax be the maximum one. Defining aq as aq = K−q+1

K
ymin +

(1 − K−q+1
K

)ymax for q = 1, 2, . . . , K + 1, the training data is labeled as s(n) = ζq if aq ≤
1
T

∑T−1
m=0 y(n+m) < aq+1.

After assigning the labels of the normal case, the training phase includes the estimation of
the rest of the model parameters. The weighting vector λ is estimated in the training phase.
It effectively selects the feature-vector components that are important for a successful descrip-
tion of the normal case and provides also a description of the event state. During training,
p(s0|x0, s(0)) is maximized with respect to λ, given the training data x0 and a corresponding
state sequence s0.

Let t0 be the start index of the training data (i.e., t0 = 0) and M0 the number of training
feature vectors, then

Φ(s0,x0) =
M0∑
m=1

Φ(s0(m− 1), s0(m),x0,m).

During training Lλ, which is the penalized log-likelihood of p(s0|x0, s(0)), with s(0) some
initial state, is optimized. Lλ is defined as

Lλ = log (p(s0|x0, s(0)))− F (λ)
= λ>Φ(s0,x0)− logZ(x0)− F (λ), (5.16)

where F (λ) = ||Dλ||2
2 − ẽ>λ with ẽ = [ẽk](N+1)K+K2

k=1 , and

ẽk =


M0∑
i=1

[[s(i) , ζj]] if (j − 1) ·N < k ≤ j ·N,
0 otherwise.

The special penalty term F (λ) is necessary for two purposes: to avoid overfitting [87], and
to adapt the training to the event detection setup. For the former purpose, ẽ compensates the
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different numbers of training vectors for each state. For the latter purpose, the penalty matrix
D is defined as D = [D(i, j)](N+1)K+K2

i,j=1 with

D(i, j) =



1 if i = j; i, j ≤ N ·K +K2

N
2N+1 if i = j; i, j > N ·K +K2

1
2N+1 if i , j; i, j > N ·K +K2

1
N

if i = j +N ·K +K2 −N · (k − 1); k = 1, 2, . . . , K; i > N ·K +K2

0 otherwise.

As it may be observed, some components D have values different from both one and zero.
These values were established empirically.

With this penalty matrix the event state ζ0 can be accommodated (i.e., compute the corre-
sponding entries of λ), even though the training data x0 does not include any events, that is
s0(m) , ζ0, m = 1, 2, . . . ,M0.
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Figure 5.22: The penalty matrix D for our example, with N = 2 and K = 2. Only the entries
different from zero are marked.

While computing the optimal λ the following happens: the first N ·K + K2 entries of the
weight vector are related to the normal case and will be established according to the training
data, while the last N entries that are related to the event will be determined by the previous
entries (i.e., the normal-case entries) and the condition that the penalty term must be chosen
such that the objective function is optimized. The penalty matrix for our example is shown in
Figure 5.22.

Because we want to determine λ such that the penalized log-likelihood (see equation (5.16))
is maximized, the training of the edLLM is an optimization problem. The gradient of the
penalized log-likelihood is

∇Lλ = Φ(s0,x0)− E(s|x0,λ)−Dλ+ ẽ,

whereE(s|x0,λ) is the expected value of the sequence s, given x0 andλ. An efficient algorithm
to compute E(s|x0,λ) can be found in [87]. The training proceeds in several iterations. At
iteration τ , λ is updated by λ(τ+1) = λ(τ) + 0.3∇L

λ(τ) . The constant 0.3 in the update of λ is
selected empirically.
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Inference. With a trained model, the probability of a state sequence for a new batch/se-
quence of feature vectors needs to be computed. For the event detection, the most interesting
task is to measure the probability to detect an event, that is the probability that the state ζ0,
appears in the state sequence corresponding to a certain feature vector batch.

As described before, i > 0 indicates the i-th feature vector batch of length M , with ti as
starting point. The whole sequence of feature vectors x is analyzed batchwise to improve the
classification results. The batches xi overlap by d vectors, and d vectors are re-labeled each
time. The first batch x1 is initialized to include several features that belong to the training set.
Each feature vector corresponds to a frame of the X-ray images. This procedure is illustrated in
the example from Figure 5.23.

Training set

M

d

x1

x2

x3

t

Figure 5.23: In this example the inference is applied on feature vector batches x1, x2 and x3 of
length M = 5 with an overlap of d = 2. The firs batch includes vectors from the training set.

For each batch xi, we would want to estimate a state sequence si. An exhaustive search for
each possible state sequence corresponding to this feature vector batch is not feasible, because
we would have to test (K + 1)M different state sequences. To circumvent this problem, a
forward path is defined recursively [87] as

αi,m(k) = 1
Zα

K∑
j=0

αi,m−1(j) · exp(λ>Φ(ζj, ζk,xi,m)),

and a backward path as

βi,m(j) = 1
Zβ

K∑
k=0

βi,m+1(k) · exp(λ>Φ(ζj, ζk,xi,m+ 1)),

where m = 1, 2, . . . ,M , Zα and Zβ are constants such that
∑K
j=1 αi,m(j) = ∑K

k=1 βi,m(k) = 1.
In this case, αi,m(k) is the probability that ζk is observed at lag m in the batch xi, given the
previous states and βi,m(j) is the probability of state ζj at lag m in the batch xi, given the
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following states. The probability of state ζj at time step m in batch xi is given by

p (si(m) = ζj|xi) = αi,m(j) · βi,m(j)
Zα,β

, (5.17)

whereZα,β is a normalization constant such that p (si(m) = ζj|xi) is a probability. This forward-
backward algorithm maximizes the information that is used in the end for labeling and therefore
the reliability of the method. Also, working with the overlap both past and future relationships
with respect to the labeled feature vector are used. The price to pay for this is a delay in obtain-
ing the sought label.

To further detail this aspect of using information both from the past and the future, it is
assumed now that αi,m(k) and βi,m(j), j, k = 1, 2, . . . , K have been computed for some batch
xi. To initialize the inference on the next batch xi+1, the forward path initialization is defined
as αi+1,0(k) = p (si(M − d) = ζk|xi) and the backward path as βi+1,M+1(j) = 1

K+1 . With this
initialization, inference may be conducted on the batch xi+1. Thus labels are assigned to the
feature vectors from xi+1 (including the relabeling of the first d vectors) using for this purpose
information from all previous feature vectors in the entire analyzed sequence, as this informa-
tion is captured in the transition from the feature vector at position M − d in xi to the first3

feature vector of xi+1 as well as to some extent in the labels of the first vectors from xi+1 that
were established taking into consideration also the previous M − d vectors.. Conversely, the
feature vectors in the overlap region between xi and xi+1 are now relabeled using also informa-
tion from a larger number of “future” feature vectors, (i.e., those at positions d + 1, . . . ,M in
xi+1) while their previous labels, assigned when analyzing xi, used information from a smaller
number of future vectors4. To use this in a meaningful manner, d should be larger than M

2 ,
otherwise, some vectors (in the middle of the batch) will be labeled using less information than
the others.

With respect to Figure 5.23, to label the vectors x7, . . . , x11 of the batch x3, the transition
from s6 is used. Conversely, to relabel x7 and x8, while conducting the inference on x3, now
also x9, x10 and x11 are used, which represents more information than that used to label x7 and
x8, while conducting the inference on x2 – in which case for x8 we used no information from
the “future”.

For event detection, p(si(m) = ζ0|xi) the probability of the event state ζ0 (see equation
(5.17)) needs to be computed. In a straightforward manner, an event is detected if p(si(m) =
ζ0|xi) > θ for some 0 < θ < 1.

CUSUM test. The straightforward method from above is very sensitive to noise in the
probability of the event state, which can occur if the number of training feature vectors is limited
or the variation in the data is high. A more robust method is discussed next.

The probability for the observation of the event state ζ0 in a feature vector batch xi at lag
m is p(si(m) = ζ0|xi). For a robust decision, a CUSUM test (see Section 1.3.3) is used to
establish if an event has occurred. For this purpose, c(m) is defined as

c(m) = c(m− 1) + p (si(m) = ζ0|xi)− c0,

3Because of the overlap, the first feature vector of xi+1 is at the same time the feature vector at position
M − d+ 1 in xi.

4To the limit, for the feature vector at position M in batch xi, no information from future feature vectors is
used.
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Figure 5.24: Shown here are six vessel-feature curves, together with the manual ground truth
(dashed gray line), the edLLM result (black dot) and significance-test result (black cross).

where c0 is estimated such that c(m) ≤ 1 for m ≤ M0, that is, no event is detected in the
training data. An event has occurred if c(m) > 1. c(m) is set to zero either if an event has
occurred or if c(m) ≤ 0.

Experiments, results, and discussion. The algorithm is tested on the 23 video sequences
available in the contrast-agent-detection dataset. Some results are shown in Figure 5.24. As it
may be seen, the edLLM is a more powerful (i.e., general) event detection algorithm which can
successfully analyze very different time series.

To establish the parameters needed to apply the edLLM, three randomly chosen sequences
have been used as training set. Using the leave-one-out cross validation different parameters (L
from 3 to 9, T from 10 to 50) have been tested without noticing any significant change in the
computed results. Therefore a sliding window of length T = 36 and L = 3 sample slopes wl
have been used, obtaining thus a N = 41 dimensional feature vector. An edLLM with K = 5
is trained on the first M0 = 64 feature vectors. Therefore, the training set consists of the first
99 images of an analyzed sequence (8.25 seconds). Different parameters for the inference have
been tested the best results being obtained with M = 10 and a delay d = 2.

The choice of features discussed here is well suited to detect events on vessel-feature curves,
including both those with a typical and an atypical behavior. In general, the choice of features is
application dependent and it should be conducted with a thorough understanding of the problem
at hand.

In Figure 5.24, several detection results are shown. Displayed are the manually labeled
critical point and the measured ones, with both the significance test using non-parametric pdf
estimation from the previous section and the edLLM. Mentioned is also the distance in video
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frames between: (i) the manual label and the edLLM result, and (ii) the manual label and the
significance test result (i.e., the dedicated method).

The ability of the edLLM to make use of the information found in the connections between
consecutive components of the feature curve (i.e., the relationship between the level of contrast
agent in video frames that are close to one-another in time) leads to the edLLM correctly de-
tecting the event in two more sequences in comparison to the non-parametric estimation-based
method. The feature curve corresponding to these sequences is rather different from the typical
appearance (as shown in Figure 5.24 (e)). In two sequences the edLLM fails to correctly de-
tect the events, as it also does the significance-based method. Those two sequences are heavily
contaminated by noise, such that the vessel-area-related feature extraction fails.

Summary and conclusions. The edLLM is a powerful yet general event detection method
that was successfully applied to the specific problem of detecting coronary contrast agent injec-
tions. Due to the decision to analyze batches of frames rather than each frame independently,
it is not possible to detect the contrast agent immediately, but after a few frames, however, this
delay is below the human reaction time.

The edLLM works on a set of features. These have to be determined in advance and repre-
sent the link between the practical problem that needs to be solved and the edLLM framework.
Depending on the application this set of features can be increased and modified as deemed nec-
essary. The particular set of features used here is suited for chunks of 1D signals, being adapted
to the problem of detecting contrast bursts using feature curves.

The delay d included in the algorithm is used to increase the precision of the labeling and is
chosen such that the classification is almost instantaneous. Setting d = 0 eliminates the delay,
but decreases the precision with which an event is detected. However, this does not necessary
afflict the detection of events.

Comparing the edLLM with LCCRFs and MEMMs from a theoretical point of view, there
are a lot of similarities. In a way, the edLLM combines a LCCRF with a MEMM, as we can
obtain an algorithm similar to a LCCRF but also to a MEMM by altering the length of the
window of feature vectors M and the delay d in the inference. If M is equal to the whole
sequence of feature vectors and d = 0, we have a LCCRF, that is, the state sequence can be
represented by an undirected graph. If M = 1 and d = 0, we have a MEMM. The edLLM
combines thus the advantages of both these methods.



Chapter 6

Summary

Biometrics and surveillance are two of the main domains of the field of information forensics
and security. In the form of person identification and event detection respectively they represent
the clear focus of this work. Nevertheless, the type of problems encountered here, are shared
by a majority of security applications, thus the scope of this work extends beyond these two
domains. Pattern recognition clearly plays a pivotal role over the entire field, irrespective of
whether we talk about biometrics, computer and network security, cryptography [164] or data
hiding. Conversely, the main approach to pattern recognition is based on statistics.

In this context, we have gone in this work through all design steps of a pattern-recognition
system, while keeping in mind that this system is supposed to solve a security-related applica-
tion.

Therefore, both new methods have been proposed and established ones have been adapted to
security-related problems, covering theoretical approaches as well as systems applications. In
a building-related analogy, both new bricks were designed and these as well as older designs
have been used for new types of houses.

This way, it can be confirmed (yet again) that each problem has its own particular optimal
solution, which is a very good thing, because it means that generations of signal-processing
specialists that are currently studying will definitely be able to earn a living with this type of
knowledge in the future.

The main steps of any pattern recognition system are feature extraction and classification.
We differentiate here between feature extraction and raw-feature generation. The raw-features
are the result of various measuring processes applied to the investigated reality, while the fea-
tures are the result of transformations applied to the raw features designed for the purpose of
constructing a classification-optimal feature space. With respect to feature extraction this work
(i) introduced a novel method that is called multiclass Gaussianization, and also (ii) described
custom-made feature extraction methods for various security applications. For the classification
step there are several contributions: (i) the introduction of a new hysteresis classifiers, and also
(ii) the linear-predictors mixture, and (iii) the adaptation of the sparse classifier, as well as (iv)
the log-linear models – like the conditional random fields and the maximum-entropy Markov
models – to biometric identification and event detection applications.

The research presented here in a unitary manner has found its expression in several con-
ference [43, 49, 50, 45, 134, 135, 47, 48, 42] and journal [44, 46] publications as well as a
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government-founded project [99]. This demonstrates the interest of both the community but
also the society at large on such methods and their applications.

Throughout this entire work, as much attention as possible was paid to giving clear and
simple explanations such as to emphasize its didactic side as well. Thus it not only describes
cutting-edge research results, but puts them in the proper frame for better understanding and
also to ensure a proper focus. Furthermore, care has been given to introducing new concepts
starting from simple basics, while putting them in the proper historical context and underlining
their connections, such as to make this accessible to a larger public.

6.1 Gaussianization for feature extraction
Considering the ubiquitousness of data-analysis methods that work under the Gaussian assump-
tion, it is only natural to ask how appropriate these are for a certain problem, in light of their
underlying assumption. Taking also into account the advantages of working under the Gaussian
assumption, there is a high interest to ensure that Gaussian methods are appropriate. There are
also methods that are free of the Gaussian assumption, but depending on the application, the cost
of using such methods may be higher than the cost of adapting the problem setup to the Gaussian
assumption and using Gaussian methods. Within this context, the multiclass Gaussianization
described here is a feature extraction method aimed at changing the distribution of the data in
the transformed space such that classifiers with explicit or implicit Gaussian assumptions can
optimally shatter the transformed feature space. While Gaussianization transforms have been
proposed previously, here we have discussed for the first time a Gaussianization transform for
classification purposes, i.e., such that each class conditional pdf is Gaussianized.

A majority of the Gaussianization methods are iterative algorithms, closely linked to pro-
jection pursuit density estimation [76, 75] that have difficulties to work in a multiclass scenario.
Inspired by quality measures for nonparametric density estimators, the multiclass Gaussianiza-
tion is conducted with the help of an elastic transform that is otherwise successfully applied in
the field of image registration. For image registration, the dimensions of the transformed space
is usually very small, like two or three, while in a classification setup, the dimension is usually
large. The computational complexity of the elastic transform depends on the size of the in-
put space, and to promote the practical deployment of the multiclass Gaussianization, adaptive
grids have been introduced, which effectively reduce the computational complexity, such as to
be able to apply it with the same effectiveness also in feature spaces with a larger number of
dimensions. The adaptive-grid Gaussianization is called “accelerated Gaussianization”.

Nevertheless, the purpose of the multiclass Gaussianization is not to achieve perfect Gaus-
sian classes, but to make the classes more Gaussian than in the original space, such as to ensure
satisfactory results with comparatively simple Gaussian classifiers. The experiments conducted
show that this purpose was achieved, for both the standard and the fast Gaussianization.

Under these conditions, the multiclass Gaussianization is on the best way from cutting-edge
research to practical applications.

6.2 Binary classification with hysteresis methods
Binary classification is an important special case of the classification problem, if we are only
to consider the example of the support vector machines [53]. It is only natural that a lot of
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effort has been invested into the development and improvement of binary classifiers. In the
case of overlapping classes, prior knowledge is instrumental in ensuring that the respective
classification problem can be solved with enough accuracy. Here, concepts such as the linear-
classifier percentile and the relative hysteresis classifier helped completing the hysteresis binary
classification framework – that was introduced for the first time in Reference [36] – a framework
that purposefully uses prior knowledge. The resulting hysteresis classifiers offer modalities
to introduce prior problem-domain knowledge in the feature-space analysis that is implicitly
conducted for the purpose of labeling. The hysteresis classifier can be also seen as a classifier
pair, or the smallest possible committee where the classifiers generate and combine their outputs
in such a way as to make optimal use of the additional prior information that can not be captured
in the form of features.

The concept of hysteresis processing is not new, and hysteresis segmentation [28] is known
at a graduate level. However, here this concept was taken and transformed into a true classifi-
cation framework that gives highly efficient and accurate algorithms for difficult classification
problems, as shown in the retinal-vessel segmentation experiments. Vessel segmentation is a
topic of high interest not only in the medical community, but also for biometrics, as pointed out
in this work as well.

Hysteresis classification is now a mature technology, ready to be deployed into praxis. It
has been demonstrated here to full extent on the retinal-vessel segmentation problem, where the
the hysteresis vessel segmentation is one of the most accurate methods while being the fastest.

6.3 Sparse classification for security applications

Sparsity as a data-analysis tool is a hot topic in current research. Impressive results have been
obtained with compressed sampling [58], but more and more we are discovering or rediscover-
ing sparsity as an universal principle – Occam’s razor being just one of its early instantiations.
For pattern recognition, similar ideas found their expression in concepts like minimum message
length and minimum description length [66], and increasingly in the sparse classifier [187] that
enjoys a clear link to the k-NN classifier as shown here as well. Through its k-NN link, the
sparse classifier is also a statistical pattern recognition method.

The sparse classifier has a set of characteristics that make it particularly well suited for
security applications, like for example the ability to work satisfactory despite the curse of di-
mensionality, as well as the robustness to noise in the feature vector or even to cropping of the
feature vector. These advantages were put to use here in the design of robust biometric systems,
working with fingerprints and with retinal vascular networks. The sparse classifier framework
also includes simple and efficient outlier-detection methods that were used here successfully to
introduce the sparse classifier to the field of event detection.

For biometric applications the application pool of the sparse classifier was simply extended
to fingerprints and retinal-vascular networks – together with the necessary feature extraction
methods. In the case of event detection, the sparse classifier framework was introduced here for
the first time to this application; this being also among the first contributions using sparsity as a
data-analysis tool in this context. The validity of such an approach was demonstrated and also
the stage was set for further research in this direction.
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6.4 Event detection with statistical models
Time series can be modeled very well with statistical models, and as event detection often
implies the analysis of a times series, statistical models are often used for event detection.
General-purpose methods like hidden Markov models and standard adaptive filters are already
well suited for such tasks. Still, the particularities of event detection (in principal those related
to the applications where the normal case evolves during time) require new approaches.

In this context, besides introducing a novel linear-predictor mixture model, here for the first
time log-linear models like the maximum entropy Markov models and the conditional random
fields were adapted for the purpose of event detection in the form of the edLLM. As in the
case of the hysteresis classification, these statistical models are able to return better results by
processing more information, and by incorporating it in the decision-making process. These
methods were tested on an exemplary real-life medical problem, but also on artificially gener-
ated data and some toy-examples, to demonstrate their validity. Besides proving the validity of
these approaches, directions for further research in these fields were also identified.

Overall, a novel linear predictor mixture was introduced for the analysis of random signals
and in particular for event detection; and the log-linear models were adapted, and it has been
demonstrated that they can be effectively used for the same purpose of event detection.
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Formulae

The Fisher information matrix
The Fisher information matrix J is defined as the variance of the score

J = E
{
f fT

}
,

with the score f being

f = d

da
ln p(r|a),

where a is the vector to be estimated and r the observation.

LDA for more than two classes
The extension of the Fisher discriminant to Nω classes is straightforward, for x = Ay, we have

J(A) = ASBAT

ASWAT
, (A.1)

with SB = ∑Nω
i=1 P (ωi)(µi−µ̄)(µi−µ̄)T the between-class scatter matrix and SW = ∑Nω

i=1 P (ωi)Σi

the within-class scatter matrix, while µ̄ = ∑Nω
i=1 P (ωi)µi.

Minimizing the trace of the error’s correlation matrix
We have the following objective function:

J(A) = tr
{
E
{

[Ar− a] [Ar− a]H
}}

= tr
{
E
{

[â(r)− a] [â(r)− a]H
}}

= tr
{
E
{
e(r)eH(r)

}}
= tr {Ree} ,

for which we have to compute:
Ã = arg min

A
J(A)
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The objective function can be rewritten as

J(A) = tr
{
Raa −ARar −RraAH + ARrrAH

}
= tr{Raa −ARar −RraAH + ARrrAH + RraR−1

rr Rar −RraR−1
rr Rar}

= tr{Raa −ARrrR−1
rr Rar −RraR−1

rr RrrAH + ARrrAH + RraR−1
rr RrrR−1

rr Rar

−RraR−1
rr Rar}

= tr{Raa + ARrr

(
AH −R−1

rr Rar

)
−RraR−1

rr Rrr

(
AH −R−1

rr Rar

)
−RraR−1

rr Rar}
= tr{Raa +

(
ARrr −RraR−1

rr Rrr

) (
AH −R−1

rr Rar

)
−RraR−1

rr Rar}

= tr{Raa +
(
A−RraR−1

rr

)
Rrr

(
AH −R−1

rr Rar

)
−RraR−1

rr Rar}

As it can be easily seen, the only term that depends on A in the equation above is:

tr
{(

A−RraR−1
rr

)
Rrr

(
AH −R−1

rr Rar

)}
.

This term is a sum of squares and thus always positive. Therefore J(A) is minimized when

A−RraR−1
rr = 0

which is equivalent to
Ã = RraR−1

rr .

Conditional Gaussians

Joint distributions. For the random variable

z =
(

x
y

)
,

if z ∼ N (µ,Σ) is Gaussian distributed, then both marginals p(x) and p(y) are also Gaussian.
Furthermore, with Λ := Σ−1 and

Σ =
(

Σxx Σxy
Σyx Σyy

)
, Λ =

(
Λxx Λxy
Λyx Λyy

)

we have that
p(x|y) ∼ N (µx|y,Λ−1

xx) (A.2)

with µx|y = µx −Λ−1
xxΛxy(y− µy), and

p(x) ∼ N (µx,Σxx) (A.3)



A. FORMULAE 193

Bayes theorem and extensions for Gaussian variables. According to the Bayes theorem we
have that:

p(x|y) = p(y|x)p(x)
p(y) . (A.4)

Given two dependent Gaussian variables x and y related by y = Ax + b and the densities

p(x) ∼ N (µ,Σ)

and
p(y|x) ∼ N (Aµ+ b,K)

we need to compute p(y) and p(x|y). For this purpose, we first compute the joint density
p(x,y) and obtain p(y) by marginalizing it, as:

p(y) = N (Aµ+ b,K + AΣAT ). (A.5)

p(x|y) is then computed with the help of equation (A.4) and making use of equation (A.7) [20]
as

p(x|y) = N (L[ATK−1(y− b) + Σ−1µ],L), (A.6)

with L = (Σ−1 + ATK−1A)−1.

Matrix properties
Schur complement. Assuming a square matrix M can be partitioned into

M =
(

A B
C D

)

then its inverse M−1 can be computed as

M−1 =
(

S −SBD−1

−D−1CS D−1 + D−1CSBD−1

)
(A.7)

where S = (A−BD−1C)−1 is the Schur complement.

Other matrix identities. The following matrix identities exist:

(P−1 + BTR−1B)−1BTR−1 = PBT (BPBT + R)−1 (A.8)

(A + BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1. (A.9)
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Appendix B

Methods

Principal Component Analysis

With x = [x1, . . . , xn]T , where x ∈ Rn is the realization of a stochastic process, we would like
to find the set of parameters ui that allow us to approximate x by x̃ = ∑m

i=1 αiui with m < n.
ui are some orthonormal vectors, and αi = 〈x,ui〉 such that

α =
(
UT

)−1
x

=


uT1
...

uTn

x

= Ux,

(B.1)

with α = [α1, . . . , αn]T and U an orthonormal transform, such that x = UTα = ∑n
i=1 αiui.

The error in representing x by x̃ is:

ε = x− x̃ =
n∑

i=m+1
αiui. (B.2)

The problem is now to find an orthonormal basis U = {u1, . . . ,un}, such that the MSE E =
E{‖ε‖2} is as small as possible. From equation (B.2), the MSE can be written as

E =
n∑

j=m+1
uTj Rxxuj,

where Rxx is the correlation matrix of x. Therefore, to find the basis vectors ui, we need to
minimize the composed criterion function

El =
n∑

j=m+1
uTj Rxxuj +

n∑
j=m+1

λj(1− uTj uj), (B.3)

where we have introduced the orthonormality condition over the Lagrange multipliers λ. The
solution to the constraint optimization problem (B.3) is given by

Rxxuj = λjuj, (B.4)
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which means that uj are the eigenvectors of the correlation matrix Rxx. For the eigenvalue
problem in (B.4) there are always n orthogonal eigenvectors. An orthonormal basis is obtained
if the vectors are scaled by their norm. The mean square error is then

E =
n∑

j=m+1
λj

and is minimized if we select in the representation of x̃ those eigenvectors u that correspond
to the largest eigenvalues. Hence the sought basis is made of the eigenvectors corresponding to
the largest m eigenvalues.

As αi = 〈x,ui〉 = xTui = uTi x it follows that

E{αiαj} = uTi E
{
xxT

}
uj

= uTi Rxxuj
= uTi λjuj
= λjδij.

The correlation matrix for α is then:

Λ = E
{
ααT

}
=


λ1 0

. . .

0 λN

 . (B.5)

Hence, the components of the representation of x with respect to the found basis are not corre-
lated. They are called principal components.

Whitening
The purpose of the Whitening transform is not only to decorrelate the components α, as in
the case of the PCA but also to ensure that their variances are equal. By this transformation a
colored random process is transformed into a white random process. Whitening will be defined
next as a further processing step after PCA.

We look for a linear transform T such that for ñ = Tn, the covariance matrix of ñ is:

Kññ = TKnnTT = I

It is clear that T is not unique, as multiplication of T by an orthonormal matrix has no influence
on the relation above.

Applying the PCA, to the random vector n, the covariance matrix in the transformed space
will be:

UKnnUT = Λ.
It follows that

Knn = UTΛU,
with U the PCA transform matrix. At this stage we observe that Λ can be written as Λ = ΣTΣ,
with:

Σ =


√
λ1

. . . √
λN

 .
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Therefore we have that
Knn = UTΣTΣU

and thus
Σ−1UKnnUTΣT−1 = I

and the transfomation T = Σ−1U is a whitening transform.

The orthogonality principle
Generally, we obtain a minimum error estimate x̂ of the signal x when the error vector x̂− x is
perpendicular on the estimate. This is shown in Figure B.1.

Figure B.1: Illustration of the orthogonality principle.

For random signals, this means that a minimum mean error estimate of the parameter vector
a verifies the orthogonality relation:

E
{

[â − a]âH
}

= E
{
ââH

}
− E

{
aâH

}
= ARrrAH −RarAH

= [ARrr −Rar] AH

= 0

where we have used â = Ar. It follows that:

Rar = ARrr. (B.6)

The same relationship can be also derived from (2.22) and leads us to concluding that the MMSE
estimate verifies the orthogonality relation.

Equation (B.6) can be expressed equivalently as

E
{
arH

}
= AE

{
rrH

}
and using again â = Ar we obtain

E
{
arH

}
= E

{
ârH

}
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which means that
E
{
arH

}
− E

{
ârH

}
= 0

and thus
E
{

[â − a]rH
}

= 0 (B.7)

The relationship in (B.7) describes the orthogonality principle . By the orthogonality princi-
ple, we obtain a MMSE estimator when the estimation error is not correlated with the observa-
tion r that were used to compute the estimate â(r).

Derivation of the Wiener-Hopf equations. In the case of the Wiener filter, the solution to
the minimization problem E

{
|e(n)|2

}
→ min must follow the orthogonality principle. In our

current setup – where we denote the observations by x(n), the true signal by d(n) and the
estimate by y(n) = ∑p−1

i=0 h(i)x(n− i) – we have that:

E


d(n)−

p−1∑
i=0

h(i)x(n− i)
x∗(n− j)

 = 0, j = 0, 1, . . . , p− 1. (B.8)

Assuming a stationary process, we obtain from (B.8) the Wiener-Hopf Equations

p−1∑
i=0

h(i)rxx(j − i) = rxd(j), j = 0, 1, . . . , p− 1,

with
rxx(m) = E {x∗(n)x(n+m)} ,

rxd(m) = E {x∗(n)d(n+m)} .

Significance testing for classifier comparison
In its initial formulation, a significance test is conducted to get an idea of how likely it is that
the desired outcome observed at the output of a system is due to chance. If this is unlikely, we
conclude that the system is significantly better than chance at producing this desired outcome.
Significance testing is based on the binomial distribution, however, the probability of success
should be computed from the available data about the investigated system.

A significance test has four major steps:

• Build the null hypothesis H0 → The system is no better than chance.

As a consequence of intuitively imposing completeness, you get as well the alterna-
tive hypothesis H1 → The system is better than chance.

• Establish Pchance, the probability that the desired system outcome is due to chance (i.e,
the probability of succeeding by chance).

• Set the significance level α that is related to how confident you would like to get about
the result of the test.



B. METHODS 199

• Find out if the null hypothesis can be rejected. For this purpose, we make use of the ran-
dom variableX , representing the number of times the desired outcome has been observed
(i.e., the number of successes) in N trials. We obtain the following rule:

Reject H0 if we observe an event ξ and the probability of this event under the null
hypothesis is very small. With ξ = X > C, we would reject H0 if

PH0(X > C) ≤ α,

with α very small. PH0(X > C) = 1 − F (C,N, Pchance) is probability of observ-
ing X > C under H0 and it represents thus the Type I error probability, i.e., the
probability of falsely rejecting the null hypothesis. Furthermore, we have

F (C,N, p) = P (X ≤ C) =
X∑
i=0

(
N
i

)
pi(1− p)n−i, X ∈ N

the binomial cumulative distribution function, with C ∈ N the threshold on X cor-
responding to α.

If H0 is rejected, then this does not automatically mans accepting H1. All we can say is
that available data does not support accepting H0 at the given significance level. H1 is accepted
only by way of consequence.

Example 1 25 data points need to be classified into four classes. Find out if a classification
algorithm is better than chance for this task.

With four classes, we have that Pchance = 1
4 . Setting α = 0.01, we computeC as the solution

to the equation 1 − F (C, 25, 1
4) = 0.01. We obtain in this case C = 11. This means that the

probability of our classifier correctly deciding by chance 12 or more times in 25 trials is 0.01.
If this nevertheless happens, we conclude that it is unlikely it happened by chance because of
the small probability of this event under the "‘chance"’ assumption. Therefore, if our classifier
decides 12 or more times correctly on the 25 data points it is significantly better than chance at
a significance level of α = 0.01

Example 2 25 data points need to be classified into four classes. We have two classifiers A
and B at our disposal. Find out if the two classifiers are significantly different.

We construct the null hypothesis that “A is no better than B”. With the probability of a
correct decision by B being PB = 1

2 , and a significance level α = 0.01, the solution of the
equation 1 − F (C, 25, 1

2) = 0.01 is C = 18. This mens that if A decides correctly 19 or more
times, it is significantly better than B at a significance level of α = 0.01.

Iterative solutions of a system of equations
We are looking for the solution to the system of equations

Ax = b

We would like to search for the solution in an iterative manner, such as to be able to step-wise
improve an initial solution until we reach the true solution.
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The Jacobi method. We observe that the matrix A can be written as A = D + R, i.e., the
sum of a diagonal matrix D and a rest matrix R. Then it follows that

Ax = b ⇔
(D + R) x = b ⇔

Dx = b−Rx.

which leads to the iterative solution xt = D−1 (b−Rxt−1). The iterative algorithm converges
always if the matrix A is diagonally dominant, meaning that all entries in a row are smaller than
the diagonal element of the row. Otherwise, convergence is not guaranteed.

The least-squares method. In this case, we build the quadratic form F (x) = (Ax− b)2 and
look for its minimum to obtain the desired solution. We obtain two types of methods: (i) the
direct method, and (ii) the iterative method.

(i) Direct algebraic computations involve computing the derivative of the quadratic form
as ∇F (x) = 2AT (Ax− b) and solving over x the equation obtained by setting this
derivative to zero. In this case the solution is simply x =

(
ATA

)−1
ATb.

(ii) We search for the optimum of the quadratic form in an iterative manner, starting at some
initial location on the surface F (x) and going in the direction of the gradient within the
gradient descent framework or in a direction conjugate to the gradient1 within the frame-
work of the CG method [166]. When using the gradient descent, the iterative solution is
xt = xt−1 − γ∇F (x). When using the CG, the matrix A needs to be symmetric and
positive semidefinite, otherwise we should solve ATA = ATb instead.

1Two vectors m and n are conjugate with respect to a matrix K if mT Kn = 0.
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A-posteriori, 38
A-priori, 38
Accelerated Gaussianization, 103
ACRF, see Arbitrary CRF
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AR, see Autoregressive Model
Arbitrary CRF, see CRF, 82
Autoregressive Model, 50

Bandwidth, 40–42
Baum-Welch, 55
Bayes Estimation, 37, 38
Bayes Formula, see Byes Theorem59
Bayes Network, 3, 57
Bayes Rule, 38
Bayes Theorem, 193
Best Linear Unbiased Estimator, see Estimation
Bias, 35
Bias-variance tradeoff, 21
Biometric Authentication, see Biometrics
Biometric Identification, 26
Biometric Verification, 25
Biometrics, 24, 143
BLUE, see Best Linear Unbiased Estimator
Boltzmann Machines, 82
Border Separability Constraint, 121

Central Limit Theorem, 93
CG, see Conjugate Gradient Method, 107, 200
Cholesky decomposition, 83
Class Overlap, 117
Clique, 77
CLT, see Central Limit Theorem
Coherence (matrix property), 85
Collective event, 26
Complete Log-Likelihood, 53
Compressed Sampling, 87
Conditional Random Field, 28, 79, 137

Arbitrary CRF, 80
Grid CRF, 82
Linear Chain CRF, 80

Skip-Chain CRF, 82
Conjugate Gradient Method, 87, 104
Consistency, 36
Context Event, 26
Core Point, 139, 140
Cramér-Rao Bound, 8, 36
Cramer Rule, 83
CRF, see Conditional Random Field
Cumulative Sum Test, 30
Curse of Dimensionality, 16
CUSUM, see Cumulative Sum Test, 184

D-separation, 57, 77
DBN, see Dynamic Bayes Network, 61
DCT, see Discrete Cosine Transform
Descriptive Model, 97
Deterministic Sampling, 70
Diffeomorphic, 102
Discrete Cosine Transform, 139
Discriminative Model, 61, 171
Dynamic Bayes Network, 58

edLLM, see Event Detection Log-Linear Model
Efficiency, 36
EKF, see Kalman Filter
Elastic Potential, 101, 114, 115
Elastic Transform, 101
EM, see Expectation Maximization, 66
Epanechnikov Kernel, 173
Estimation

Density estimation
Histogram, 40
Kernel, 39
Maximum Likelihood, 37
Maximum-a-Posteriori, 38
Minimum Mean Square Error, 39

Signal estimation
Best Linear Unbiased Estimator, 44
Lease squares, 43
Minimum Mean Square Error, 46

Even Detection Log-Linear Model, 178
Event, 2

213



214 INDEX

Event Detection, 2
Expectation Maximization, 51
Explaining Away, 57

FD, see Fourier Descriptor
Feature-space Skew, 117
Filter Setup, 30
Fisher Information, 8, 36
Fixed Grid, 94
Fourier Descriptor, 156
Frobenius Norm, 13

Gauss-Jordan Elimination, 83
Gauss-Markov Theorem, 44
Gauss-Seidel Method, 104
Gaussian Assumption, 4, 37
Gaussian Elimination, 104
Gaussian Mixture Model, 51
Gaussianization, 4, 5, 77
Generalized EM, 55, 62, 63
Generative Model, 61
Geometric Moving Average Test, 30
Gibbs Measure, 78
GMM, see Gaussian Mixture Model, 164

Hammersley-Clifford Theorem, 78
Hidden Markov Model, 29, 61
Hidden Markov Model - Training, 55
Histogram, see Estimation
HMM, see Hidden Markov Mode, 164
Hysteresis Classification Paradigm, 118

Absolute Hysteresis Classifiers, 121
Base Classifiers, 120
Feature Selection, 130
Hysteresis Classifier, 120, 148
Hysteresis Threshold, 118
Hysteresis Training, 127
Relative Hysteresis Classifiers, 121

ICA, see Independent Component Analysis, 95
Importance Sampling, see Particle Filter
Independent Component Analysis, 14
Inference, 3, 56, 58
Invariant Integration, 157
Isotropic Kernel, 42, 100
Iverson bracket, 73

Jacobi Method, 104
Junction-Tree Algorithm, 56, 79, 82

Moralization, 79

Triangulation, 79

Kalman Filter, 12, 66
Extended Kalman Filter (EKF), 69
Unscented Kalman Filter (UKF), 69

Kernel, see Estimation, 41

Lasso, 87
LCCRF, see Linear Chain CRF
LCP, see Lnear-classifier Percentile126
LDA, see Linear Discriminant Analysis10, 94
Levinson recursion, 83
Likelihood Equation, 37
Likelihood Function, 37
Linear Chain CRF, 80, see CRF
Linear Discriminant Analysis, 10
Linear Predictor, 48
Linear Predictor Mixture, 165
Linear-classifier Percentile

Hysteresis Classification Paradigm, 123
LLS Filter, 45
Log-Likelihood Equation, 37, 51
Log-Linear Model, 64, 178
Loopy Belief Propagation, 56
LPM, see Linear Predictor Mixture
LU decomposition, 83

Magnetic Resonance Imaging, 87
MAP, see Maximum-a-Posteriori
Markov Blanket, 77
Markov Random Field, 77
Max-Sum Algorithm, 56
Maximal Clique, 77
Maximum Entropy Markov Model, 25, 63
Maximum Entropy Markov Model - Training, 55
Maximum Entropy Principle, 63
Maximum-a-Posteriori, see Estimation
Maximum-Likelihood, see Estimation
Mean Square Error, 5
MEMM, see Maximum Entropy Markov Model,
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ML, see Maximum Likelihood
MMSE, 39, see Minimum Mean Square Error
Monge-Kantorovich, 97
Monte Carlo, 65
Monte Carlo Methods, 57
Moral Graph, 79
Moralization, see Moral Graph
Most Efficient Estimate, 36
MRF, see Markov Random Field
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MRI, see Magnetic Resonance Imaging, 88
MSE, see Mean Square Error
Multigrid Methods, 103, 104

Naïve Bayes, 3, 95
No Free Lunch, 22
Normal Equations of Linear Prediction, 50
NP-complete, 84

Object Map, 121
Occam’s Razor, 17
Online Event, 26
Optimist, 118
Orthogonality Principle, 198
Overwhelming Probability, 86

Particle, 72
Particle Filter, 12, 70

Importance Sampling, 71
Particle, 71
Resampling, 75
Sequential Importance Sampling, 73

PCA, see Principal Component Analysis, 94, 103
PDF, see Pobability Density Estimation36
Percentile, 122
Pessimist, 118
Pixel Feature Space, 124
Point Event, 26
Potential MRF, 78
Predictor Setup, 30
Principal Component Analysis, 7
Prior, 3
Probability Conservation Constraint, 97
Probability Density Function, 36
Probability Space, 2
Product Rule, 56
Productive Model, 43, 95

Random Sample Consensus, 152
Random Signal, 29, 42
RANSAC, see Random Sample Consensus
Receiver Operating Characteristic, 127
Restricted Boltzmann Machines, 83
Restricted Isometry, 85
ROC, see Receiver Operating Characteristic

Sample, 63
Sample Interquartile Range, 100
Sample-based Estimate, 71
Scale Invariant Feature Transform, 148

Schur complement, 193
SCI, see Sparsity Concentration Index, 155
Sequential Importance Sampling, see Particle Filter
Sequential Monte Carlo, 77
Shattering, 1
SIFT, see Scale Invariant Feature Transform
SIFT-Descriptor, 150
Significance Testing, 2, 198
Silverman’s Rule-of-the-Thumb, 41
Singular Value Decomposition, 84
SIQR, see Sample Interquartile Range
SIS, see Sequential Importance Sampling
Sparse Classifier, 88, 137
Sparse PCA, 13
Sparse Representations, 83
Sparsity Concentration Index, 91
SSD, see Sum of Squared Differences
Sum of Squared Differences, 97
Sum Rule, 56
Sum-Product Algorithm, 56
Support Vector Machine, 28
SVD, see Singular Value Decomposition
SVM, see Spport Vector Machine28

The Jacobi Method, 200
Toeplitz Matrix, 83
Transformation-based Percentile

Hysteresis Classification Paradigm, 124

Ugly duckling, 19, 148
UKF, see Kalman Filter
Unscented Transform, 70

Variational Methods, 55, 57
Vessel Map, 128

White Noise, 50, 151
Wiener Filter, 47

Yule-Walker, 50, 165


