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Abstract—Blind Source Separation (BSS) is needed to recover
several source signals from several mixture-signals. The mixture-
signals are linear combinations of the sources signals. Such a
setup is encountered for example when it is desired to recover
the speech of N speakers, speaking simultaneously from N
microphone signals placed at various positions in the same
room with the speakers. Conversely the Independent Component
Analysis (ICA) is a term covering a methods that aim to represent
a set of observations from several random variables in terms of
a linear combination of observations from several other random
variables that are independent from one another. The solutions
to the BSS problem usually imply some weak assumptions on
the source signals, like for example independence. Thus, the ICA
represents a possible solution to the BSS problem.

I. INTRODUCTION

In the signal processing practice we are often confronted
with the task of understanding the data at our disposal, or
better said the task of representing the available data such that
what is informative there can be easily seen. In order to define
what is informative we make the assumption that the data
we see is a combination of some main information carriers.
Therefore this information carriers can not be represented as a
combination of other information carriers and we say they are
independent. On the search for these independent components
we make use of the stochastic formalism. This gives us
the possibility to look at the history of this ”independent
component” analysis, where first independence was considered
equal to decorrelation, which of course is true only for Gauss-
distributed variables.

We will discuss next methods for finding the independent
components from some data. To better grasp the intuition
behind ICA we will introduce it as the solution to a practical
problem: the cocktail-party problem.

Consider the setup of a cocktail party organized in summer
in a park. There are several people tacking simultaneously,
birds singing in the trees and low-level music. Despite this
cacophony of speech and noise, a human has no difficulty to
listen to just one speaker. The purpose of this tutorial is to
introduce methods to teach a machine to do the same thing.

If this technical report helped you in your research and want to use it,
please cite as well “Statistical Pattern Recognition for Biometric Person
Identification and Event Detection: Hysteresis and Sparse Classifiers, Dynamic
Bayes Networks and the Gaussianity assumption” (see https://www.isip.uni-
luebeck.de/mitarbeiter/alexandru-condurache.html), which originated it.
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Fig. 1. An illustration of the “cocktail party” problem.

For the drawing in Fig. 1, the signals recorded by the two
microphones are:

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t)

where s1(t) and s2(t) are the two sources/speakers. With
only the microphone signals at our disposal, we aim now
to linearly recover (up to some negligible ambiguities) the
original sources so that we can play them back over the
loudspeakers. Our estimates of the sources are:

y1(t) = b11x1(t) + b12x2(t)

y2(t) = b21x1(t) + b22x2(t)

These estimates include the following ambiguities:
• The scale ambiguity: which means that we cannot deter-

mine the energy of the source signals.
• The permutation ambiguity: which means that we cannot

determine the order of the source signals.
The purpose of BSS is to simply recover the (two) source

signals. Currently this can be done under various assumptions.
We divide these assumptions into core assumptions without
which the sources can not be recovered at all and additional
assumptions, which when holding lead to a simpler solution.

There are various alternative core assumptions:
• The signals should be independent & nonGaussian.
• The signals should have a time structure such that they

are nonstationary or nonwhite.
• The source signals should be positive.
Under the first joint core assumptions, the ICA offers a
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solution to the BSS problem by recovering the signals such
that they are independent and their higher-order (higher than
two) crosscorrelations cancel. In detail they are described as
follows:
• the independence assumption means that the joint density

of the speech signals can be factorized as:

p(s1, s2) = p(s1)p(s2). (1)

• the nongaussianity assumption implies that the distribu-
tion of the source signals should not be Gaussian. At the
same time it is also assumed that each source generates
independent samples – i.e., the samples from each source
are independent and identically distributed (i.i.d.).

Under either of the other assumptions, the sources can still be
recovered even if they are Gaussian and irrespective of them
being independent.

Under the second core assumption, only lower-order (two
or less) moments are used to find the signals, but they are
considered also over time, thus:
• The nonstationarity assumption implies that the sources

are stochastic signals, whose statistical properties vary
with time.

• The nonwhitness assumption implies that the sources are
stochastic signals, such that for example current signal
samples are related to future signal samples, and this
relationship can be described statistically by second-order
moments such as the autocorrelation.

Under the third core assumption, not only the signals should
be positive, but also the mixing matrix.

This tutorial concentrates on methods that assume indepen-
dence and nongaussianity. For our discussion here, besides
the implicit linearity assumption on the way the independent
sources are combined to generate the observed signals, we
make additional assumptions:
• We assume that the number of microphones should be

equal to the number of sources.
• We assume that the speech signal reaches the micro-

phones directly, with negligible delay and there are no
reflections. The assumption about reflections holds when
the party takes place in open and it does not hold
when the party takes place inside, like for example in
a ballroom. In the latter case, the sound of the same
voice reaches the microphones several times with delays
due to reflections at the walls. Here we ignore potential
reflections as well as the delay on the direct way from
the speaker to the microphone and discuss instantaneous
methods as opposed to convolutive methods.

• We assume that the microphones are ideal and there is
no band playing music, no birds singing, just people
speaking. In other words, we discuss only the noise-free
case.

Furthermore we will often make without loss of generality the
assumption that the sources have unit variance and zero mean.

We will start by introducing the ICA in a maximum-
likelihood approach and continue showing how this is related
to other standard ICA methods requiring maximization of
nongaussianity and mutual information. In the end we will

shortly discuss additional ICA methods like cumulant-tensor
methods and nonlinear decorrelation. We will also briefly
review second-order BSS methods and hint at their relationship
to ICA. We will also discuss the choice of ICA method for
various application setups and conclude also with a short
discussion on practical problems that appear when we relax
some of our assumptions. We discuss thus the influence of
noise as well as solutions for convolutive mixtures, for the
case when the number of microphones is less than the number
of speakers and for the case when the sources have rotational
invariant distributions.

II. THE MAXIMUM-LIKELIHOOD APPROACH TO ICA

In vector-matrix notation, the microphone signals are given
by

x = As,

with A a nonsingular matrix, while the estimated sources are
computed as:

y = Bx. (2)

Thus, we can state our purpose as to estimate the nonsingular
square matrix B while making use only of x, under the
assumption that the components of y are independent and not
Gaussian.

a) ICA does not work for Gaussian sources: The Gaus-
sian density is fully specified by moments up to the second
order. Thus for such sources decorrelation is equivalent to
independence. Decorrelated sources can be computed with the
help of the Principal Component Analysis (PCA). The PCA
transform, which computes the decorrelated sources (i.e., such
that in the transformed space the covariance matrix is diagonal)
is orthogonal and thus equivalent to a rotation of the axis.

Conversely, scaled independent components are still inde-
pendent. Thus we can also apply scaling factors such that
the independent sources have unitary variance without loss of
generality. In this case the covariance matrix of the sources
is the identity matrix and the transform that achieves this
is called whitening. The issue is that after computing the
whitened independent Gaussian sources, any further rotation
of the axis leads to a new set of independent sources with the
same covariance matrix.

Thus the ICA problem is ill posed for Gaussian sources,
as for a set of observed mixed signals we can find an infinite
number of independent sources.

b) The likelihood objective function: It is well known
that for an invertible and differentiable transform a = T (b),
the density of the random variable defined over the trans-
formed space is related to the density of the input random
variable as:

pa(a) =
1∣∣|T ′(b)|

∣∣pb(b),

with b = T−1(a) and |T ′(b)| the determinant of the Jacobian
matrix of the transform. If the transform is linear such that
a = Mb, this simplifies to

pa(a) =
1∣∣|M|∣∣pb(b), (3)
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with |M| the determinant of the matrix M.
Therefore, the density of the vector of observed microphone

signals can be written as1

px(x) =
∣∣|B|∣∣py(y)

=
∣∣|B|∣∣∏

i

pi(si)

=
∣∣|B|∣∣∏

i

pi(b
T
i x) (4)

with B = (b1,b2, . . . ,bn)T for n independent sources.
Assuming that we have at our disposal a sample of T
i.i.d. realizations of the random variable x denoted as S =
{x(1),x(2), . . . ,x(T )}, the likelihood of this sample under
the density in Equation (4) is:

L(B) =

T∏
t=1

∣∣|B|∣∣ n∏
i=1

pi(b
T
i x(t)).

The log-likelihood can be computed then as:

logL(B) = T log
∣∣|B|∣∣+

T∑
t=1

n∑
i=1

log pi(b
T
i x(t)).

By multiplying the second term in the above sum with T
T ,

we get the following formula for the objective function that
should be maximized over B:

O(B) =
1

T
logL(B)

= log
∣∣|B|∣∣+ E

{
n∑
i=1

log pi(b
T
i x(t))

}
(5)

where by the expectation operator we actually denote its’
average-based estimate.

A. The gradient-ascent solution

What remains to be done now is just to maximize the like-
lihood objective function in Equation (5) over the parameters
of the ICA transform B = (b1,b2, . . . ,bn)T . However, it
should be noticed that we do not know the density py(y).
The straight-forward solution of this optimization problem is
given by the gradient-ascent approach. The optimal demixing
matrix B can then be computed iteratively from

∆B(k) = B(k + 1)−B(k) = η(k)
∂O(B)

∂B
as

B(k + 1) = η(k)
∂O(B)

∂B
+ B(k)

with k the iteration index and η the positive learning rate.
The gradient-ascent approach implies computing the matrix

gradient of the two terms of the sum on right-hand side in
Equation (5).

1) Vector and matrix gradients: We are interested here
mainly in gradients of scalar-valued functions g. Then the first
order vector gradient2 of such a function after a vector v is

1In our setup we ideally have that B = A−1 and thus y ≡ s.
2The second-order gradient is given by the Hessian matrix: H = ∂g

∂v
∂gT

∂v
.

defined as the vector of partial derivatives, after each vector
component3:

∂g

∂v
=


∂g
∂v1

...
∂g
∂vn


Thus, the vector gradient of a scalar product4 of two vectors
is

∂aTv

∂v
= a =

∂vTa

∂v
, (6)

considering that a scalar is his own transpose.
The first-order matrix gradient of g after a m × n matrix

V, is a matrix of partial derivatives:

∂g

∂V
=


∂g
∂v11

. . . ∂g
∂v1n

...
...

∂g
∂vm1

. . . ∂g
∂vmn


A matrix V can be also written as V = (v1, . . . ,vm)

T , using
only its rows. Then, the matrix derivative can be written with
the help of the vector derivative as:

∂g

∂V
=

∂g

∂v1, . . . , ∂vm
=


(
∂g
∂v1

)T
...(

∂g
∂vm

)T
 (7)

a) Matrix gradient of the determinant: The determinant
| · | of a matrix V is a scalar function of matrix elements. Its’
matrix derivative is computed as (see [2] pp. 61):

∂|V|
∂V

=
(
VT
)−1 |V| (8)

b) Matrix gradient of a sum of functions of matrix lines:
The derivative of a sum is a sum of derivatives after each
individual sum component. A vector derivative of a sum is a
vector of sum derivatives after each vector component. When
the sum is built over functions of vector components, then
the vector derivative of this sum is a vector of derivatives of
functions of one sum component after this component. Thus
for the vector v = [v1, . . . , vm]

T we can write

∂
∑
i fi(vi)

∂v
=


∂f1(v1)
∂v1

...
∂fm(vm)
∂vm


The matrix derivative of a sum of functions of matrix lines
can then be computed using Equation (7) as:

∂
∑
i fi(vi)

∂V
=


(
∂f1(v1)
∂v1

)T
...(

∂fm(vm)
∂vm

)T
 (9)

3The generalization of this vector gradient to a vector-valued function is
the Jacobi matrix.

4The vector gradient of the quadratic product g(v) = vTAv is:
∂vTAv

∂v
= Av +ATv.
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2) The derivative of the objective function: The first term
of the objective function in Equation (5) is the logarithm of the
absolute value of the determinant5. However, as the logarithm
is defined only over positive values, the absolute value can be
ignored. By the chain rule of differentiation we then have that

∂ log
∣∣|B|∣∣

∂B
=

1

|B|
∂|B|
∂B

=
(
BT
)−1

using Equation (8).
The second term is the expectation of a sum of functions

of the lines of the matrix B. By the sum rule of differenti-
ation, the expectation of the gradient is the gradient of the
expectation. We have therefore:

∂E

{
n∑
i=1

log pi(b
T
i x(t))

}
∂B

= E


∂

n∑
i=1

log pi(b
T
i x(t))

∂B

 .

We need now to compute the matrix derivative of a sum of
functions of matrix lines. According to Equation (9) we have
then:

∂

n∑
i=1

log pi(b
T
i x(t))

∂B
=


(
∂ log p1(b

T
1 x)

∂b1

)T
...(

∂ log pn(b
T
nx)

∂bn

)T


Using again the chain rule of differentiation we have for one
entry in the above vector:

∂ log pi(b
T
i x)

∂bi
=

1

pi(bTi x)

∂pi(b
T
i x)

∂bTi x

∂bTi x

∂bi

=
p

′

i(b
T
i x)

pi(bTi x)
x

using Equation (6) and with p
′

i(b
T
i x) =

∂pi(b
T
i x)

∂bT
i x

. Denoting

gi =
p

′

i

pi
(10)

and taking into consideration that gi(bTi x)) is a scalar function
of a scalar argument, we obtain

∂

n∑
i=1

log pi(b
T
i x(t))

∂B
=

 g1(bT1 x)xT

...
gn(bTnx)xT


= g(Bx)xT

Therefore we may finally write the derivative of the objec-
tive function as:

∂O(B)

∂B
=
(
BT
)−1

+ E
{
g(Bx)xT

}
.

5The determinant is defined only for square matrices, in our case the matrix
is also nonsingular as it has an inverse.

Thus we should use the following iteration for finding B:

∆B(k) = η(k)
[(
BT
)−1

+ E
{
g(Bx)xT

}]
(11)

In practice, the stochastic gradient is used, such that the
training sample S is used in several training epochs k until
the fulfillment of the stopping condition ∆Bk < λ, where λ
a small positive constant. The stochastic gradient allows us to
eliminate the expectation operator in Equation (11), obtaining
thus the iteration

∆Bk(t) = ηk(t)
[(
BT
)−1

+ g(Bx(t))x(t)
T
]
,

with t = 1, . . . , T .

B. The natural gradient

It can be shown [1], [2]6 that the parameter space for our
optimization consists of all nonsingular n×n matrices B. This
space is a manifold in the space of all n × n matrices. The
gradient rule (11) follows the direction of the steepest descent
in the space of all matrices, which is not necessarily the direc-
tion of steepest descent in the space of nonsingular matrices.
Therefore, the gradient update rule should be modified to
take into consideration the metric specific to this manifold.
As this manifold has a Riemannian structure, meaning that
the corresponding metric tensor is positive definite, a distance
function (i.e., metric) can indeed be defined7. It turns out that
the direction of steepest descent with respect to the metric of
the parameter space B is computed with the help of the natural
gradient defined as:

∂nat

∂B
=

∂

∂B
BTB

instead of the usual gradient (see [1]).
Thus, the iteration in Equation (11) becomes:

∆B(k) = η(k)
[(
BT
)−1

+ E
{
g(Bx)xT

}]
BTB

= η(k)
[
I + E

{
g(y)yT

}]
B (12)

with I the identity matrix and using Equation (2).

C. Practical choice of nonlinearities

The iteration in Equation (12), or its’ equivalent stochastic
version, depends on the nonlinear set of functions g(y) =
(g1(y1), . . . , gn(yn)). Ideally each of this function is computed
using the density of the corresponding independent component
as described in Equation (10). However these densities are
not known and in practice they are replaced by approxi-
mations (see [2] pp. 204 ff.). Theoretically the number of
approximative component-density models to choose from is
infinite. The problem becomes simpler if we can assume
that the independent components are all part of a family of
distributions that either has few (but enough) members or
whose individual members can be specified by a small number
of parameters. This assumption is usually made in practice.

6See [2] in particular for a nice and simple explanation
7The metric is used to compute the geodesic of any two points on the

manifold. The geodesic is the shortest path within the manifold between the
two respective points.
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Several families of distributions are available, depending on
the number of used parameters and on the symmetry8 of the
models they generate. Of course these families must be rich-
enough for our modeling purposes.

Next we discuss some of the most often used families suited
for mono-modal densities both symmetric and skewed. The
multi-modal case is not discussed here, it could be handled
by estimating the densities as Gaussian mixture models but at
a high computational cost.

1) Solutions for symmetric distributions: It turns out that
for ICA, when working with symmetric (i.e., non-skewed or
zero-skewed) densities, we need at least two members per
family: one member that is well suited as a model for lep-
tokurtic (i.e., positive kurtosis, also known as super-Gaussian)
distributions and the other one for platikurtic (i.e., negative
kurtosis, also known as sub-Gaussian) distributions. Further-
more speech signals usually have symmetric distributions so
this case is particularly important in the context of BSS.

a) Constructing families of two member distributions:
The question to be asked in this case is what are the core prop-
erties of families of distributions suited for models in ICA?
The answer is that these have to have members corresponding
to both platikurtic and leptokurtic distributions. Thus in the
most simple case, the respective family must have at least two
members. One possible solution to construct such a family is
to simply pick known parametric distributions that are lepto-
and respectively platikurtic and pair them. An alternative is
to construct such distributions from scratch. These have to be
valid densities (i.e, positive functions that integrate to one) and
their nonpolynomial moments have to have opposing signs.
The nonpolynomial moment (see [2] pp. 187) is defined with
the help of the nonlinearities gi from Equation (10) as

mnp = E {yigi(yi)− g′i(yi)}

and it has to be positive for the ML estimate to be consistent
(i.e., to converge to the true value). For gi(y) = −y3 the
nonpolynomial moment is the same as the kurtosis and indeed
it has the same sign as the kurtosis. However this nonlinearity
does not correspond to a density. This can be easily shown
by computing the solution of the corresponding differential
equation (derived from Equation (10)) that involves it. The
solution is pi(y) = ey

4/4 and it can not be a density as it is
not integrable.

A symmetric density often used as supergaussian member
of a family of two distributions is the hyperbolic cosine
distribution defined as:

p(y) =
1

π cosh(y/σ2)

Its corresponding ICA nonlinearity is:

gi(yi) = − tanh(yi/σ
2
yi).

The corresponding subgaussian component of the family, i.e.,
the density for which the nonpolynomial moment has the same

8Perfect symmetry means zero skew.

mathematical expression but with reversed sign is:

p(y) =
1

ey2 cosh(y)

Its corresponding ICA nonlinearity is:

gi(yi) = tanh(yi)− yi

Thus practically our task is simplified to a choice between two
possibilities, based in the end on knowledge about the sign of
the kurtosis of a component distribution.

b) The generalized Gaussian distribution: Yet another
often used symmetric density family is that generated by the
generalized Gaussian distribution. The generalized Gaussian
distribution is computed as:

q(y) =
r

2σΓ(1/r)
exp

(
−1

r

∣∣∣ y
σ

∣∣∣r)
with r > 0 and Γ(r) =

∫∞
0
yr−1 exp(−y)dy the gamma

function. For leptokurtic distributions r is small (e.g., r = 1
corresponds to the Laplacian distribution) and for platikurtic
distributions, r is larger (e.g., for the Gaussian distribution,
r = 2). Assuming without loss of generality that σ = 1, the
corresponding nonlinear function is

gi(yi) =
qi(yi)

′

qi(yi)

=
qi(yi) · − 1

|σi|r |yi|
r−1sign(yi)

qi(yi)

= −|yi|ri−1sign(yi),

which, considering that sign(y) = y
|y| , translates in practice

into
gi(yi) = − yi

(|yi|2−ri + ε)
,

with ε = 10−4, to avoid the function singularity at yi = 0.
Typically, r = 1 for leptokurtic distributions and r = 4 for

platikurtic distributions. The parameter r can be expressed as
a function of the kurtosis (see [1] pp. 249 ff.), which gives us
a way to set it automatically, provided we know the kurtosis.

c) Investigating the kurtosis of the component distribu-
tions: The choice of the optimal nonlinearity for symmetric
component distributions depends on the sign of the kurtosis
k defined using the fourth and second moments as k =
m4 − 3m2

2. As the component distributions are not known
and thus we can not compute the moments directly, we have
to resort to various approximations.

Thus, if information about the sign of the kurtosis is
considered enough, then this can be obtained from the “non-
polynomial moment” defined above.

Conversely, the moments can be iteratively estimated online.
The j’th order moment mj of a random variable y can be
computed starting with mj(0) = 0 as

mj(k) = (1− η0)mj(k − 1) + η0|y(k)|j (13)

with η0 = 0.01 and k an iteration index running also over
the available sample Sy = {y(1), . . . , y(N)} of the random
variable.
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2) Solutions for non-symmetric distributions: Families of
symmetric distributions are ill suited to model independent
components with skewed (or asymmetric) distributions. For
such cases, the Pearson model can be used (see [1] pp. 253).
The Pearson model is described by the differential equation:

q
′
(x) =

(x− a)q(x)

b0 + b1x+ b2x2

with parameters a, b0, b1 and b2. The corresponding nonlinear
function is:

gi(yi) =
yi − a

b0 + b1yi + b2y2i

The Pearson model accommodates both symmetric and non-
symmetric distributions. However, for symmetric distributions
it needs more parameters than the two models discussed
above. Therefore, its true strength lies in its ability to model
nonsymmetric distributions. The parameters can be estimated
directly with the help of moments up to the fourth order
that can be estimated online as previously discussed (see
Equation (13)).

D. Conclusion

The ML-based approach to ICA using the natural gradient
forms the backbone of this contribution. In the case this is
used to solve the cocktail-party problem, it is often assumed
that speech has a symmetric mono-modal super-gaussian dis-
tribution which is approximated either with the generalized
Gaussian distribution with r = 1 or with the Laplacian
distribution. Nevertheless, the approach is more general than
this. For ICs with symmetric mono modal distributions of
various kurtosis – which seems to be the case most often
encountered in practice – the generalized Gaussian distribution
is used as described above. We show in Figure 2 a flow
diagram describing the more general algorithm. As this is a
gradient ascent algorithm, we initialize η = 1. B is initialized
randomly.

III. FROM MAXIMUM-LIKELIHOOD OVER MUTUAL
INFORMATION TO NONGAUSSIANITY

In the previous chapter we have introduced the ICA in
a maximum-likelihood approach. As it turns out, the ICA
can be introduced from several other different perspectives.
However, many of these other perspectives are equivalent to
the maximum likelihood approach in the sense that they yield
the same or very similar objective functions as the one in
Equation (5).

A. The Kullback-Leibler divergence and the mutual informa-
tion

By the definition of independence, a set of random vari-
ables are considered independent if their joint density can be
factorized (see also Equation (1)) as

p(y) =

n∏
i=1

pi(yi).

We discuss next two ways to measure independence that can
be used to perform ICA: the Kullback-Leibler divergence and

START

Init

y=Bx

Kurtosis

r=4 r=1

g

Update

STOP

kurt.v

conv.

<0 >0

YESNO

Fig. 2. Flow diagram of the ML-based ICA method.

the mutual information. We show then that they are equivalent
to one another and to the ML formulation from before.

a) The Kullback-Leibler divergence: The Kullback-
Leibler divergence can be used to measure how similar two
distributions are, which makes it in our case a natural measure9

of independence, when measuring how similar the two sides
of the above equation are. The Kullback-Leibler divergence
computed with respect to the vector y is then

KLd(y) =

∫
(n)

p(y) log
p(y)∏n

i=1 pi(yi)
dy

where
∫
(n)

=
∫
·· ·
∫

n

is a multiple integral of order n.

The Kullback-Leibler divergence is always positive, being
zero only if the two distributions are identical.

b) The mutual information: For two random variables,
the mutual information is a measure of how much information
one random variable carries over the other one. This can be
easily extended to a set of random variables. The mutual
information is then a measure of how much information does
a random variable or a subset of random variables carry over
the other random variables in the set.

9The Kullback-Leibler divergence is not a measure in the mathematical
sense because it does not fulfill all axioms of a measure: it is not symmetric.
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For a realization of a discrete random variable, information
is defined as the negative of the logarithm in base two of the
probability of that realization. The mean information over all
possible realizations is called entropy and is used to describe
the information content of a random variable. For continuous
random variables, the equivalent description is given by the
differential entropy defined as:

H(y) = −
∫
p(y) log p(y)dy (14)

The mutual information in a set y = {y1, . . . , yn} of n
continuous random variables is defined with the help of the
differential entropy as:

I(y1, . . . , yn) =

n∑
i=1

Hi(yi)−H(y) (15)

c) Equivalence between the Kullback-Leibler divergence
and the mutual information: Making use of Equation (14), we
can write the mutual information as:

I(y) = −
n∑
i=1

∫
pi(yi) log pi(yi)dyi −H(y)

= −
n∑
i=1

∫
log pi(yi)

(∫
(n−1)

p(y)dŷ

)
dyi −H(y)

= −
∫
(n)

n∑
i=1

p(y) log pi(yi)dy −H(y)

=

∫
(n)

p(y) log
1∏n

i=1 pi(yi)
dy +

∫
(n)

p(y) log p(y)dy

=

∫
(n)

p(y) log
p(y)∏n

i=1 pi(yi)
dy

= KLd(y)

with dŷ = dy1, . . . , dyi−1, dyi+1, . . . , dyn. In the expansion
above we have also used the fact that by Fubini’s theorem∫

log pi(yi)
(∫

(n−1) p(y)dŷ
)
dyi =

∫
(n)

log pi(yi)p(y)dy in
the third leg of the expansion, the sum and integral can be
interchanged because we have there the expectation of a sum
and by the linearity of the expectation operator, the expectation
of a sum is a sum of expectations.

Alternatively, using the same tricks as above we have that:

KLd(y) =

∫
(n)

p(y)

(
log p(y)− log

∏
i

pi(yi)

)
dy

=

∫
(n)

p(y) log p(y)dy−
∫
(n)

p(y) log
∏
i

pi(yi)dy

= −H(y) +
∑
i

Hi(yi)

= I(y)

Thus the mutual information is the same thing as the
Kullback-Leibler divergence between the joint density of a
vector and the product of individual densities. The mutual
information is thus always positive being zero only if the
respective variables are independent.

d) ICA objective functions: The mutual information (or
equivalently the Kullback-Leibler divergence) can be used as
objective function for ICA. Considering Equation (14) it is
clear that:

Hi(yi) = −E {log pi(yi)} .

Therefore, with y = Bx and thus yi = bTi x, the mutual
information-based objective function for ICA is

O(B) = I(Bx) = −H(Bx)−
n∑
i=1

E
{

log pi(b
T
i x)

}
.

To find the demixing matrix B we have to minimize the mutual
information.

1) Relation to maximum-likelihood: Using equation (3) it
can be easily shown the differential entropy of a transformed
random variable a = Mb is (see [2] pp. 109)

H(a) = H(b) + log
∣∣|M |∣∣, (16)

we have that the mutual information-based objective function

O(B) = −H(x)− log
∣∣|B|∣∣− n∑

i=1

E
{

log pi(b
T
i x)

}
, (17)

Comparing Equation (5) with Equation (17) and taking into
consideration that a sum of expectations is the expectation
of a sum, we may see that the the mutual-information-based
objective function is the same as the negative of the maximum-
likelihood objective function, save for a constant term −H(x),
which is independent of B. Thus, finding the maximum of
the likelihood function is equivalent to finding the minimum
of the mutual information (or equivalently minimizing the
corresponding Kullback-Leibler divergence). Paying attention
to the minus sign, the iterative procedure from Section II can
be then applied directly.

2) Link to non-Gaussianity: Negentropy (see [2] pp. 112)
is a normalized version of the entropy defined as

J(y) = Hgauss(y)−H(y), (18)

with ygauss a Gaussian random vector of the same covari-
ance/correlation as y. The negentropy is nonnegative, being
zero only for Gaussian random vectors. This happens because
of all random variables of equal variance, a Gaussian random
variable has the largest entropy. For independent unit-variance
random variables yi,∀i ∈ {1, 2, . . . , n}, using equations (15)
and (16) the mutual information can be written using the
negentropy of each independent component as (see [2] pp.
223)

I(y) =
∑
i

(Hgauss(yi)− Ji(yi))−H(x)− log
∣∣|B|∣∣

= const.−
∑
i

J(yi),

where the constant term does not depend on the independent
components, as the entropy of the independent components
under the Gaussian assumption is constant. Thus to minimize
the mutual information, we have to maximize the negentropy,
which is equivalent to looking for yi such that each one is as
different from Gaussian as possible.
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As it may be seen, conducting ICA over nongaussianity also
hints to a change of setup, where the independent components
are computed one by one or sequentially as opposed to the
block methods from above. We concentrate next on such
sequential methods.

B. Sequential, nongaussianity-based methods

As discussed above, the ICA can be conducted by enforcing
nongaussianity. The same result can also be derived from the
central limit theorem that says that the distribution of a sum of
independent identically distributed random variables of finite
mean and variance tends to be Gaussian (see [2] pp. 166).
Thus, single independent nonGaussian components are less
Gaussian than their linear combinations, and it makes sense to
look for independent components along directions of maximal
nongaussianity.

Nongaussianity can be measured in several ways. Besides
the negentropy method hinted above, one could use higher-
order moments and cumulants (which are zero for Gaussian
variables) like the kurtosis for example.

As already pointed out, nongaussianity methods allow you
to conduct ICA sequentially. This means that you compute the
independent components one after the other, or equivalently
you compute the lines (a.k.a. rows) of the demixing matrix
(which are the vectors over which you project the data to
make it nonguassian) one after the other. Such methods allow
us also to find a variable number (less than the number of
available mixtures) of independent components.

To better grasp the intuition behind such procedures it is
good to consider the ICA from a slightly different perspec-
tive. This is the perspective of ICA as a further step after
whitening (see [2] pp. 160). This perspective hints as well to
an iterative method for conducting PCA that makes further use
of nongaussianity methods.

1) ICA and whitening: For independent random variables
all mixed moments starting with the correlation are zero.
Thus on the path towards independence it makes intuitively
sense to start by decorrelating the observed data. Without
loss of generality we can also assume/impose unit variance
of the independent components. Such white (i.e., uncorrelated
and with unit variance) data brings also computational and
conceptional advantages in the ICA, mostly related to the fact
that the ICA demixing matrix of whitened data is orthogonal.
Thus, the first step in many nongaussianity ICA methods is to
whiten the input data (see [2] pp. 158).

Assuming whitened data, we show next that the corre-
sponding ICA demixing matrix is orthogonal (it keeps an
orthonormal basis). Denoting the whitened data as

z = Vx

the relation to the original sources is described by:

z = VAs.

We have thus a “new” mixing matrix Ã = VA. This matrix
is orthogonal (its’ inverse is its’ transpose), as it can be easily

seen from10

E
{
zzT

}
= ÃE

{
ssT
}
ÃT = ÃÃT = I,

where we have assumed without loss of generality that the
independent sources are white.

Thus, ICA can be seen in this case as a rotation of the
whitened data and the corresponding ICA algorithm consists
of whitening the data and then looking for a rotation such
as the nongaussianity of each component is maximized. We
discuss next practical ways to measure nongaussianity.

2) Negentropy methods: ICA as an additional step towards
maximal nongaussianity after whitening needs nongaussianity
measures. As already pointed out above, negentropy is such a
measure. Then, the negentropy-based ICA objective function
is

O(B) =
∑
i

J(wT
i z)

where z has unit variance and is computed by whitening x. It
should be maximized over W, which is the new orthogonal
unmixing matrix of white data as already discussed. This
is equivalent to maximizing a sum of positive variables,
which can be done by maximizing each variable individually.
However, in this case we have to pay attention to eliminating
the influence of one variable after we have maximized it and
to make sure that W is orthogonal. This procedure is called
deflation and is discussed in more detail below.

Negentropy as defined in Equation (18) is difficult to
compute in practice, as the density of y is not known. For our
ICA purpose, instead of computing the negentropy directly,
we approximate it with a formula that is easy to evaluate
practically. A simple approximation is given by:

J(y) =
1

12
E
{
y3
}2

+
1

48
k(y)2

However, this approximation uses high-order moments and
is not very robust. Thus, the following approximation of the
negentropy for scalar random variables is used in practice (see
[2] pp. 183 ff.):

J(y) = [E{G(y)} − E{G(ν)}]2

with ν a standard Gaussian variable (N(0, 1)) and G(·) a
nonquadratic function like for example G(y) = −e−y/2.
Actually, this nonlinearity is related to our assumptions on
the way the densities of the independent components can
be modeled. Starting here a gradient-ascent algorithm can be
devised.

3) Kurtosis methods: The kurtosis is easier to compute than
the negentropy, but using fourth order cumulants/moments is
very sensible to outliers in the available sample S. Conversely,
making use of the kurtosis implies the assumption that the
independent components can be effectively approximated by
symmetric monomodal distributions as these can be described
very well by the kurtosis alone. As already discussed above,
the kurtosis of a random variable x can be computed as:

k(x) = E
{
x4
}
− 3E2

{
x2
}
.

10With respect to our notation above, we have that Ã ≡ WT .
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It can be also defined in relation to the fourth order cumulant
k4(x) as:

kc(x) =
k4(x)

k22(x)
=

E
{
x4
}

E2 {x2}
− 3

The kurtosis is used here as a measure of nongaussianity, as
for Gaussian variables the kurtosis (as well as all cumulants
of an order higher than two) is zero. Therefore nongaussian
variables have a kurtosis with a large absolute value. The
minimal absolute kurtosis value of zero is achieved only for
Gaussian variables.

To find one independent component in this setup we have
to search for a projection vector over which to project z such
that the absolute value of the kurtosis of the projection result
y = wT z is as large as possible.

As discussed above, an iterative algorithm that finds such a
w will make use of the gradient of the absolute value of the
kurtosis with respect to the projection vector w. The gradient
of the kurtosis with respect to w is:

∂k(y)

∂w
=

∂
(
E
{
y4
}
− 3E2

{
y2
})

∂w

=
∂
(
E
{

(wT z)4
}
− 3E2

{
(wT z)2

})
∂w

= 4
[
E
{

(wT z)3z
}
− 3E

{
(wT z)2

}
E
{

(wT z)z
}]

= 4
[
E
{

(wT z)3z
}
− 3‖w‖2w

]
taking into consideration that with wT z a scalar value,
we have: E

{
(wT z)2

}
= E

{
(wT z)(wT z)T

}
=

E
{

(wT z)(zTw)
}

= wTE
{
zzT

}
w = ‖w‖2 and

E
{

(wT z)z
}

= E
{
z(zTw)

}
= E

{
zzT

}
w = w.

The gradient of the absolute value of the kurtosis is:

∂|k(y)|
∂w

= 4sign(k(wT z))
[
E
{

(wT z)3z
}
− 3‖w‖2w

]
With the help of the above gradient we can devise a gradi-
ent ascent algorithm to maximize the absolute value of the
kurtosis and find one maximum nongaussianity direction and
equivalently one independent component. The gradient ascent
algorithm is built around

∆w =
∂|k(y)|
∂w

= 4sign(k(wT z))
[
E
{

(wT z)3z
}
− 3‖w‖2w

]
∝ sign(k(wT z))

[
E
{

(wT z)3z
}]

after eliminating the terms that influence only the norm of w
and not its direction, because due to whitening the norm is
one. This is then enforced in an additional step where

w← w

‖w‖
.

When looking for more than one independent component
this algorithm needs to be applied several times, once for each
sought component. The components are estimated sequentially
(i.e., one by one). Again we have to conduct deflation after
estimating each single component.

4) Deflation procedures.: In the sequential setup, after we
find an independent component we have to apply a deflation
procedure to somehow eliminate its influence before begin-

ning the search for another independent component, because
obviously otherwise will find the same component time and
again. There are several ways to apply this deflation procedure
depending if the data on which they are applied is white or
not.

In [2] (pp. 194), where we work with whitened data,
this deflation procedure takes the form of a Gram-Schmidt
orthogonalization on the lines of the demixing matrix, which
ensures that the demixing matrix is orthogonal (as discussed
above, the mixing matrix of whitened data is orthogonal). The
procedure is applied after every iteration of the gradient de-
scent algorithm used to find the respective single independent
component.

The deflation procedure in [1] (pp. 191-192) works dif-
ferently by effectively removing the found independent com-
ponent from the available data, and it also does not require
whitened data. However, when applied to whitened data the
projection vector that allows us to eliminate the respective
independent component is the same as the corresponding line
in the demixing matrix.

IV. OTHER LINEAR ICA METHODS

A. Cumulant-tensor methods

The covariance matrix is actually a second order tensor.
Considering that for mean-free random variables the second
order moment is equal to the second order cumulant, the
covariance matrix is a second-order cumulant tensor. In a
similar manner a fourth-order cumulant tensor can be defined
(of course you would need at least four random variables). The
fourth-order cumulant includes both the skew and the kurtosis.

Decorrelation can be achieved by diagonalizing the second-
order cumulant tensor (i.e., the covariance matrix). In a similar
manner independence (at least up to fourth-order moments)
can be achieved by diagonalizing the fourth-order cumulant
tensor. The eigen-decomposition of a fourth-order tensor is
made of second-order tensors (i.e., eigen-matrices). It can
be shown that the desired diagonalization of the fourth-
order cumulant tensor can be achieved by diagonalizing its
eigenmatrices. If this diagonalization is conducted iteratively
(i.e, the solution of the corresponding characteristic equation
is found iteratively) then the iteration is the same as the
one of the FastICA (i.e., the sequential, nongaussianity-based
methods with a fixed-point iteration instead of gradient ascent).

B. Nonlinear decorrelation and nonlinear PCA

The idea behind nonlinear decorrelation is to find the ICA
demixing matrix such that correlations of a certain (very large)
class of nonlinear functions of the observations are zero. This
is related to independence because if you express these func-
tions as Taylor series and impose the decorrelation condition
over their Taylor expansions, you find out that it (usually)
implies that all cross moments need to cancel. Several iterative
methods to estimate the ICA demixing matrix are built on
this idea (i.e., the Jutten-Hernault and Chicocki-Unbehauen
algorithms). It can be shown that nonlinear decorrelation is
equivalent to the ML estimation when computing the ML
iteration with the help of the natural gradient.
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Nonlinear PCA implies finding the sources such as to
minimize the approximation error:

E = E

{
x−

n∑
i=1

gi(b
T
i x)bi

}
with gi(v) some nonlinear function, which is derived from
the PCA objective function where gi(v) = v. It can be shown
that nonlinear PCA is equivalent to the ML estimation of the
sources.

C. Non-negative matrix factorization

Assuming that the independent sources are non-negative –
meaning that they can’t generate negative observations – and
they are additively combined – meaning that the mixing matrix
has only positive entries – then the observed sources will
also be non-negative. Thus, if we gather all observations from
the observed sources into a data matrix, to find the original
sources and the mixing matrix, we have to decompose the
data matrix into two non-negative matrices. This process is
called non-negative matrix factorization. If the non-negativity
assumptions hold and the number of observed sources is larger
or equal to the number of independent sources, there are
non-negative matrix factorizations algorithms that return the
independent components.

V. RELAXING THE ORIGINAL ASSUMPTIONS FOR FINDING
A SOLUTION TO THE BSS PROBLEM

Next we discuss what happens if we go about relaxing the
assumptions under which we have computed the independent
sources. We start with the gaussianity assumption and then
continue with methods to find the sources when there are less
observations than sources, then find the sources in reflective
environments and finally we discuss the noisy ICA case.

A. Relaxing the Gaussianity assumption: second-order BSS
and relation to ICA

The ICA framework does not take into consideration even-
tual time dependencies between the observations from the
independent sources, it assumes that the observations are
independent and identically distributed (i.i.d.). However, in
many cases – like for example in the case of BSS – the
observations are not i.i.d., but they exhibit meaningful time
relationships. In such cases, it is enough to decorrelate the
two observed signals at several (ideally all) time instances in
order to recover the original independent sources [6]11. Thus it
is possible to perform ICA while making use of moments only
up to and including the second order, which in turn implies
that in this case we can recover the independent sources even
if they are Gaussian.

11In this paper they construct an equivalence space of signals and mixing
systems that lead to the same signal at the microphones. Afterwards they
demonstrate what properties should signals have such that they are not part of
this equivalence class. The signals should exhibit a meaningful time structure
and be decorrelated alternatively they should have different kurtosis. This
shows why ICA methods using kurtosis are good for BSS, it does not however
show that complete independence is achieved. Thus it may be that other
independence measures that do not overrely on the kurtosis are better for
independence.

1) BSS using time-lagged covariances: The algorithm used
in this case implies defining a time-lagged covariance matrix
that includes all correlations between the sources and within
each source at two different time instances and then diagonal-
izing both the instantaneous covariance matrix and the time-
lagged one.

Should some lagged covariances be equal, such that the
eigen-decomposition leads to equal eigenvalues, the algorithm
does not work, as the corresponding ICs are not uniquely
defined12. The solution includes using several time-lags and
hoping that you can find at least one where all lagged
covariances are different.

It is possible that even this will not work, for example in
the case when the sources are wide-sense stationary signals
and their autocorrelation/autocovariance functions are equal
(the signals have the same power spectral density). Clearly
the eigenvalues of the lagged covariance matrix of the obser-
vations are the autocovariances of the sources at the respective
time lag/index. Should these be equal at any time index, any
lagged covariance matrix of the observations will have equal
(but potentially different for different lags) eigenvalues. In
this case you must resort to the standard ICA to find the
independent components, which as already discussed only
works for non-Gaussian sources.

2) BSS for nonstationary signals: The methods of the
previous section can be applied to both stationary and non-
stationary signals. However, if the signals are nonstationary,
we have a chance at finding the sources, even if the time-
lagged covariances are equal all the time (i.e., irrespective of
the lag and of the start point in time), like for example as in
the case of a purely random non-stationary signal. To do so
we need to find the transform that decorrelates the observed
signals at all time indices simultaneously. The corresponding
objective function is built around a measure of the diagonality
of a positive semidefinite matrix (as all covariance matrices
are symmetric and positive semidefinite). For a matrix M with
elements mij this measure is:

M(M) =
∑

mii − log
∣∣|M|∣∣

and is zero only for diagonal matrices, being otherwise posi-
tive. In this case we assume that the covariances vary slowly
and linearly in time.

There is also an alternative that uses cross-cumulants.

B. BSS for more sources than mixtures

Here, we use the fact that the sources are sparse in time,
i.e., we would rarely have the case that all sources are active
at the same time.

C. Relaxing the no-reflections assumption: BSS for convolu-
tive mixtures

In this case we differentiate between time-methods and
frequency methods. Time methods describe the convolution

12The eigenvectors corresponding to equal eigenvalues span an eigenspace.
Any vector in this eigenspace – i.e., any linear combination of the eigenvectors
corresponding to the equal eigenvalues – is again an eigenvector with the same
eigenvalue.
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explicitly and put it into matrix-vector notation (similar to
the blind deconvolution case), then solve the standard ICA.
The problem in this case is that the computational complexity
explodes even by a limited number of sources.

The alternative is to apply the short time Fourier transform
(STFT) to the signal (i.e., apply the Fourier transform block
wise – meaning in non-overlapping windows – to the signal),
then for each frequency bin in a (discrete) STFT time-block
we have the instantaneous ICA setup. Each block gives us
one observation from each frequency bin and thus we can
apply any of the standard ICA methods on this data. Thus the
convolutive ICA is a set of instantaneous ICAs. The number
of components of this set equals the number of frequency bins
to be found into one STFT time-block.

The two uncertainties of the ICA: the scaling and the
permutation represent major problems in this setup. The
scaling uncertainty can be solved efficiently by rescaling the
estimated sources such that their mix by the inverse of the
unmixing matrix yields observations with the same energy as
the original observations. In other words we do not find the
original sources, but the dampened sources as they reach the
microphones. We say we solve the scaling problem by the
minimal distortion principle ([5]). The permutation uncertainty
is solved such that the frequency structure of each source
can not vary abruptly. One approach is to ensure that the
envelops of each independent signal are maximally correlated.
Alternatively we can solve the permutation issue by comparing
the form of the approximated probability densities in each fre-
quency bin. This should be slowly varying with the frequency
in each independent source and different between sources at
most frequencies.

D. Relaxing the noise-free assumption: noisy ICA

If the signals have some time structure, then apply adaptive-
filter based inference cancellation to the observed signal,
followed by any BSS method to obtain the sources and
then apply again the adaptive-filter based procedure to the
recovered independent sources.

Otherwise use MAP estimation with a prior defined such as
to add a constraint to the objective function defined as the sum
of squared differences between the mixed recovered sources
and the corresponding observations (see [2] pp. 299).

E. Relaxing the linearity assumption: nonlinear ICA

Nonlinear ICA describes the case when the independent
components are non-lineally combined to construct the ob-
servations. The nonlinear ICA is usually ill-posed, as there
are several (potentially an infinite number of) solutions. The
issue is that, for example, two independent components remain
independent even after each one is individually nonlinearly
transformed. Even worse, there are nonlinear mixtures of
independent components that are themselves independent.

The solution in this case involves using a variant of the Self
Organizing Map (SOM). The SOM should be constructed such
that the data is uniformly distributed over the SOM grid. In this
case, clearly the marginals (over the grid) are independent. For
BSS problems, the SOM approach is not well suited, as it will

find ’some’ independent components and not ’the’ independent
components.

ICA for BSS purposes works only for post-nonlinear mix-
tures, i.e., when the observations are generated as nonlinear
functions of linearly mixed components. The inverse nonlin-
earities are estimated with a neural network and then the
independent components are estimated in a ML-approach.

VI. DISCUSSION

A. ICA and sparse coding

Conducting ICA under the assumption that the sources
are leptokurtic is equivalent to looking for sparse sources
(assuming that the sources are mean free – that can always
be achieved), hence the connection to sparse coding [3].

B. ICA and blind deconvolution

Blind deconvolution can be also expressed as an ICA
problem. In this case, the original signal is related to the inde-
pendent sources and the convolved signal to the observations.
For the ICA model of blind deconvolution, we have as many
independent sources as the length of the deconvolution filter,
be this l. We express filtering (using circular convolution) as
a matrix operation applied to overlapping chunks of length l
of the original signal. To obtain the deconvolved signal we
apply one unit of any sequential ICA algorithm. Due to our
setup the deconvolved signal will exhibit a shift of between
zero and l time instances with respect to the original.

C. ICA and classification

1) Feature extraction by ICA: ICA can be seen also as
a feature-extraction transform. The question raised here it
is when it is important to conduct the ICA and when it is
enough to apply only a whitening transform. ICA can be seen
as a rotation of whitened data. Therefore it makes sense to
conduct ICA over whitening only if the additional rotation
brings something in terms of classification accuracy.

If we assume we are interested only in feature extraction
and not feature selection (i.e., we keep all components after the
transformation), then ICA makes sense only if the subsequent
classifier is not rotationally invariant. If we are interested in
feature selection after ICA, then again, it may be that the ICA
makes sense whatever the used classifier, as in this case we
also have a projection. As described next, in some cases the
procedure is equivalent to invariant feature extraction.

2) ICA for independent subspaces: ICA can be used to
find also independent/invariant subspaces. To the limit each
component can be regarded as an 1D independent subspace.
The question is how to find ND independent subspaces and
what is their meaning. It turns out that this can be done
in an ML approach, assuming that the ND densities in the
independent subspaces are rotational invariant, such that they
depend on the sum of squared ’independent’ components of
the respective subspace (see [2] pp. 381).
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3) Significance of various ICA methods: It has been shown
empirically that when conducting feature extraction and fea-
ture selection by ICA, the results differ depending on the used
method. This means that for example, ICA by ML finds other
ICs then ICA by explicit rotation of whitened data. It can
not be said that one method is consistently better over the
other, just that they seem to return different ICs. I believe
the reason for this is in the different approximations each
method uses. Another reason may be the inherent limitations
of the respective objective functions, as for example it is not
guaranteed that a density is fully described by moments up to
the fourth order.

D. ICA for rotational symmetric distributions

In this case, the joint distribution of the observations is
rotationally symmetric (but not Gaussian) such that any further
rotation leads to the same projections (as in the Gaussian case).

The solution in this case is to apply a nonlinear radial
transform over the radial marginal densities of the rotational
symmetric distributions (obtained after whitening the observa-
tions) such as to transform them to Gauss. Then they would
be Gaussian and decorrelated and thus independent. Clearly
this will not recover ’the’ independent components but ’some’
independent components (see [4]).

VII. SUMMARY, CONCLUSIONS AND OUTLOOK

In the signal processing practice we are often confronted
with the task of representating the data such that what it is
important becomes easier to discover. What is important in
the data depends on the problem to be solved and on the
model assumptions we make. Here we made the assumption
that the data is available as a combination of main information
carriers defined as signal components that can not be repre-
sented as combination of other signal components being thus
independent. To clarify the intuition behind this independent
component analysis, it was introduced here as solution to a
practical problem: a blind source separation type of problem.
The importance of ICA is underlined also by the high number
of scientific contributions on the topic. These introduced many
ICA methods, however these methods can be classified in few
general approaches. Here we have discussed two of them:
by the first approach the ICs are sought after with the help
of the standard stochastic definition of independence and by
the second, they are sought after such that their densities are
maximally different from the Gauss density. We have showed
how methods of the same approach group together and how the
two approaches are linked to each other. Another such main
approach is the one based on nonnegative matrix factorization,
which was just mentioned here.

Each of these main approaches makes certain assumptions
on the independent components. These approaches are needed
to compensate our lack of precise knowledge on the indepen-
dent components and usually translate to some nonlinearities
that appear in the solutions. For example, methods from the ap-
proach that uses the standard definition of independence make
assumptions on the way the densities of the components can be
represented parametrically. Methods that use the difference to

the Gauss distribution hide these assumptions in the measure
of nongaussianity. For example, the kurtosis is a good measure
of non-Gaussianity for symmetric mono-modal densities and
using the negentropy under this assumption on the densities
of the ICs leads to using a certain type of nonlinearity when
estimating it.

Alternatively, the ICA methods can be divided into block
(also batch) methods that find all components at once and
sequential (also unit) methods that find the components one
after the other. Which one should be used depends on the
targeted application. Further research is conducted into faster
and more robust methods, which work very well even when
we renounce our assumptions.
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