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D-23538 Lübeck, Germany
condurache@isip.uni-luebeck.de

Abstract—The term super-resolution is used to describe meth-
ods aimed at recovering detail information of an imaged scene
that would otherwise be lost during the normal imaging process.
Here we discuss only digital cameras that process light reflected
by the objects constituting a scene. A digital camera, consisting
of optics a digital imaging sensor and signal processing hardware
is able to capture a digital image of a scene. For digital cameras,
resolution has to do with both the number of imaging elements
per unit sensor area – which translates into the number of pixels
per unit image area – as well as the information content of the
digital image. Intuitively speaking, increasing the information
content is directly related to increasing the number of pixels
per unit area in the digital image such as to properly render
the enlarged information content according to the Shannon
sampling theorem. This tutorial is concerned with increasing
the level of detail (i.e., information content) in a digital image
by means of statistical processing algorithms starting from a
set of several (usually) alias-afflicted images of the same scene,
acquired from slightly different positions. Such techniques fall
in the category of multi-frame computational super-resolution.
We start be describing the maximum likelihood (ML) solution
to this problem and then show how a maximum a posteriori
(MAP) approach can improve upon the ML solution. We will
discuss several solution strategies relying on such principles and
point to their advantages and disadvantages. We conclude with
a short overview of alternative super-resolution approaches.

I. INTRODUCTION

An imaging device captures the information of a scene. The
resolution of the imaging device describes the level of scene-
detail the device is able to capture. The imaging devices of
interest here are cameras (consisting of optics and sensor) that
are supposed to capture images of a scene. An ideal imaging
device should image a point light source as a point, however,
a real imaging device does not usually do so. A real camera
images a point light source not as point but rather as a patch
even under ideal conditions. The reasons for this are due
to both the optics and the sensor. Due to diffraction at the
aperture, even perfect optics introduce a small blur. A further
blur is introduced by the sensor that integrates light over small
surfaces (be they semiconductor-based sensing elements in a
digital sensor or a silver halid crystals in an ’analog’ film), thus
details smaller than this surface will be lost. If we consider
this setup from the Fourier perspective, we say that the optics
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and sensor introduce a low-pass filter such that high-frequency
details of the imaged scene are eliminated. Under ideal or near-
ideal conditions the lost details have a very high frequency
but still they are significant for applications like astronomy. In
many real-life applications however, optics and sensor are far
from ideal and alias plays a major role as well.

Under the term super-resolution (SR) we understand all
methods aimed at recovering such lost details. These methods
can be divided into two categories: those compensating for
the optics-induced blur and those compensating for camera-
induced blur. Optical super-resolution includes methods aimed
at braking the diffraction limit, like for example by interferom-
etry (where the superposition of several electromagnetic waves
is used to extract information about each wave). Here we
concentrate on computational super-resolution, which includes
methods to improve the resolution of a digital camera by pro-
cessing the digital images. Computational super-resolution can
be further divided into two fields: (i) shift-frame-based and (ii)
extrapolation-based. The former is concerned with improving
the resolution starting from a set of several low-resolution
images acquired at slightly different camera-positions. The
latter is concerned with extrapolating the information in a
(usually) single low-resolution image such as to recover the
lost details of the high-resolution image, i.e., inferring the lost
details from the available information in the low-resolution
image. Shift-frame or multi-frame methods practically work
only in the presence of alias [5]. Extrapolation-based methods
should also work starting from an alias-free low-resolution
image. However, the presence of alias allows the computa-
tion of significantly better results. Clearly, in both cases if
alias is present in the low-resolution images, then it will be
strongly reduced and ideally eliminated in the high-resolution
image. This tutorial covers multi-frame computational super-
resolution from a statistical perspective.

In this context it is assumed that the observed data is
generated the following way: a scene is imaged in a high-
resolution (HR) Nyquist-conform image x, from this image,
several other low-resolution (LR) images Y = {y1, . . . ,yK}
are generated. The process by which the LR images are gen-
erated includes geometric transforms (usually up to projective
transforms, i.e., homographies), different lighting changes λ,
blurring by various point spread functions (PSF), decimation
by a zoom factor such as to obtain a sub-Nyquist sampling
grid and corruption by additive noise. This data-generation
model is illustrated in Figure 1. Clearly not the entire original
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Fig. 1. The relationship between the set of observed low-resolution images
and the sought high-resolution image.

HR image can be reconstructed, but only a region. This is the
region where all LR images overlap.

Accordingly, we have that each observed image is computed
from the HR image as

y(k) = λ
(k)
1 W(k)x + λ

(k)
2 1 + s(k), (1)

with k = 1, . . . ,K and where each W(k) accounts for
warping, blurring and decimation (i.e., subsampling) in the
respective LR observation y(k). s(k) is additive, uncorrelated
Gaussian noise N(0, β−1I).

Next we are going to discuss statistical methods that will
allow us to estimate the high-resolution image x starting from
the set of observed low-resolution images Y . Using the above
generative model, we begin with the ML approach for the SR
problem. The ML solution is strongly afflicted by noise. The
MAP solution will then be introduced as a way to increase
robustness.

Going from simple to complicated, the initial ML and MAP
solutions assume that the warping (accounting for camera
motion between the LR images) and the blur (accounting for
optic and sensor blurring) have been estimated before entering
the stochastic setup, therefore W(k) can be directly computed
from these estimates together with the decimation factor.
Assuming further that the lighting parameters (accounting for
relative changes in illumination between LR images) have
been also estimated beforehand, the stochastic setup returns
’just’ the HR image estimate. In this case the parameters of
equation (1) are not established simultaneously, i.e., they are
established separated, as if they were independent although
they are not independent1. Thus the next improvement is the
simultaneous computation of all involved parameters, i.e, HR
image and warping, blurring and lighting.

Warping, blurring and lighting constitute the “nuisance”
parameters. Errors in the nuisance parameters afflicts the SR
image. Under a set of assumptions, including the assumption
of a Gaussian image prior, better results can be achieved
with the help of marginalization, either over the nuisance

1For example, the lightning parameters may depend on the warping (i.e.,
the assumed position of the LR camera).

parameters to obtain the SR image or over the SR image to get
the nuisance parameters and then the optimal SR image from
the above generative model (1). Of course there are alternative
paradigms to obtain the SR image, like for example the `1
based optimization of Farisu et al. [3] or other methods as
described in [5]. Simultaneous methods, marginalization and
alternative SR paradigms are briefly discussed in the end of
this tutorial.

II. THE ML SOLUTION

Assuming the motion and the lighting changes between the
observed LR frames as well as the PSF are known, we would
like to compute the likelihood L(Y|x) =

∏K
k=1 p(y

(k)|x).
Maximizing this likelihood over the unknown parameter x
returns the sought estimate of the HR image.

A. The nuisance parameters

The warping, or motion model and the blurring or PSF are
needed to compute W. The lighting parameters λ complete
the generating model (1). The additive noncorrelated Gaussian
noise term will be discussed later.

In practice, as we have access only to a set of LR images, we
assume that one of the LR images contains the imaged scene
from the same perspective as the HR image. Equivalently, this
LR image is obtained from the HR image only by blurring and
downsampling, the warping being the identity matrix, λ2 = 0
and λ1 = 1, or we can also say that there is neither (camera)
motion nor lighting variations between this LR image and the
sought HR image. This particular image is called next the
“main LR image”. It is chosen randomly from the set of LR
images and remains then fixed over the entire SR algorithm.

1) Motion estimation: The warping corresponding to a LR
image is given by the transform that describes the displacement
of the observed scene between this image and the HR image.
There are several ways to model this displacement, i.e., we
may choose from among various types of transforms (see [6]
pp. 22). Considering that we model here camera motion, a
projective transform (8 DoF) is enough, furthermore very often
in practice even an affine model (6 DoF) suffices.

a) The motion model: In the 2D case an affine model
relating a vector v to a vector u is given by:[

v1

v2

]
=

(
a1 a2

a3 a4

)[
u1

u2

]
+

[
a5

a6

]
.

This may be written in compact form using homogeneous
coordinates vh and uh instead of Cartesian coordinates as: v1

v2

1

 =

 a1 a2 a5

a3 a4 a6

0 0 1

 u1

u2

1

 .
In homogeneous coordinates, a projective transform is given
by: v′1

v′2
v′3

 =

 a1 a2 a5

a3 a4 a6

a7 a8 a9

 u1

u2

1

 , with vh =
v′

v3
.

In Cartesian coordinates, a projective transform would be
nonlinear.
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To compute the sought motion model for one LR frame
from the available set, we have thus to estimate in the affine
case a number of six parameters that describe the registration
between the respective LR image and the main LR image.
Registration is a well-studied problem and there are many
algorithmic solutions [6]. We are here interested in parametric
registration methods, meaning that the transform is available
in close form, in our case being given by the linear relationship

vh = Auh, (2)

with A the matrix of the our affine transform. Again, this is an
even better studied problem with many available solutions in-
cluding landmark based approaches, mutual information based
approaches, etc. For reasons of simplicity we concentrate here
on landmark-based approaches.

b) Parameter estimation: For our 2D affine example we
need to estimate a number of six parameters. Considering the
main LR image as the reference with coordinates v and the
other LR image as the template with coordinates u, we need
to know the coordinates of at least three noncollinear scene
points in both reference and template, such as to be able to
solve over the unknown parameters {a1, . . . , a6} an equation
system derived from (2).

If the scene points are collinear, the system matrix is rank-
deficient and there is no unique solution. Furthermore, in
practice more than three such points are usually detected
(which ensures noncollinearity) and there is no exact solution.
In both cases, a satisfactory solution can be computed, for
example with the help of the pseudoinverse or by singular
value decomposition. This satisfactory solution minimizes the
residuals r = |Auh − vh|. In the former case it has minimal
`2 norm, and in the latter case it minimizes the square error
(i.e., it is the least squares solution, as the residuals are defined
with the help of the `2 norm). If the pseudoinverse is itself
close to singular or even singular, the solution that minimizes
the residuals can be found in an iterative manner, for example
with gradient descent.

c) Landmark detection: A coordinate pair corresponding
to the same scene point in both template and reference is called
a landmark pair and the scene point itself is called a landmark.
Good landmarks should be invariant to the considered motion
model, meaning that they should not change their appearance
between reference and template. Widely used landmarks in our
context are corner points. They are invariant to rotation and
translation and largely invariant to small affine distortions.

Corners are points in whose vicinity there are two local
orientations. The vicinity of a point exhibits single orientation
when the gray levels change in only one direction. By analyz-
ing the local orientation, a corner descriptor can be computed
[1] that exhibits the needed invariance properties such that it
can be used to detect landmark pairs.

The 2D differential operator in direction φ with respect to
the horizontal axis is defined as the scalar projection of the

gradient vector ∇[·] =
[
∂
∂x ,

∂
∂y

]T
on the orientation vector

n(φ) = [cos(φ) sin(φ)]T . The orientation vector points on a
direction perpendicular to that along which the gray levels
vary. As the orientation vector has unit norm, the scalar

projection equals the scalar product of the two vectors and
thus the sought differential operator may be written as:

α(φ)[·] = prj(∇,n(φ))

= 〈∇,n(φ)〉
= n(φ)T · ∇[·]

= cos(φ)
∂

∂x
+ sin(φ)

∂

∂y
. (3)

If the image f(x, y) is ideally oriented at (x, y) under an angle
θ, then its derivative in along θ should be zero:

α(θ)[f(x, y)] = n(θ)T · ∇[f ] = 0. (4)

When this condition is met for θ is met also for θ+π and for
θ − π, thus by convention θ ∈ (−π2

π
2 ).

Local orientation as described by n(θ) is evaluated over
a vicinity/neighborhood Ω within which it is assumed to be
constant. To compute n(θ), we need the orientation angle
θ. We find this angle as the argument that minimizes the
functional

θ = min
φ
Q(φ) = min

φ

[∫
Ω

(nT∇f)2dΩ

]
, (5)

where n ≡ n(θ) and with nTn = 1. This can be rewritten as

Q(φ) = nTTn, (6)

with T being a 2 × 2 tensor computed as:

T =

∫
Ω

∇f(∇f)T dΩ =

∫
Ω

[
f2
x fxfy

fyfx f2
y

]
dΩ. (7)

Thus, to find our local orientation descriptor n we have now
to minimize the composite criterion

L(n) = nTTn + λ(nTn− 1), (8)

including the condition nTn = 1 over the Lagrange multiplier
λ. This is equivalent to finding n such that

Tn = λn, (9)

i.e., finding the normalized eigenvector of T corresponding to
the lower eigenvalue λ. As Q(φ) is a measure of variation
of f(x, y) in the direction φ, then the minimum quantity of
variation in Ω is given by λ:

Q(φ) = nTTn = nTλn = λ. (10)

Practically, T is computed as[
S(Dx ·Dx) S(Dx ·Dy)
S(Dy ·Dx) S(Dy ·Dy)

]
, (11)

with S a smoothing operator which defines the size of the
neighborhood and Dx,y the derivative operator on direction x
respectively y. The results obtained by derivation are multi-
plied pixelwise.

T is also known as the structure tensor and its eigenvalues
can be used to analyze the local orientation, its’ second
eigenvalue being an indication for the presence of a strong
second orientation. Together with n it can be used to compute
a corner descriptor.

Better corner descriptors can be computed be explicitly
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considering the second orientation as well. In this case there is
a θ1 for the main orientation and a θ2 for the other orientation
in Ω. Two orientations at (x, y) means that

α(θ1)α(θ2)f(x, y) = n′df = 0,

with n′ = (cos θ1 cos θ2, sin(θ1 + θ2), sin θ1 sin θ2)T and
df = (fxx, fxy, fyy)T . This is equivalent to analyzing a 3×3
tensor T2 containing second order derivatives.

2) Lighting estimation: After registration the lighting pa-
rameters can be computed from pairs of gray-levels of the
same pixel in the reference and the transformed template. For
our 2D example we would need at least two pairs to compute
λ = (λ1, λ2)T

rx1 = λ1t
′
x1

+ λ2

rx2
= λ1t

′
x2

+ λ2
,

with x1,2 two position vectors, rxi the gray level at pixel i
in the reference image and t′xi the gray level at pixel i in the
transformed template. As discussed before, usually more than
two pairs are selected and the solution is found with the help
of least squares.

3) Blur estimation: Blur is generated by the optics and by
the integration over the active area of each sensor pixel. Both
influences are described either as an isotropic 2D Gaussian
kernel (covariance matrix Σ = σ2I) or as a disc of radius d
(equivalent to a moving average sort of filter – but potentially
with weights different than 1

n , with n the number of pixels in
the disk).

B. How to generate W

The matrix W in our model (1) encodes the motion model,
the blur and the zoom factor (i.e., the downsampling factor
relating a LR image to the HR image). All mathematical
operations discussed here work on vectors; to obtain a vector
from an image, by convention, all columns are stacked one
underneath the other starting with the left-most column.

Under these circumstances, a shift in an image with L =
M × N pixels corresponds to a multiplication of the corre-
sponding L × 1 image vector with a L × L matrix where a
few entries are one, the rest being zero. Such an example is
shown in Figure 2.

Blurring an image I1 with a disk-like blur kernel B can
be also expressed in this setup. For this purpose, for every
position where the blur is applied, an image of the same size
as the input image is generated containing the blur kernel at the
respective position and otherwise only zeros. To apply the blur,
corresponding blur-image vector is multiplied with the image
vector. To apply the blur at various positions in the original
image, the image vector is multiplied with a matrix whose
lines are blur-image vectors. This is illustrated in Figure 3 for
a blur kernel B defined as:

B =

[
1 1
1 1

]
.

Downsampling an image by keeping only every second line
and every second column is equivalent to multiplying I1 with
a W↓ with L

4 lines and L columns with ones at the positions
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corresponding to the elements that are supposed to be kept
and zeros otherwise.

Combining several operations O is equivalent to multiplying
the corresponding WO matrices, thus the sought matrix is:
W = WSWBW↓.

C. The HR image

After finding the nuisance parameters we are now ready to
estimate the HR image. For this we will model parametrically
the distribution of LR images given the sought HR image.
Using this distribution we will compute the HR image in a
ML approach. The ML approach includes the computation of
the likelihood function and the finding of its maximum over
the HR image.

1) The statistical model: Establishing a model for the
distribution of LR images given the sought HR image will
allow us to compute the likelihood function for our problem.
A statistical model may be generated in this case either starting
from the error term s(k) in Equation (1) or using the principle
of maximum entropy.

a) Error-based model: Starting from the generative
model in Equation (1) a statistical model can be derived using
the fact that the errors s(k) in the model are assumed Gaussian
distributed:

s(k) = y(k) −
(
λ

(k)
1 W(k)x + λ

(k)
2 1

)
: N(0, β−1I).

As W and λ are known, it follows directly that

p(y(k)|x) =
1

2π
M
2 |Σ|−

1
2

e−
1
2 [y(k)−m(k)(x)]

TΣ−1[y(k)−m(k)(x)]

=

(
β

2π

)M
2

e−
β
2 ‖y

(k)−m(k)(x)‖22 , (12)

with m(k)(x) = λ
(k)
1 W(k)x + λ

(k)
2 1.

b) Maximum entropy-based model: A more interesting
derivation of the same model uses the principle of maximum
entropy [4]. This principle can be used to construct a den-
sity for a random variable from which some information is
available. The needed information in this case is not a set of
observations, but knowledge over the value of the expectation
of some deterministic functions of this random variable. If a
set of observations is also available the quality of our density
information can be improved.

More formally and taking for convenience the scalar case,
we would like to find the distribution function of a random
variable x, while knowing that the expectations E{fi(x)} of a
number n of functions fi(x), i = 1, . . . , n have known values
ci: ∫

p(x)fi(x)dx = ci. (13)

This is an ill-posed problem, as we would like to find the true
p(x), but there are several functions that verify the constraint
(13). In an attempt to regularize this problem, we decide
to choose the distribution that has maximal entropy, based
on the consideration that such a distribution makes the least
assumptions about the available data and is thus the most
general.

It can be shown [2], [7] that the maximum-entropy density
satisfying (13) is given by

p0(x) = Ae
∑
i aifi(x), (14)

where A and ai are some constants. These constants can be
found as the solution to a system of equations consisting
of i equations found by introducing (14) into (13) plus an
additional equation given by

∫
p(x)dx = 1 (all integrals are

considered over the entire definition domain of x). This system
of i+ 1 equations with i+ 1 unknowns can be solved exactly
if it is not degenerate.

There is a close relationship between the maximum entropy
distribution and the Gaussian distribution. It can be shown
that for a zero-mean random variable with unit variance,
the maximum entropy density is the Gaussian distribution.
Even more, irrespective of the mean, the maximum entropy
distribution of a random variable at given variance is the
Gaussian distribution (see [4] pp. 112).

In our case, starting from Equation (1) we consider the
difference

f(y) = y − (λ1Wx + λ21) ,

to be a function of the random variable y, depending on
the parameter x (where we dropped the realization index k
to simplify the notation). We know that for a given x, this
function has an expectation of zero, and thus f1(y) = ‖f(y)‖22
has also zero expectation. Then, making use of the principle
of maximum entropy we may compute:

p(y|x) = Aea1f1(y)

= Aea1‖y−(λ1Wx+λ21)‖22 .

Solving for A and a1 as described above, we find that y is
Gaussian distributed according to

p(y|x) =

(
β

2π

)M
2

e−
β
2 ‖y−(λ1Wx+λ21)‖22 , (15)

which is the same as Equation (12).

2) The likelihood function: Assuming that the set of ob-
served LR images is independently sampled from (15), the
likelihood of the observed data is given by

p(Y|x) =

(
β

2π

)KM
2

e
− β2

∑K
k=1

∥∥∥y(k)−
(
λ
(k)
1 W(k)x+λ

(k)
2 1

)∥∥∥2
2 ,

with Y = {y(1), . . . ,y(K)}. The maximum likelihood HR
image is then:

x̂ML = arg max
x

(p(Y|x)) .

In practice, the sought estimate is found by optimizing the log-
likelihood function, which simplifies the matter in so far as we
have to deal now with polynomial and not with exponential
functions. We have thus to find the maximum of

log (p(Y|x)) = log (γ)− β

2

K∑
k=1

∥∥∥s(k)
∥∥∥2

2
,

with γ =
(
β
2π

)KM
2

and s(k) = y(k)−
(
λ

(k)
1 W(k)x + λ

(k)
2 1

)
.



6

a) Optimization: Finding the maximum of log (p(Y|x))
is equivalent to finding over x the extreme point (i.e., mini-
mize) of the following objective function

L =
1

2

K∑
k=1

∥∥∥s(k)
∥∥∥2

2
,

where we ignore terms not contributing to the optimum.
Considering that aTa = ‖a‖22, the derivative over x of the
objective function is:

∂L
∂x

= −
K∑
k=1

λ
(k)
1 W(k)s(k).

By setting this derivative to zero we obtain for the sought
estimate:

x̂ML=

(
K∑
k=1

λ
(k)
1

2
W(k)TW(k)

)−1[ K∑
k=1

λ
(k)
1 W(k)T

(
y(k)− λ(k)

2 1
)]
.

If the involved matrices are singular, or to large to compute
efficiently, an iterative solution can be obtained using the
gradient descent method as:

x(i+ 1) = x(i) +

K∑
k=1

λ
(k)
1 W(k)s(k)(i). (16)

Stochastic gradient descent methods (in which case the sum is
eliminated in (16) and the optimization proceeds in epoques,
where per epoque all LR image are used once) or better
iterative algorithms like the Newton-Gauss algorithm can also
be used.

III. THE MAP SOLUTION

The ML solution has as departing point p(Y|x), while we
are actually interested in the posterior p(x|Y). By the Bayes
rule, this posterior is computed using the likelihood as:

p(x|Y) =
p(Y|x)p(x)

p(Y)
.

If the available data is held constant2, the evidence p(Y) is just
a normalization factor and can be ignored in the optimization
setup. We can then look for the x that maximizes this posterior
as:

x̂MAP = arg max
x

(p (Y|x) p(x)) .

In this case objective function becomes

L = − log(p(x)) +
β

2

K∑
k=1

∥∥∥s(k)
∥∥∥2

2
,

and its derivative with respect to x is:

∂L
∂x

= −∂ log(p(x))

∂x
−

K∑
k=1

λ
(k)
1 W(k)s(k). (17)

In order to be able to optimize L over x, we have to know
the image prior p(x).

2This means that the components of the set Y remain the same, no
components are exchanged, no new components are added.

A. Image priors

The ML solution has problems in particular when the HR
image is sought starting from a small set of noisy LR images.
The MAP approach can improve upon the ML solution in this
respect, as it offers – by means of the prior – the possibility
to introduce prior knowledge into the problem formulation.
The prior should be chosen such as to avoid implausible
ML solution. An implausible ML solution is in our case an
image immersed in noise. As noise has mainly high-frequency
components, a prior that encourages smooth images is needed.
Conversely, edges are also high-frequency components, but
they should be preserved.

The most simple thing to do would be to assume a zero
mean Gaussian image prior:

p(x) = 2π−
L
2 |Z|−

1
2 e−

1
2x

TZ−1x. (18)

Such a prior would encourage smooth, zero-mean images. In
this case, the objective function (17)3 becomes:

∂L
∂x

= 2Z−1x−
K∑
k=1

λ
(k)
1 W(k)s(k).

By specifying the elements of Z, we could encourage various
behaviors. For example a small-norm covariance matrix would
strongly penalize gradients, while specifying a covariance
matrix with a larger norm, would allow for some gradients.

Defining Z−1 = ψDTD, with D approximating a gradient
filter (e.g., in the horizontal direction)4, is equivalent to com-
puting in the exponent of (18) the square of the magnitude of
the gradient of x in the same horizontal direction. This would
penalize variations in x, but not as strongly as for example
Z = I.

With the elements of Z defined as

Z(i, j) = Ae−
‖vi−vj‖

2

r2 ,

with vi the 2D position vector of the pixel i in the image
vector, and r a scale factor, we obtain a covariance matrix that
does not penalize large variations as strong as Z−1 = ψDTD,
and it allows thus edges.

Most often in practice, the Huber prior is used [5]. This is
built explicitly to penalize large gradients less than small ones.

IV. DISCUSSION AND CONCLUSIONS

While there are many methods for computational super-
resolution available, we have concentrated here on a simple
ML/MAP-based statistical framework. This straightforward
approach includes several steps whose completion involves
expert knowledge, like for example the choosing of a prior.
Should this be an issue in practice, we can move towards a
more data-driven approach by learning the prior parameters
from some training data.

3As both the prior and the likelihood p(y(k)|x) are Gaussian, a closed-
form solution can be also obtained in this case. Due to the size of the involved
matrices, the iterative approach is better suited in practice.

4D is not the horizontal derivative filter kernel [−1, 1], but is constructed
starting from this kernel in a manner similar to the one used to construct WB

to approximates a blur in Figure 3.



7

More involved statistical approaches have also been pro-
posed. The best promise for an optimal mix between a data-
driven and an expert-knowledge method is perhaps given by
variational methods. In this case the super-resolved image
together with the parameters are considered hidden random
variables and we attempt to estimate the distribution of the
hidden variables given the observed data. Still, the basic
statistical framework upon which the variational methods build
involves expert knowledge.
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