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ABSTRACT

We address the problem of person authentication, including
verification and identification, using the vascular network of
the retina. We propose a novel feature extraction process that
includes the segmentation of feature points related to anatom-
ical characteristics of the retinal vessel-network, the descrip-
tion of these points with the help of the scale-invariant feature
transform (SIFT) and the computation of a final feature vec-
tor related to the statistical characteristics of the SIFT-based
description. After feature extraction, authentication is con-
ducted with the help of the sparse classifier. We successfully
test our methods on two databases, one publicly available and
the other one (that we now make available as well) specially
generated for this purpose. The results show that apart from
high accuracy, the proposed algorithm enjoys a set of invari-
ance properties that make it robust to a set of issues afflicting
retina-based person authentication systems, while being fast
enough to allow practical deployment.

Index Terms— sparse classifier, covariance features,
retina-vessel segmentation, person authentication

1. INTRODUCTION

The pattern of vessels supplying blood to the retina is a unique
feature in each eye and can be used to authenticate an individ-
ual [1, 2]. This feature is impossible to forge and the blood
vessels decay too fast to allow the eye of a deceased person
to be used to deceive the system. Furthermore, the vascular
pattern is virtually constant over the entire life span of the tar-
get individual, the most often exceptions being pathological
cases like diabetic rethinopathy. Even though it enjoys such
desirable features in comparison to other biometric traits, it
is by far the least used. The reason for this is the acquisition
procedure that is considered intrusive and requires a relatively
high degree of user cooperation (for example eyeglasses must
be removed). From a historical perspective there has been
a tradeoff between the quality of the acquired retinal scans
and the amount of data analysis needed for the purpose of
authentication. The first commercial retina-based person au-
thentication systems acquired high-quality images in a tightly
controlled environment, for which purpose they used visible

light to illuminate the retina [3]. This procedure was very un-
comfortable for the user and as a consequence a near-infrared
light source replaced the visible-light source shortly after-
wards. Later, the amount of energy radiated by this source,
as well as the acquisition time, was decreased more and more
with each new retinal-scan system on the market to improve
acceptance. However, as a direct consequence, the quality
of the obtained images deteriorated. Thus, the improved ac-
ceptance generated the need for more powerful data analysis
tools to accomplish the intended authentication task. Apart
from a decreasing signal-to-noise ratio (SNR), the acquired
retinal scans may be afflicted by geometric transforms like
rotation and translation but also a small amount of scaling
due to the eye movement or head placing with respect to the
sensor. Clearly, retina-based person authentication must be
invariant to such disturbances. Additional difficulties are en-
countered with people suffering from astigmatism and under
some circumstances with those wearing contact lenses.

With high-quality retinal scans conducting person identi-
fication is usually a relatively easy task. The first solution [2]
simply used the Fourier transform for feature extraction, to
deal with some of the imaging-related issues, followed by cor-
relation to measure the similarity between two images. More
modern approaches still use correlation [4, 5, 6, 7], but the
preprocessing is different. Geometric distortions due to the
image acquisition process are dealt with using polar coordi-
nates [4], or image registration [6, 5] with vessel parts as cues.
In [7], a more complicated feature extraction process is used,
with a polar transform followed by a wavelet-based multires-
olution analysis of segmented vessels, also modified correla-
tion coefficients over several scales are used together to reach
a decision. In other approaches [8], vessel segmentation to-
gether with a simple orientation analysis on the segmentation
result using an angular partition are used for feature extrac-
tion. The feature vectors thus obtained are compared with the
help of the Manhattan distance. In [9], two retinal images are
matched based on a set of feature points of the vessel pattern.
These feature points are anatomically interesting points of the
vascular network like bifurcations and cross-overs, that can be
easily detected despite low SNR. After exacting them, the op-
timal transform that registers the two feature-points clouds is
found. Then, the number of landmark-pairs (i.e., pairs of fea-
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ture points that are considered to be the representation of the
same anatomical point in each image) is used to compute the
similarity between two images. A similar feature-point-based
strategy is used in [10] as well.

Our approach is based also on feature points, extracted
from the vessel segmentation result computed with the hys-
teresis classifier [11], that is particularly robust to noise. We
extract one feature vector per image. The features we ex-
tract exhibit all the invariance properties required by retina-
based person authentication. With our feature extraction, un-
like other approaches, we do not need to align the two images
to find out if they come from the same eye, which clearly re-
duces the computational burden of our algorithm. Together
with the subsequent sparse-classifier based decision, this re-
sults in a particularly robust algorithm.

2. METHODS

For each retina image a cloud of feature points is computed.
The subsequent feature extraction process has as its aim to
provide a vector-based description of this point cloud. Then,
person authentication is conducted in this feature space with
the help of the sparse classifier.

2.1. SIFT-log-covariance based point-cloud features

The feature-point cloud should offer a unique and compact
description of the target retinal vessels. Highly informative
points in this context are the vessel bifurcations, as they are
related to anatomical characteristics of the vascular network
[12] but also the vessel crossings, i.e., the points where a reti-
nal vessel goes over or under another one. At the same time
such points offer a set of invariance properties, like rotation
invariance, that makes them well suited for our purposes.

Here, bifurcations and crossings are detected on binary
images with vessel centerlines. The vessel centerlines are
computed with the help of morphological image processing
methods from segmented vessels. The vessel are segmented
with the help of the hysteresis classifier. After detecting the
feature points we compute the corresponding Scale Invariant
Feature Transform (SIFT) descriptors [13]. Our final fea-
ture vector is related to the statistical properties of the SIFT-
descriptor sample in the feature-point cloud. Working this
way allows us to be robust with respect to potential outliers
in the form of cloud components that are neither bifurcations
nor crossings.

2.1.1. Computing the feature-point cloud

For security applications, we are interested to reliably detect
crossings and bifurcations (i.e., we want to detect only points
where we are highly confident that they are at a vessel cross-
ing or bifurcation). Thus, we morphologically process [14]
the hysteresis-segmentation result (see Fig. 1 (a)) such as to

(a) (b)

(c) (d)

Fig. 1. Original vessel segmentation (a), result of the opening
(b) and final result after elimination of the small vessels (c),
and feature-point cloud (white) and the corresponding vascu-
lar network (gray) (d)

obtain only the large and mid-sized vessels, where we can re-
liably detect the feature points.

The first step to detect the feature points is to open the
original segmentation with a disk-like structuring element of
a radius larger than the smallest vessels (see Fig. 1 (b)). Af-
ter this, we need to select only the main vessels. To this end
we apply successive erosion steps to the result of the open-
ing, until all vessel points are eliminated and then use the
vessel points from the last but one erosion result as mark-
ers for the large vessels. More precisely, we use these points
to select from the opening result only the large vessels. For
this purpose all points linked to the markers over an eight-
neighborhood (i.e., the 3× 3 region of interest centered at the
keypoint) are selected (see Fig. 1 (c)).

After eliminating the small vessels, we thin the large ones
until they are one-pixel thick. Here, the crossings and bifur-
cations are easily detected by counting the object points in the
eight-neighborhood of each object pixel. If the count is larger
or equal to three we detect a feature point. A feature-point
cloud with the corresponding vascular network is shown in
Fig. 1 (d).

2.1.2. The log-covariance feature vector

After computing the locations of the points in the feature-
point cloud, we extract for each component of the cloud the
corresponding SIFT descriptor. The SIFT descriptor pro-
vides a unique and largely invariant representation of the
local neighborhood of the corresponding point [15]. This
representation is based on the local orientation and is linked
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to the scale at which the point can be optimally described.
As the SIFT descriptor is rather large (128 components), we
first reduce its dimension with the help of PCA. This has the
benefit of a smaller computational burden and improved fit to
the sparse-classifier framework. The PCA is computed once,
from all SIFT descriptors, from all images in the training set.

We compute the final feature vector from the diagonal
of the log-covariance matrix [16] that we estimate from the
available PCA-transformed feature-point cloud SIFT descrip-
tors. The log-covariance matrix is the reconstruction of the
covariance matrix from its eigen decomposition, where the
eigenvalues have been replaced with their natural logarithms.
This procedure is needed to ensure that our feature space is
a true vector space, such that linear combinations of vectors
from this feature-space leads to a vector that is himself a com-
ponent of the feature space, i.e., the feature space has the
property of bing closed under linear combinations. This type
of feature extraction offers us an additional set of invariance
properties to some simple transformation of the SIFT descrip-
tors.

2.2. Sparse classification

Sparse-representation based classification looks for the spars-
est representation of a test vector in terms of a matrix of train-
ing vectors. This representation is sparse because it should
contain only vectors from the class to which the test vector
belongs [17]. With the training matrix T = [T1, . . . ,Tk],
containing the class-submatrices Ti = [vi,1, . . . ,vi,Ni

] with
i = 1, . . . , k, where Ni is the number of vectors in class i
and k the number of classes, for each new vector y we ideally
have y = Tx, the sparse coefficient vector x having entries
different from zero only for the training-space vectors from
the class i to which y belongs. For classification purposes
we compute x and assign y to the class whose correspond-
ing entries in x are different from zero. The total number
of vectors in T is n =

∑k
i=1Ni and each vector has m en-

tries. For computational reasons we find the sparsest x as
x̂ = argmin ‖ x ‖1 subject to ‖ Tx − y ‖2≤ ε, with
a small positive ε, optimizing over the l1 instead of the l0
norm of x. The decision rule reads then: C(y) = argmini ‖
y − T(1i � x̂) ‖2, where we use the following notation:
1i = [b1, . . . , bn]

T , bl ∈ {0, 1}, l = 1, . . . , n is the selection
vector for class i and v1 � v2 is the component-wise product
of two vectors v1 and v2, i.e., the Hadamard product. Thus,
1i�x selects the entries of x where the coefficients of class i
reside. C(y), with C : Rm → {1, . . . , k} is the function that
assigns a class label to the vector y.

Depending on the maximal number of examples per class,
i.e., the maximal number of available retinal scans of an en-
rolled person, we can establish the minimal size of the final
feature vector such as to ensure the appropriateness of the
sparse-classifier framework for this problem. For the sparse
classifier to work properly [17], we need that m ≥ c · 2,

with m the dimension of the feature vector, and c the max-
imal number of examples per class, i.e., the largest Ni. At the
same time the m × n training matrix T usually needs to be
underdetermined, such that n > m.

3. EXPERIMENTS AND DISCUSSION

To test and demonstrate the qualities of our system, we have
used two databases. The first database we have used is a
publicly available database the VARIA [18], the second one
was constructed by us from the DRIVE database [19]. The
VARIA database has 233 images from 139 different individu-
als, out of which 59 had two or more samples. The optic-disc
centered images have been acquired over a period of several
years with a TopCon NW-100 model non-mydriatic retinal
camera at a resolution of 768x584. These images have a
high variability in contrast and illumination. Our DRIVE for
Retinal Authentication (DRIVERA) database1 contains 280
images. These were generated from the 20 images of the
test set of the DRIVE database, at a resolution of 576 × 560
pixels. For this purpose we have created for each DRIVE
image 14 more images while applying various types of dis-
tortions. These distortions are supposed to simulate different
image acquisition-related problems that may appear when
the same retinal vasculature is imaged at different times. We
have divided the distortions into three categories: person-
related, optics related and sensor related. The person-related
distortions are small rotations, translations and scalings of the
original image, the optics-related distortion are blurring, bar-
rel and pincushion transforms applied to the original image
and the sensor-related distortions are changes in illumination,
white and ”salt&pepper“ noise. The new images were gen-
erated by randomly applying these distortions, such that an
image may be affected by one or by several such distortions.
The DRIVERA database has only gray-level images obtained
from the green channel of each original image.

As previously discussed, the dimension of the feature
space must be chosen in accordance with the maximal num-
ber of examples per class available in the training set. For the
VARIA database this is c = 7 and for the DRIVERA database
this is c = 14. Cross-validation experiments on half of the
DRIVERA database led us to choosing m = 57 (the results
were largely similar for m > 50). The same m was used on
the VARIA database. This means that the PCA-transformed
SIFT-descriptors have a dimension of 57.

During morphological processing, we would like to elim-
inate only the small vessels from the original segmentation.
For this purpose we need the diameter of these vessels, which
depends on the image acquisition hardware. In our case, this
diameter was two pixels.

1The software to compute the DRIVERA database from the
DRIVE database may be downloaded from http://www.isip.uni-
luebeck.de/index.php?id=610&no cache=1
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We have conducted classifications in three scenarios: with
manually selected anatomical feature points (Manual), with
SIFT keypoints (SIFT) and with the vessel segmentation-
based feature-point cloud, as described above (Segmenta-
tion). In each scenario we have applied three types of classi-
fication algorithms: the first one (Diff) is based on the sum of
squared differences (SSD) between the scaling-aligned query
image and the train-set image, the second one (Ransac) is
based on the number of landmark pairs between the query
image and the train-set image (similar to the algorithm from
[9]) and finally the third one is the log-covariance feature vec-
tor and sparse-classification framework proposed here. The
results obtained by leave-one-out cross-validation are shown
in Fig. 2.

For the first and second classifiers we need landmark pairs
to compute the parameters of the scaling and the maximal
number of landmarks respectively. To find landmark pairs,
we use a procedure similar to the RANdom Sample Consen-
sus (RANSAC) algorithm [20]. To begin with, we search for
sets of matched SIFT keypoints from the two images [21].
Assuming we find more than four matches, we use all pos-
sible sets of four matches to register the two images with a
scaling transform. We then count the number of landmarks
for this transform. Landmarks are feature-points pairs that
after the transformation have positions that are very similar,
the Euclidian distance between their position vectors being
smaller than a small threshold. The number of landmarks de-
scribes the quality of the transform. We declare the optimal
transform as the one with the largest number of landmarks.
Each image pair where we found more than four matches is
described by a certain transform and thus a number of shared
landmarks. Image pairs where less than four matches were
found are discarded.
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Fig. 2. Classification results obtained by the various methods:
Diff (black), Ransac (grey), Sparse (white)

As the sparse classifier needs several images to work
properly, we have tested only the four individuals from the
VARIA database with five or more images. To ensure proper
deployment of the sparse classifier, we have used all avail-
able examples when computing the sparse vector. For the
DRIVERA database we have conducted experiments with the
sparse classifier in two scenarios: with seven images per eye
and with all 14 images. The results improved from 90.71% to
99.29% correct decisions, when using more images.

On the DRIVERA database, when the sparse classifier
works on all SIFT keypoints it achieves 94.64% correct classi-
fications, while when working only on the anatomic-relevant
feature points it achieves 99.29% for the automatically seg-
mented feature points and 100% for the manual ones. A simi-
lar behavior has been observed on the VARIA database. This
shows that it is indeed advantageous to conduct our person au-
thentication using only anatomically-relevant feature points,
thus completely ignoring the background. It also shows that
there is room for improvement with respect to the computa-
tion of the feature-point cloud.

Our system is fast, it returns a decision in six seconds,
by comparison the RANSAC-based algorithm needs 14 sec-
onds, while the SSD-based classification 66 seconds on an
Intel Core i5 (3.1GHz) machine with 16GB RAM.

4. CONCLUSIONS AND SUMMARY

Vessel bifurcations and crossings together with many more
other interesting feature points can be detected by applying
SIFT directly to the original retinal image. However, in this
case we obtain besides the sought points a large set of other
points whose relationship to the vascular network is question-
able (e.g., points in the background), even though their rela-
tionship to each analyzed image is strong. This in turn de-
creases the descriptive power of our covariance-based feature
vector, as it will answer more to the background than to the
vascular network, and thus each retinal-vessel network will
appear to be similar to any other one. We are therefore inter-
ested in a feature-point selection procedure that is rather spe-
cific with respect to crossings and bifurcations. Conversely,
it is possible that a few feature-point cloud components are
neither crossings nor bifurcations. However, this is far from
critical considering that our final feature vector is computed
from the empirical covariance matrix of all SIFT descriptors.
We need only a majority of cloud points to be true crossings
and bifurcations.

Even though a feature vector based on anatomical feature
points related to the vascular network of a retina is well suited
for such tasks as person authentication, the problem until now
was that a reliable vessel segmentation would take a rather
long time [9, 10]. The hysteresis classifier is fast and accurate
enough at to render such an approach feasible. Our feature
vector is related to the second-order statistical properties of
the feature vectors corresponding to the feature-point cloud.
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Clearly, other statistical descriptors could be used. It remains
to be investigated if relating our feature vector to higher-order
statistics, or using other types of statistical descriptions than
moment-based ones, represents an improvement.

The results obtained with the sparse classifier improve,
the more images are available for each eye in the database.
For a practically deployed retina-based authentication system,
one should either acquire several images during enrollment,
when setting up the system, or start with one image per eye
and use, e.g., the classifier based on the number of landmark-
pairs shared by two images to conduct classification, record-
ing new images each time the respective eye is imaged, until
enough images have been acquired to be able to sensefully
use the sparse classifier.

Using the sparse classifier offers an easy way to deal
(while the system is in use) with changes that occur in the
acquired images over a long period of time, due to various
non-critical problems with the image-acquisition hardware.
To compensate for this one should simply update the training
set of a certain eye by adding new images recorded at fixed
time intervals. Furthermore, also by concentrating on the mid
and large vessels and extracting the final feature vector with
the help of the log-covariance descriptor (that is robust to out-
liers, meaning that a few additional crossings and bifurcations
will not lead to significant changes), we are robust to patho-
logical changes of the retinal vessels such as small-vessel
proliferation, encountered in the case of diabetic retinopathy.

We have described a robust retina vasculature-based per-
son authentication system. It is based on a novel feature ex-
traction process using anatomic-relevant points on the retina
vessel tree, SIFT features and a log-covariance descriptor to-
gether with a sparse classifier. Our system is fast and exhibits
invariance properties that make it robust to a set of issues re-
lated to both image acquisition and pathological changes in
the retina.
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