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Evidence that neurosensory systems use sparse signal representations as well as improved
performance of signal processing algorithms using sparse signal models raised interest in
sparse signal coding in the last years. For natural audio signals like speech and environmental
sounds, gammatone atoms have been derived as expansion functions that generate a nearly
optimal sparse signalmodel (Smith, E., Lewicki,M., 2006. Efficient auditory coding.Nature 439,
978–982). Furthermore, gammatone functions are establishedmodels for the human auditory
filters. Thus far, a practical application of a sparse gammatone signal model has been
prevented by the fact that deriving the sparsest representation is, in general, computationally
intractable. In this paper,weapplied anacceleratedversionof thematchingpursuit algorithm
for gammatone dictionaries allowing real-time and large data set applications. We show that
a sparse signalmodel in general has advantages in audio codingand that a sparse gammatone
signal model encodes speech more efficiently in terms of sparseness than a sparse modified
discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone
parameters derived for English speechdonotmatch thehumanauditory filters, suggesting for
signal processing applications to derive the parameters individually for each applied signal
class instead of using psychometrically derived parameters. For brain research, it means that
care should be takenwithdirectly transferring findingsof optimality for technical to biological
systems.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There is evidence (Olshausen et al., 1996; Attwell and Laughlin,
2001; Olshausen and Field, 2004) that neurosensory systems
encode stimuli by activating only a small number of neurons
out of a large population at the same time. This concept of a
‘sparse’ signal representation has gained interest in the signal
processing community in the last years (Mallat and Zhang,
1993; Davis, 1994; Chen, 1995; Gorodnitsky and Rao, 1997;
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Gribonval, 1999; Hoyer, 2002; Donoho and Tsaig, 2005; Aharon
et al., 2006) as it shows improved performance in signal com-
pression, analysis and denoising tasks (Neff and Zakhor, 1997;
Chen et al., 1998; Gribonval, 2001; Donoho et al., 2006). A sparse
signal model indicates the fundamental features of the signal
as it necessarily involves expansion functions that are highly
correlatedwith the signal. For natural audio signals like speech
and environmental sounds, gammatone atoms have been de-
rived as expansion functions that generate a nearly optimal
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sparse signal model (Lewicki, 2002; Smith and Lewicki, 2006).
Gammatone functions are also known as filters modeling the
human cochlea (Patterson and Moore, 1986; Patterson et al.,
1988) and gammatone filterbanks are applied successfully in
simulating the human auditory processing (Dau et al., 1996a,b;
Patterson, 2000; Chi et al., 2005). Deriving the sparsest repre-
sentation of a signal has been proven to be NP-hard (Davis,
1994, ch. 2) and is therefore, in general, computationally intrac-
table. In this paper, we apply an accelerated sparse signal
model for gammatone functions which is a specialization of
Matching Pursuit (Mallat and Zhang, 1993). This time-fre-
quencyalgorithmcomputes a sparse signalmodel fromagiven
dictionary of atoms. At every iteration, the dictionary atom
that best matches the signal is chosen and removed from the
signal. This is repeated until the signal residuum is small
enough or a maximal number of iterations have been reached.
It has been shown (Goodwin, 1998; Gribonval, 1999; Krstulovic
and Gribonval, 2006) that the complexity of such an algorithm
can be reduced for dictionaries that exhibit a special structure
and we apply these results to gammatone dictionaries result-
ing in a computational complexity of O(N log N) per iteration.
The achieved acceleration makes it possible to apply this phy-
siologically motivated signal model in real-time applications
like speech coding andanalyze its performance in state-of-the-
art audio compression schemes likeMPEG-4AAC (Brandenburg
et al., 2000). The possibility to evaluate the sparse gammatone
signal model on a large data set enables the statistical analysis
of the selected gammatone parameters for a given sound
corpus. According to Barlow's efficient-coding hypothesis
(Barlow, 1961), the human auditory filters have been optimized
under a strong evolutionary pressure to optimally encode the
relevant acoustic stimuli. We analyze the TIMIT speech corpus
Fig. 1 – (a) Phoneme labeled example from Suzanne Vega's “Tom
overlappingMDCT blocks and the used KBDwindows are shown
not quantized to zero at 16 kbps. (c) Plot of the 1018 MDCT match
(Garofolo et al., 1990) and compare the derived gammatone
parameters with the known parameters from psychoacoustic
experiments.
2. Results

2.1. Audio coding

In audio coding schemes such as MPEG-2/4 AAC, the modified
discrete cosine transform (MDCT) is used to convert overlap-
ping blocks of the time signal into a frequency-domain repre-
sentation.With a time shift ofN samples, this transformmaps
2N real numbers onto N real coefficients by using modulated
versions of a symmetric window like shown in Fig. 1a. In the
older MPEG-1-layer-3 (MP3) standard, a bank of bandpass fil-
ters is used in combination with the MDCT. The symmetry
property of the used window results from the Princen–Bradley
condition the MDCT has to satisfy in order to yield a perfect
reconstruction transform (Malvar, 1999). In the MPEG-4 AAC
coder, a sine-shaped and a Kaiser–Bessel derived (KBD) win-
dow (Oppenheim and Schafer, 1989) can be chosen. In both
MP3 and AAC, the window length can be switched between a
short and a long window, which allows the encoder to find the
best compromise between a high coding gain in stationary
sections (long window) and reduced pre-echoes when the
signal contains strong transient components (short window).

As argued by Smith and Lewicki (2005), transforms using a
block-wise analysis are very sensitive to small time shifts of
the incoming signal and do not encode well transients and
periodic components that are located in the middle of the
overlap region of two adjacent blocks or window positions.
's Diner” where she sings “coffee”. The segments of the
in red. (b) Plot of the 1191MDCT filterbank coefficients that are
ing pursuit coefficients used at 16 kbps.
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In this context, it should be noted that the signal conver-
sion into the frequency domain done by the human cochlea is
not rigid in time. The occurrence of signal energy at a specific
frequency, due to the frequency-to-place mapping along the
basilar membrane, results in a deflection of the corresponding
inner hair cells, thereby triggering spikes sent over the corres-
ponding auditory nerves to the brainstem. This activation is
solely threshold triggered and not externally clocked like in a
DCT or MDCT filterbank.

This property of the human auditory systemmotivates the
application of a shift-invariant signal model like matching
pursuit (Mallat and Zhang, 1993) allowing arbitrary time posi-
tions. It assumes an additive signal model of the form

x½n� ¼
XK

i¼1
aidi½n� ð1Þ

with the signal x∈RN×1, the dictionary coefficients αi∈C and
the dictionary atoms D=[d1d2…dM]∈CN×M. The shift-invar-
iance is achieved by constructing D using templates like
gammatone atoms and adding all their possible shifts to the
dictionary. Matching Pursuit is a greedy algorithm that first
chooses the atom that best approximates the signal. The
contribution of this atom is then subtracted from the signal
and the process is iterated on the residual. So the task at the i-
th iteration is to minimize the residual

riþ1½n� ¼ ri½n� � aidki ½n� ð2Þ

with dki ½n�aD, ki being the dictionary index of the atom chosen
at the i-th iteration and αi being the weight describing the con-
tribution of the atom to the signal.

This signal coding paradigm also achieves a sparse signal
representation as the increased time resolution results in an
overcomplete representation of the signal space and the en-
Fig. 2 – The upper row shows the average number of used coeffic
ratio and the lower row the objective difference grade of the enc
coding of a signal is thereby not unique anymore. This over-
completeness allows thematching pursuit algorithm to search
for the sparsest encoding in the infinite number of solutions. In
contrast, the MDCT atoms form a basis for the signal space
where only one unique representation for a signal exists.

In an initial audio coding experiment, we compared the
performance of the matching pursuit approach with the tra-
ditional filterbank design using the masking model, scalefac-
tor bands and adaptive quantization of the MPEG-4 AAC audio
coding reference implementation. We selected the castanets.
wav audio signal from the EBU-SQAM audio database (Euro-
pean Broadcasting Union, 1988) due to its transient properties,
the TIMIT speech corpus representing the sound class of
English speech and the often evaluated music test signal in
audio coding, Suzanne Vega's “Tom's Diner” (svega.wav). We
compared the codingquality of theMDCT filterbank (FB-MDCT)
with the matching pursuit signal models using a MDCT (MP-
MDCT) and a gammatone dictionary (MP-GAMMA). The results
wereevaluatedusing theobjectivedifference grade (ODG) scale
(ITU-R, 2001) computedwith an objective predictionmethod of
the perceived audio quality called PEMO-Q (Huber and Koll-
meier, 2006) (for details see Experimental procedures). In Fig. 2,
the number of used coefficients per second, the signal-to-noise
ratio (SNR) and the ODG of the encoded signals at different
bitrates are shown.

The matching pursuit algorithm encodes a signal until a
given threshold is reached, which was set in this experiment
to a fixed SNR for all bitrates (see Table 1). TheMDCT filterbank
in contrast always results in a perfect encoding if no further
quantization is applied. In a next step, the matching pursuit
respectively filterbank coefficients are encoded with a given
bitrate using the masking model, scalefactor bands and adap-
tive quantization of the MPEG-4 AAC audio coding standard.
ients per second, the middle row the average signal-to-noise
oded signal at different bitrates.



Table 1 – Audio coding settings

Audio
signal

Resolution Sampling
rate

Length SNR
threshold

castanets.wav 16 bit 48.0 kHz 7s 939 ms 30 dB
svega.wav 16 bit 44.1 kHz 20s 675 ms 35 dB
TIMIT 16 bit 16 kHz 5h 35 min 30 dB
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Thereby the number of used coefficients per second is de-
creased whenever a coefficient is quantized to zero. This pro-
cess can beunderstoodby lookingat the coefficients per second
and SNR results shown in Fig. 2 for the Suzanne Vega song. For
the highest bitrate, all coefficients of the matching pursuit
signalmodels can be encoded in the given bit budget due to the
initial sparse encoding. This results in a signal representation
achieving the preset SNR. At reduced bitrates, quantization is
needed to achieve the selected bitrate, first reducing the
accuracy of the coefficients and later also reducing the number
of used coefficients by quantizing small coefficient values to
zero. The non-sparse coefficients of the filterbank signalmodel
in contrast need to be quantized for all bitrates. For the casta-
nets test signal, only the MP-GAMMA signal model results in a
sparse representation where all coefficients fit into the bit
budget at higher bitrates and achieve the preset SNR. The
symmetric MDCT atoms cause for the very transient castanets
signal pre-echo artifacts which reduce the SNR. For the TIMIT
corpus, lower bitrates common for speech coding applications
have been chosen, always resulting in a quantization of the
coefficients and an SNR below the preset value. The sparsest
encoding of the signal is always achieved by the MP-GAMMA-
based audio encodings, followed by the MP-MDCT audio en-
coding and the MDCT filterbank-based approach.

For the castanets.wav signal, the MP-GAMMA audio coder
achieves the highest SNR except for the lowest bitrate. This is
also reflected in the audio quality. TheMP-MDCT signalmodel
encodes in general less signal energy than the FB-MDCT signal
model resulting in a lower SNR. This does not directly show in
the predicted audio quality, as for low bitrates the MP-MDCT
dictionary achieves a better audio quality despite the lower
SNR compared with the filterbank-based audio coder. Analyz-
ing the audio coding at the lowest bitrates shows that for the
gammatone dictionary 86% of the available bit budget is used
to encode the position of the coefficients using the standard
entropy encoder paradigm, resulting in amuch stronger quan-
tization of the coefficient amplitudes compared to the filter-
bank approach.
Fig. 3 – The average SNR and O
For the svega.wav signal, the SNR of the matching pursuit
audio encoding is higher than the filterbank approach for high
and moderate bandwidths and slightly lower for low bitrates.
The perceived quality of the encoded audio signal is in con-
trast for high bitrates much better for the FB-MDCT audio
coder and for moderate and low bitrates the ODG is almost
identical between the three variations of the audio coder. The
Suzanne Vega song also includes a significant amount of
‘silent’ frames having very low signal energy which are not
encoded by the matching pursuit signal model due to the
sparseness constraint. Analyzing the framewise ODG of the
encoded signals shows that the difference in the ODG values
between the matching pursuit and filterbank signal model is
due to these frames, which can also be seen in Fig. 3 showing
the SNR and ODG for the example in Fig. 1.

Here the FB-MDCT dictionary achieves the lowest per-
ceived audio quality while achieving the highest SNR for low
and moderate bitrates. This example shows that while the
SNR is a validmeasure for general signal coding problems, it is
not as significant in audio coding applications as it does not
account for psychoacoustic masking effects and does not
measure the perceptual distortion. This can be understood by
looking at the example in Fig. 1. The background noise at the
end of the example is not encoded in the MP-MDCT signal
model reducing the overall SNR of the encoding. The last
phoneme /i/ in contrast is represented using the matching
pursuit-based audio encoder also in the higher frequency
bands above 15 kHz where the filterbank approach is not
encoding any signal energy for this low bitrate, resulting in a
perceptual degeneration of the audio signal. A sparse encod-
ing of a signal results naturally in coefficients with higher
coefficient values, which are then not quantized to zero com-
pared to a filterbank approach. So the matching pursuit audio
encoder is not only more accurate in time but also generally
encodes more high-frequent features than the filterbank ap-
proach for a given bitrate.

For the TIMIT speech corpus, the SNR of the MP-GAMMA
signal model is slightly lower than for the MP-MDCT for high
bitrates and drawing near the SNR of the filterbank imple-
mentation for the lower bitrates. The FB-MDCT signal model
always achieves the worst SNR. The best perceptual signal
quality is always achieved by the MDCT matching pursuit
signal model, followed by the MP-GAMMA signal model and
the filterbank approach.

Thepoor performance of the gammatone-based audio coder
is an unexpected result as gammatone windows have been
DG for the example in Fig. 1.



Fig. 4 – (a) Average number of coefficients needed per second for an SNR of 20 dB for the TIMIT speech corpus. (b) Minimal
number of coeffs/s for a given filter order. (c) Minimal number of coeffs/s for a given bandwidth.
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shown to be optimized to encode speech signals (Lewicki, 2002;
Smith and Lewicki, 2006). Despite the fact that the gammatone
signal model was always using the lowest number of coeffi-
cients to encode a signal to a given SNR, the robustness against
quantization errors introduced by the MPEG4 audio encoding
scheme showed to be lower compared to the MDCT atoms.

To analyze if using the human parameter values of the
gammatone window is optimal for speech, we compared the
achieved sparseness on variations of the gammatone window
using the fast gammatonematching pursuit signalmodel. The
encoding was stopped when an SNR of 20 dB was reached. We
did a rigid scan on the parameter space of the gammatone
function using the filter orders η=2, 4, 6,…, 38, 40, 42 and the
damping factors λ=10, 20, 30,…, 980, 990, 1000, resulting in
2100 different encodings of the TIMIT database.

For the matching pursuit gammatone signal model, the
minimal number of coefficients needed to encode an SNR of
20 dB for English speech is, as shown in Fig. 4, at the filter order
n=22 and damping λ=460, resulting in 640.1 coeffs/s. We re-
tested the audio coder with these optimized values.

As shown in Fig. 5, the optimized gammatone dictionary
achieves now an SNR for the audio encoded TIMIT speech
corpus which is almost identical to the MP-MDCT audio codec.
This is not reflected in the perceived audio quality, where the
MP-GAMMA albeit its sparser encoding is showing a higher
impact of quantization errors on the perceived audio quality
than the MDCT dictionary. Informal listening tests showed
Fig. 5 – The left column shows the SNR, the right the ODG for the
different bitrates.
that the gammatone dictionary suffered from stronger musi-
cal tone artifacts compared to the MDCT dictionary. It should
be kept inmind that this is an initial audio coding experiment.
For example, there is a trade-off between the number of initial
coefficients generated by the matching pursuit signal model
and the consequently needed quantization of these coeffi-
cients to achieve the given bitrate. This has not been explored
here, the stopping condition of the iterative matching pursuit
algorithm was preset to a fixed SNR. More psychoacoustically
motivated stopping rules could result in a better audio encod-
ing quality. Additionally the lossless compression stage has
been implemented using the standard entropy encoder para-
digm to be able to directly compare the different signalmodels
within the MPEG4-AAC audio coding scheme. We have shown
that using a significance-tree coder (Strahl et al., 2005) brings
advantages for sparse data and shows good performance for
audio coding. Furthermore, the quantization algorithm can be
optimized for a matching pursuit signal model (Goyal et al.,
1998; Frossard et al., 2004).

To further investigate why the gammatone matching pur-
suit signal model results in a sparser encoding of the TIMIT
database than the MDCT matching pursuit signal model for a
given SNR, we adapted the gamma-window parameters slow-
ly from an asymmetric to an approximately symmetric win-
dow while keeping the maximum of the window fixed (see
Table 2). We analyzed its performance on the TIMIT speech
database encoding up to an SNR of 20 dB.
TIMIT sound corpus using the different encoding schemes at



Table 2 – Coefficients per second needed to achieve an
SNR of 20 dB for gammatone windows with different
skewness and the TIMIT sound corpus

Signal model n λ Skewness coeffs/s

MP-MDCT 0.0 693.2
MP-GAMMA 2 31.25 −1.74 799.0

4 93.9 −0.71 727.5
6 156.25 −0.09 682.0
8 218.9 0.17 663.5

10 281 0.35 653.0
12 344 0.49 648.9
14 406 0.61 651.2
16 469 0.74 651.5
18 531 0.82 655.5
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The number of coefficients per second decreased from the
approximate symmetric gammatonewindowwith a skewness
of −0.09 to aminimumat a skewness of 0.49. This is consistent
with the earlier derived optimal gammatone parameters n=22,
λ=460,which result into a skewness of 0.45. This indicates that
a positive skew resulting in an asymmetry is one of the im-
portant properties of the gammatone dictionary that leads to
an increased sparseness for speech compared to the symmet-
ric Kaiser–Bessel derived window.

2.2. Physiological signal model

Weconducteda further experimentusingavery largedictionary
of gammatone atoms with center frequencies ranging from
15.625 Hz to 8000Hz, increased in 15.625 Hz steps, and damping
parameters λ=2πbERB(fc) ranging from 100 to 5950, increased in
stepsof 50, resulting inadictionarysizeof 966,656,000atomsper
second.

Fig. 6a shows the center-frequency distribution of the se-
lected atoms, which follows the 1/f law normally found for
natural signals (Bell and Sejnowski, 1996). The selected gam-
matone bandwidth parameter b was mostly chosen as 0.19
Fig. 6 – (a) Frequency distribution of selected atoms. (b) Encoded s
to encode 20 dB SNR of the TIMIT speech corpus using λa100, 1
which differs from the human value of 1.019 (Irino, 1995). The
selected bandwidths for every frequency band are shown in
Fig. 6b, where the size of the datapoint and its color represent
the amount of signal energy that is encoded using this para-
meters. Atoms encoding less than one percent but more than
one tenth of a percent of the TIMIT sound corpus are plotted in
gray. The bandwidth parameter used to encode the most
energy in the according frequency band is marked by a red
square. The matching pursuit algorithm selected mainly
atomswith bandwidths below 100 Hz. Also themaximal band-
width was frequently chosen. It can be noted that the band-
widths encoding the most energy of the signal per frequency
band mainly stay below the human bandwidths (Zwicker,
1961). This highly overcomplete dictionary encodes the TIMIT
database with an average of 543 coeffs/s.

We further tested if an encoding of the English speech
database into a sparse representation limited to 21 different
bandwidths for all frequencies with the human values

k ¼ 193; 262; 331; N ; 3477; 4169; 4998

(Zwicker, 1961) would result in any physiologically known
parameter values.

Fig. 7a shows again a frequency distribution following the
1/f law and most of the signal energy was now encoded using
b=0.342. Fig. 7b shows a similar distribution of the selected
atoms like in Fig. 6b. Again, mainly atoms with small band-
width are preferred. And the most selected bandwidth per
frequency is again widening at higher frequencies but staying
below the human bandwidth. This fixed bandwidth dictionary
encodes the TIMIT database with an average of 607 coeffs/s.

The selection of mainly long dictionary atoms having a
small filter bandwidth compared to the human auditory filters
is coherent with the signal structure of the TIMIT speech cor-
pus. We computed an average phoneme length of 72.8 ms for
the TIMIT database and the filter lengths mainly selected by
the matching pursuit algorithm are the two longest atoms
with 116 ms and 77.3 ms, as they result in the highest corre-
lation with the signal. The occasional selection of short atoms
ignal energy per bandwidth and frequency of selected atoms
50…, 5900, 5950.



Fig. 7 – (a) Frequency distribution of selected atoms. (b) Encoded signal energy per bandwidth and frequency of selected atoms
to encode 20 dB SNR of the TIMIT speech corpus using human λa193, 262…, 4169, 4998.
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having a long filter bandwidth can be attributed to short signal
parts like consonants and to artifacts generated by thematch-
ing pursuit algorithmdue to its iterative signal decomposition.
3. Discussion

The hypothesis driving the present study is an application of
Barlow's efficient coding hypothesis (Barlow, 1961) for audio
signal coding. The main efficiency measure in biological sys-
tems is the number of spikes needed to transmit a representa-
tion of the perceived signal (Laughlin and Sejnowski, 2003).
This corresponds in a computer signalmodel with the number
of coefficients used to encode a signal or in other words, how
sparse a signal encoding is. One way of increasing the sparse-
ness of an encoding is to increase the correlation of the ana-
lyzing filter respectively dictionary atoms with the signal
class. We could verify previous results (Lewicki, 2002; Smith
and Lewicki, 2006) showing that gammatone atoms have an
increased correlation with the English speech, achieving a
higher sparseness compared to MDCT atoms. One of the main
properties leading to the increased sparseness is the asym-
metric time envelope of a gammatone atom as shown in
Table 2. This can be understood by the fact that most natural
sounds are asymmetric in time, exhibiting a short transient
followedbyanexponential dampedoscillation. This alsoyields
benefits regarding the matching pursuit. The algorithm picks
the most energetic atom and for a dictionary with symmetric
atoms, it will choose an atom that has also support before the
actual start of the attack of the sound. Subtracting this atom
from the signal will result in a pre-echo artifacts, creating
an artificial signal component just before the transient. The
asymmetry of the gammatonewindowprevents suchpre-echo
artifact.

Furthermore, the envelope asymmetry indicates that the
sparseness constraint is more important for the neurosensory
systemthanasignalanalysisachievingaperfect time-frequency
resolution. A dictionary atom cannot be arbitrarily concentrated
in both time and frequency. Gabor (1946) has shown that, given
Heisenberg's uncertainty principle, a symmetric modulated
Gaussianwindowachieves optimal joint time-frequency resolu-
tion. For the visual system, such two-dimensional Gabor atoms
have been derived as expansion function that generate a nearly
sparse signal model and have also been verified in the visual
cortex (Olshausen et al., 1996). Compared to a Gabor atom, a
gammatoneatomhas an enlargedanalyzingwindowarea in the
time-frequency plane of a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1
2n� 3

r
;n being the filter order

of the gammatone (Solbach et al., 1998). The gammatone dic-
tionary showing thehighest correlationwith theTIMITdatabase
and thereby achieving the sparsest encoding has a higher filter
order and thus a better joint time-frequency resolution than a
signal model using the human physiological parameters. Gam-
matone functions with non-human parameters for the TIMIT
speech corpus have also been derived by Smith (2006), optimiz-
ing a randomly initialized dictionary using a gradient search
algorithm. In this study, we applied a full search over the para-
meter space of the gammatone function, showing that only one
local minimum exists for the TIMIT speech corpus. The non-
human parameters can be explained by the fact that sparseness
is not the only constraint that shaped the auditory system.
Consequently, a pure matching pursuit model is not a valid
correspondenceto thehumanauditory filter, explainingwhy the
parametersachieving the sparsest encoding for theTIMITsound
corpus do not resemble the human physiological data.

Another important effect is thephysiological size constraints.
Sparseness is achieved by an overcomplete signalmodel, whose
atomshaveoverlappinganalysiswindows inthe time-frequency
domain. To increase the sparseness of a given signal model, the
overlap of theses areas needs to be increased. It has been shown
that the increase in length of the auditory epithelia during
phylogeny is greater than the increase in the upper frequency,
especially in birds and mammals (Manley, 2000), but a momen-
tous increase in frequency resolution is impeded by the size
constraint of the hair cell and the cochlear length itself. Con-
sequently, the sparse encoding of an auditory stimulus at the
stage of the cochlear is achieved mainly by the high time reso-
lution of its shift-invariant signalmodel. Analogous to the visual
system,where the edgedetector filters predicted by a sparseness
constraint can be found in the primary visual cortex (Olshausen
et al., 1996), it can be assumed that in the auditory system the
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sparse coding paradigmwill also have an increased influence in
the later stages of the auditory pathway compared to the early
stages.

Except for Smith and Lewicki (2006), all audio coding appli-
cations using a gammatone signal model (Ambikairajah et al.,
2001; Feldbauer et al., 2005; Toshio Irino, 2006) applied human
parameters and a block-based filterbank model. In general, it
has been shown that audio coding applications using a sparse
signal model like matching pursuit can have advantages com-
pared to critical sampling signal models like filterbanks or
wavelet analysis (Gribonval, 2001; Davies and Daudet, 2006;
Krstulovic and Gribonval, 2006; Smith and Lewicki, 2006).
Using the union of a MDCT and modified discrete sine trans-
form (MDST) as a signalmodel, Davies et al. have shown that a
twofold oversampling in the frequency domain results for a
transient guitar solo test signal in higher SNRs compared to a
MDCT signal model (Davies and Daudet, 2006). Smith et al.
showed for English speech alike an increased SNR compared
to a wavelet or Fourier transform using a signal model that is
highly overcomplete in time (Smith and Lewicki, 2006). Re-
placing the normal quantization with a psychoacoustic mask-
ing model, scalefactor bands and adaptive quantization, we
measured also an increased SNR and perceived audio quality
compared to the block-based signal models for the transient
castanets signal and the English speech corpus. The sparse-
ness constraint affects the distribution of the signal energy to
few coefficients with high coefficient amplitudes and many
coefficients with near zero or zero amplitude. This leads to a
distribution of the quantization errors which aremostly either
below theabsolutehearing thresholdor at high soundpressure
levels, which is advantageous due to the human logarithmic
scale of sound intensity. Additionally fewer coefficients are
quantized to zero compared to a filterbank approach, which
preservesmore of the original signal structure in the quantiza-
tion process. The synthesis of the atomic signal decomposition
introduces also artificial patterns like musical tones, generat-
ing a disturbing tonal percept due to equidistant structures on
the frequency scale. These artifacts need to be addressedusing
a postprocessing step in the audio coding design.
4. Conclusion

A matching pursuit gammatone signal model for the English
speech using the TIMIT database has been analyzed, showing
that, compared toMDCTdictionaries, gammatone dictionaries
achieve a sparser encoding for the TIMIT database, indicating
that the gammatone atoms are expansion functions that are
higher correlated with the English speech class. We also
showed that a shift-invariant matching pursuit signal model
has advantages in audio coding applications and that a gam-
matone matching pursuit signal model results in better per-
ceived audio quality for very transient signals due to their
asymmetric filter shape. A full search over the gammatone
filter parameter space showed that the human auditory sys-
tem cannot be directly compared to a matching pursuit signal
model and that the optimal parameters are not identical to the
human physiological values. We showed that the asymmetric
filter shape of the cochlear filter can be predicted assuming a
sparseness constraint on the signal coding.
5. Experimental procedures.

5.1. Gammatone signal model

The gammatone signal model describing the human auditory
filter response is defined as (Patterson et al., 1988)

gtðtÞ ¼ atn�1e�kte2pifct ¼ atn�1e�2pbERBðfcÞte2pifct ð3Þ

with the amplitude a, the filter order n and λ=2πbERB(fc) being
the damping factor where b defines the proportion to the equi-
valent rectangular bandwidth (ERB) of the auditory filterwhich is
defined formoderate soundpressure levels (Moore et al., 1990) as
ERB(fc)=24.7+0.108⁎fc for a center frequency fc. For humans, the
parameters n=4 and b=1.019 have been derived using notched-
noise masking data (Irino, 1995).

5.2. Fast matching pursuit for gammatone signal model

Every real-valued atom dω,ϕ with the frequency ω and the phase
ϕ can be associatedwith a complex atom dω and its conjugate dω

―
.

It is

dx;/ ¼ Kx;/

2
ei/dx þ e�i/Pdx

� �
ð4Þ

with Kω,ϕ being a normalization factor. The set of atoms dω,ϕ
where only the phase varies lies in the subspace that is spanned
by dω and dω

―
. So the orthogonal projection PVω

ri of the residuum ri
onto this subspaceVω=span{dω,dω

―
} results in a vector lying in the

direction of the real atom dω,ϕ having the optimal phase. This
variation is called Molecular Matching Pursuit (Gribonval, 1999)
as selecting the best real atom dω,ϕ is equivalent to finding the
best di-atomic molecule Vω with

supx;/jhri;dx;/ij
2 ¼ supxsup/jhri;dx;/ij

2 ¼ supxjjPVx rijj
2 ð5Þ

Using the biorthogonal basis dω⊗,dω⊗
―

of Vω with

d�x ¼ 1
1� jhPdx;dxij2

fdx � hdx;
P
dxi

P
dxg ð6Þ

the orthogonal projection on a di-atomic molecule is computed
by

PVx ri ¼ hri;dxid�x þ hri;
P
dxi

P
d�
x ð7Þ

and it follows

jjPVx rijj
2 ¼ 2Refjhri;dxij2 � hdx;

P
dxihri;dxi2g

1� jhPdx;dxij2
ð8Þ

The orthogonal projection of the real-valued signal on the
spacespannedbya complexgammatoneatomand its conjugate
transpose canbe computed completely in the frequencydomain
using the fast Fourier transformation (FFT), resulting in com-
plexity of O(N log N) instead of O(N2) per matching pursuit
iterationwithN being the length of the analyzed signal part. The
results in thispaperhavebeencomputedusing the freeavailable
Matching Pursuit Toolkit (Gribonval and Krstulovic, 2005) which
conducts an initial analysis of the signal and only recomputes in
the next iteration the changed signal part, resulting in anoverall
complexity of O(L log L)+K d (2N−1) O(N log N) with L being
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the signal length, K the number of iterations and N the atom
length.

It is

hri;dxi ¼
XN�1

t¼0
ri t½ �tn�1e�kte�2pixtN dt ¼ FFT x ri t½ �tn�1e�kt� �

and

hdx;
P
dxi ¼

XN�1

t¼0
tn�1e�ktÞ2e2pi2xtN dt ¼ FFT �2x ðtn�1e�ktÞ2

� �
:

�

In the audio coding experiment, we omitted the phase infor-
mation of the gammatone signal model for a valid comparison
with the MDCT filterbank signal model. For only real-valued
atoms, we have 〈dω,dω

―
〉=1 simplifying the projection to

hri;dxidx ¼ Fadx

Our gammatone atom implementation will be available on
the official MPTK web page.

5.3. Audio coding

We used the perceptual model, scalefactor bands and adaptive
quantization algorithms from the MPEG4 AAC reference imple-
mentation (Moving Picture Experts Group, 1999; Painter and
Spanias, 2000). The final noiseless coding stage has been adapt-
ed for the sparse overcomplete matching pursuit signal models
by adding a run-length encoding step before the entropy en-
coder similar to the encoding step in the JPEG standard.
We used the following signals and settings:

For the SuzanneVegamusic sample svega.wav, an increased
SNR threshold of 35 dB was necessary to achieve a sufficient
coding quality due to its more complex signal structure.

We predicted the perceived audio quality of the encoded
audio signals relative to the uncoded signal using a model of
auditory perception (PEMO-Q) (Huber and Kollmeier, 2006). The
estimated perceived audio quality is mapped to a single quality
indicator, theObjectiveDifferenceGrade (ODG) (ITU-R, 2001).This
is a continuous scale from 0 for “imperceptible impairment”, −1
for “perceptible but not annoying impairment”, −2 for “slightly
annoying impairment”, −3 for “annoying impairment” to −4 for
“very annoying impairment”.

Wetested thecommonbitrates 128, 112, 96, 80, 64, 32, 16kbps
for music and 32, 28, 24, 20, 16, 12, 8, 4 kbps for speech. The
matching pursuit signal models were restrained to real-valued
atoms to allow a valid comparison to the real-valued MDCT
filterbank of the AAC reference implementation. The initial MP-
GAMMA signal model used a filter order of 4 and a damping
factor of 1000 corresponding to the human filter bandwidth at
1.2 kHz. The skewness of an atom waveform was computed by
y ¼ Eðx�AÞ3
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