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Abstract. In this publication, a new blind motion correction algorithm
for magnetic resonance imaging for arbitrary sampling trajectories is
presented. Patient motion during partial measurements is estimated. Ex-
ploiting the image design, a sparse approximation of the reconstructed
image is calculated with the alternating direction method of multipliers.
The approximation is used with gradient descent methods with deriva-
tives of a rigid motion model to estimate the motion and extract it from
the measured data. Adapted gridding is performed in the end to receive
reconstruction images without motion artifacts.

1 Introduction

Artifacts caused by patient motion result in diagnostically unusable images mea-
sured by magnetic resonance imaging (MRI). These artifacts appear especially
as ghost replications of the object or image blurring. In many cases, motion can
be avoided by a motionless patient. But especially the motion of organs like lung,
liver, and heart can not be stopped for a long time and also swallowing can not
be suppressed effectively. To overcome these artifacts, techniques are developed
to either adapt the measurement process to the motion or compensate motion
afterwards.

In contrast to other method, blind motion estimation uses only information
about the motion hidden in the measurement. The main idea is not to restrict
oneself to periodical motion but also be capable of compensating spontaneous
motion. Based on the knowledge about the sampling trajectories many meth-
ods were developed to estimate the performed motion. Then, it is extracted
from the measurement data to reconstruct images without artifacts. One popu-
lar technique was proposed for rotated blade sequences by Pipe et al. [1] and is
implemented in current MR scanners. There, motion is estimated from several
partial measurements based on their correlation.

Former research showed that MR images can effectively be represented in
sparse domains. Sparsification reduces the artifacts appearing in those repre-
sentations. This was used to blindly estimate motion in [2]. The new proposed
algorithm measures the MRI k-space on arbitrary trajectories and combines the
ideas of sparsifying images and gradient descent algorithms. This leads to an
image reconstruction algorithm with very high reduction of motion artifacts.
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2 Materials and methods

In MRI, as the k-space contains sampled frequency coefficients, it can be inter-
preted as Fourier transform of the MR image. More exactly, one measurement of
the whole k-space is composed of partial measurements at intervals in time spec-
ified by trajectories. Let x(r) € R°*™ be a two dimensional MR image with spa-
tial coordinates r = [r1,72,...,7y] € RZ*M M = om and r; = [r;1,7i2]7,i €
{1,2,..., M} with coordinate ranges r;1 € [0,0 — 1],7;2 € [0,m — 1]

The Fourier transform of the image is described by Fx. Parts of the k-space
are sampled in consecutive time intervals indexed by n = 1,2,...,N € N The
read out is so fast that no motion occurs during these intervals. Let S(k,,) be a
sampling operator at frequency coordinates k, belonging to all trajectory points
measured at time n. The frequency coordinates of the samples are defined by
kn = [kn1,kno, ... knp,] € R?*Fn with two-dimensional coordinates ki, 4
(knq1> kng2]” q € {1,2,...,P,} in the ranges ky g1 € [—25, %52, knog2
[—m=t m=1] With it, the partial measurement y,,(kn) € CP» with P, €
being the number of samples measured at this time n is given by y,, (k)
S(kn)Fx

If patients move during a complete MR scan, the partial measurements rep-
resent a motion corrupted image each. This motion is modeled by the operator
Te, , where 6,, € R®. O € N contains all motion parameters necessary to describe
the object motion from the first measurement at n = 1 to time n. In total, the
partial measurement model is given by y,, (k) = S(k,)F Tg, x and the complete
measurement is y(k) = [y, (k1),ys(k2),...,yn(kn)] with k = [k, ko, ..., ky]
Then, the reconstruction problem for the measured image & € R°*™ from all
partial measurements y,,(k), can be formulated as

zml

N
. . 1
& =argmin } _ [|S(kn) FTo, =y, (kn)l; + —52(w) (1)

n=1

with a regularization term @(x) and 0 < o € R.

2.1 Rigid motion model

To model patient motion, we restrict ourselves to rigid motion. Therefore, we
need three motion parameters 0,, = [3,,.1, Bn 2, 0] in two dimensions. The trans-
lation operator is given by Dy, , ¢,, , and the rotation is described by R, . Then,
the complete motion operator is given by 7o, = Dg, , 4, »Ra, T

Translationmodel From [2], for a shift 5, ;, = d,,; + Vn,; with J,,; € N,y €
(0,1],4 € {1,2}, it is known that the translation transform is given by

0,1 On,2 T T
D,Bn,lsﬁn,Zw = D'Yn,rDl -z (Dl ) D’Yn,Q (2)

with convolution matrices D.,, ; realising subpixel shift and D; realising full pixel
circular shifts of the image.
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Rotation model The rotation of the image is described with a rotation matrix
R,, € R**? which rotates the coordinates r of the image x. Afterwards, the
image is interpolated back onto the unrotated coordinates by barycentric inter-
polation I(x(R,,r),r) [3] combined with Delaunay triangulation [4], to cope
with arbitrary spatial grids. In total, the rotation model is described by

Ra,x = I1(x(Ry,T),T) (3)

2.2 Nonequidistant sampling scheme

To allow for any arbitrary sampling trajectory, the operator S is able to sample
any point k, 4 € R2*! in frequency domain. This sampling can be formulated
as nonequidistant discrete Fourier transform (NDFT) [5]

M
Y (Kng) = S(kn,g) Fa(r) = Y @(r)e 2 kna™ =12, P, (4

i=1

2.3 Regularization

Generally, MR images consist of clear structures and edges and should not show
noise. Especially, motion artifacts like ghosting appear as noise. So, the recon-
structed images are supposed to be sparse in the wavelet domain. Therefore,
the regularization term is chosen as @(x) = |[Wx|; with W being the wavelet
transform. In the proposed setup, especially Daubechies wavelets are efficient.

2.4 Motion estimation gradient

Motion estimation is performed in a three-step iterative algorithm. It is based
on the assumption that MR images can be sparsely represented in the wavelet
domain. For each partial measurement n, separate motion parameters 8,, are
estimated. The following algorithmic steps are iterated for each partial measure-
ment separately.

Sparsifying by alternating direction method of multipliers (ADMM)
The ADMM [6] solves (1) for fixed motion parameters 6,,. It converges to the
sparsest image & representing partial measurements ¥, ., whereby 1" contains
all indexes n for measurements y,, with already estimated 6,, and the index of
the currently considered measurement.

Problem (1) is split into two separate minimization problems and is iteratively
updated by

N . 1 _
Zasr = argmin Y [|S(ka) FTo, @ =y, (kn) I3 + 15 |2 = Zara 3
® nel

Tgr1 = Vg — Ug (5)
2
~ . g _ 2 _ N
Vg4 = argmin [|[Wol|; + 2 lv —vas1lly, Pap1 = Eayr + uag (6)
v

Uil = Ug + Tay1 — V41 (7)
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with A\,oc € R, ug,vgy € R°*™ and iteration index d € N. The measurement
fitting problem (5) is solved by a conjugate gradient method [7] using the inverse
NDFT (INDFT) [6]. The sparsifying step (6) is performed by soft thresholding.

Motion estimation by quasi-Newton gradient descent Gradients of the
motion models (2), (3) with respect to By.1,8n,2, and «a,, are optimized in a
quasi-Newton gradient descent with backtracking line search to estimate the
motion. The Boyden, Fletcher, Goldfarb, and Shanno update rule [7] is used.
The translation gradient is additionally parameterized by convolution with a
Gaussian model.

Three gradient descents are calculated on the sparse image & until an update
for ém 4, with A, € N being the iteration number per partial measurement
is given. First, the rotation gradient is evaluated to get a first estimation for
dna,a =1,2,...,4, € N With a sparse image temporarily rotated by ¢, 4,
the translation estimation gradient is applied in the quasi-Newton manner for
both directions B;;‘l, A&Q Finally, starting from the former estimations, all three
motion parameters are estimated in one gradient for rotation and translation.

Motion update The estimated motion is added to a global motion én =
9n’ A, = Z:‘;l énﬁa The sampling trajectory coordinates per partial measure-
ment are updated by rotation with &, 4,, and image translation [Bml’A” , an A,
is updated in its frequency coefficients by phase shifts.

2.5 Image reconstruction

Finally, the global translation [Bnﬁl, Bng] per partial measurement n is corrected
by a phase shift in k-space. Afterwards, the global rotation per partial measure-
ment is compensated by rotating the frequency coordinates by the estimated
angle &, with k, = Rs, kn In total, we get translation corrected frequency
coefficients @n(lzrn) which belong to rotated sampling coordinates in k-space.
The final reconstruction is done by gridding to avoid blurring caused by the
INDFT. We follow the gridding scheme of Pipe et al. [8]. With it, the recon-

struction is described by

ot () o (8) e (6 ok) ety 0

with k, € R?*9 being new grid coordinates with the same ranges as k. The
weighting function w,, (k) is calculated iteratively by wy, (k) = wy,—1(k)/(wy,—1(k)*
c(k)), wo(k) = 1,w € N. With it, sampling coefficients are weighted by an area
density compensation function to equalize the sample contribution to the new
sampled coefficients.

The kernel c¢(k) was analytically designed as described in [9] to optimize the
reconstructed image in a circular field of view (FOV). It is given by

2
C(kn,q) — <Jl(27r|k’n’q')> (9)

ma | kp, q
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with J; denoting the Bessel function of first kind and order.

By convolution with the sampling function g(k,) the data is sampled onto a
new grid k4. In contrast to former time consuming propositions by Johnson et
al. [9], we calculated all convolutions effectively using KD-trees [10].

Deapodization as inversion of the kernel convolution is realized in the image
domain by dividing by the pseudoinverse of the kernel to remove aliased sidelobes
of the image kernel. If the grid kg, is Cartesian, the reconstructed image & is
gained by inverse discrete Fourier transform of y.

2.6 Test setup

As the algorithm is built for arbitrary sampling trajectories, we exemplarily
used periodically rotated overlapping parallel lines with enhanced reconstruction
(PROPELLER) to evaluate the proposed algorithm. The k-space is divided into
rectangular blades of the same size consisting of parallel lines. The blades are
rotated around the k-space center in uniform angles. Pipe proposed the blades
to contain m equidistant samples per line and [ = 337 lines for a circular FOV
[11]. The motion was modeled as an autoregressive moving average process with
maximal amplitude given to simulate a smooth patient motion for each motion
parameter. It is sampled at N positions to extract each 8,. Test images were
the Shepp-Logan phantom in a FOV with a diameter of m = 160 and Brainweb
simulations [12] in a FOV with a diameter of m = 455.

3 Results

Two reconstruction examples are given in Fig. 1. The Brainweb image was trans-
formed by smaller motion and image details are reconstructed. The Shepp-Logan
phantom was corrupted by large motion. No image, only motion artifacts are vis-
ible in the corrupted scene, but the image is reconstructed very well. Only a few
gridding artifacts are visible. In Tab. 1, the mean percental improvement of the
image quality measures peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and mutual information (MI) calculated between the motion corrected
and ground truth Shepp-Logan phantoms. The results for several numbers of
partial measurements, maxima of translation and rotation are shown. High rates
of improvement are reached. For Brainweb, similar results were gained.

Fig. 1. Left to right: Brainweb image corrupted by motion with £,,1, Bn2 < 5,an <
%, IV = 5; motion compensated Brainweb image; Shepp-Logan phantom corrupted
with 85,1, Br,2 < 30, an < §, N = 8; motion compensated Shepp-Logan phantom.
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N Trans Rot PSNR  SSIM MI Table 1. Percental improvement
of the quality measures PSNR,

5 5 m/4 435 287 850 gomvi, MIT for N partial mea-

8 10 T/6  6.73 4.97 23.99  surements with maximum trans-

5 30 /4  6.73 4.82 28.08 lation (Trans) and maximum ro-
tation angle (Rot) on the Shepp-

6 30 /4  8.08 5.32 30.06 Logan phantom.

6 30 /6  9.74 5.36 23.28

4 Discussion

The motion compensation algorithm reaches reconstructions without motion ar-
tifacts and with a lot image details even for large motion. For small motion,
image details are reconstructed even better. Only gridding artifacts remain in
the images caused by low resolution. Overall, image quality measures are highly
improved. A higher number of partial measurements comes with better motion
compensation even if the number of samples per measurement gets smaller. With
this blind motion compensation algorithm a new design for motion compensation
for arbitrary sampling trajectories is given. Improvements could be reached by
expansion to natural elastic motion and further reduction of gridding artifacts.
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