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Abstract—A feature extraction method is presented that is
robust against vocal tract length changes. It uses the generalized
cyclic transformations primarily used within the field of pattern
recognition. In matching training and testing conditions the
resulting accuracies are comparable to the ones of MFCCs.
However, in mismatching training and testing conditions with
respect to the mean vocal tract length the presented features
significantly outperform the MFCCs.

I. INTRODUCTION

The vocal tract length (VTL) is a source of variability that is
especially relevant for speaker-independent automatic speech
recognition (ASR) systems. Adult VTLs may differ by up to
25 percent [1]. A common approximation is that in the linear
spectral domain, the short-time spectra of two speakers A and
B, when uttering the same phone, are approximately related
by SA(ω) = SB(α · ω). Without further processing within the
ASR system, this spectral scaling causes a degradation of
recognition rate.

Various methods were proposed that try to counteract the
scaling effect. On the one hand, there are methods that try
to adapt the acoustic models to the features of each utterance
[2], [3], also known as (constrained) MLLR techniques. On
the other hand, there are methods that try to normalize the
features to reduce the mismatch between training and testing
conditions. The VTL normalization (VTLN) methods [1], [4]
belong to this group. In [3] it was shown that VTLN can be
seen as a constrained MLLR. The mentioned methods have in
common that they need an additional adaptation step within the
recognition process of the ASR system. Another class of meth-
ods tries to extract features that are invariant to the spectral
effects of VTL changes [5], [6], [7]. Though not as mature as
the adaptation and normalization techniques, speaker-invariant
feature extraction methods with low computational costs could
simplify ASR systems by omitting speaker-normalization or
-adaptation stages.

The field of pattern recognition has acquired many methods
that compute invariant features with respect to different groups
of transformations. Various works showed that by using a
filter bank with frequency centers located evenly spaced on an
auditory motivated scale, like the mel or equivalent rectangular
bandwidth (ERB) scale, the spectral scaling is approximately
mapped to translation. The magnitude of the Fourier trans-
formation is commonly known for its translation-invariance.

Other well known nonlinear translation-invariant transforma-
tions belong to a group known as CT-transformations [8],
[9]. Based on this group, modifications were also presented
[10]. It has been shown in previous works [7], [11] that the
application of translation-invariant transformations as feature
extraction method for ASR systems can yield features that are
more robust in mismatching training-testing conditions (w.r.t.
the mean VTL) than the standard mel frequency cepstral coef-
ficients (MFCCs). In this work another class of transformation
is investigated for its applicability in the field of speaker-
independent speech recognition. The members of this class
are generally known as generalized cyclic transformations
(GCT) [12]. Instances of this class were successfully used in
the field of pattern recognition [13].

The next section introduces the class of GCTs and shows
how to use it for feature extraction in ASR systems. A series
of phoneme recognition experiments has been conducted for
this work. Section III describes the recognition system and
the experiments that compare the presented feature extraction
methods. It is shown that the translation-invariant feature types
work best when they are combined with each other.

II. GENERALIZED CYCLIC TRANSFORMATIONS &
TRANSLATION-INVARIANT FEATURES

A. Definition of the GCT

In this section the class of generalized cyclic transfor-
mations is described following the presentation in [12]. For
this, let x ∈ RN be an input vector and let x̂ ∈ RN be
the transformation of x. These vectors are related by the
transformation matrix AN ∈ RN×N as

x̂ = AN · x. (1)

The notion of negacyclic matrices [14], also known as
skew circulants, is instrumental in the following sections. A
negacyclic matrix C ∈ RN×N is defined by a coefficient
vector c := (c0, c1, . . . , cN−1) as

C[c] :=


c0 c1 · · · · · · cN−1

−cN−1 c0 c1 · · · cN−2

...
...

. . . . . .
...

−c2 −c3 −c4
. . . c1

−c1 −c2 −c3 · · · c0

 . (2)
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By introducing matrices T N/2, T N/4, . . . , 1, the transforma-
tion matrix AN of the GCT can be defined recursively as

AN :=
[

TN/2 −TN/2

AN/2 AN/2

]
, (3)

where A1 := 1. The derivation of the following result can be
found in [12]. Based on the observations in [15], the idea is to
choose the matrices T N/2, T N/4, . . . , 1 such that the absolute
value spectrum (AVS) of x̂, which is introduced in the next
subsection, stays unchanged under cyclic translation of x. It
can be shown that this is fulfilled by defining

T bM := −C[bM ], (4)

where bM = (b0, b1, . . . , bM−1) is a coefficient vector. The
matrix T is called a generalized cyclic matrix (GCT). A set
of ld(N) coefficient vectors b1

N/2, b
2
N/4, . . . , b

ld(N)
1 defines a

transformation matrix AN . Now, by unfolding the recursion
in Equation (3), the transformation matrix AN can be written
as

AN :=


T b1

N/2 0
T b2

N/4

. . .
0 1


·

ld(N)−1∏
i=1

diag (IN−2i , H ⊗ I2i−1)

 ·
(
H ⊗ IN/2

)
,

(5)

where diag(·, ·) defines a diagonal block matrix with two
submatrices. IN is the identity matrix of size N , and H is a
Hadamard matrix of order 2:

H :=
[

+1 −1
+1 +1

]
. (6)

The last two bracket terms in Equation (5) can be interpreted
as a rationalized form of the modified Walsh Hadamard trans-
formation (MWHT) [16]. The matrix containing the GCMs
specifies the properties of the resulting transformation and is
defined by the characteristic coefficient vector

b̃ := (b1
N/2, b

2
N/4, . . . , b

ld(N)
1 ). (7)

The rows of the transformation matrix AN have a period-wise
order. It is noteworthy that the rationalized MWHT and the
square wave transformation (SWT) [17] can be realized with
the GCT by choosing appropriate characteristic coefficients.
Besides the coefficients for the MWHT and the SWT, three
additional generating rules for the coefficients were listed
in [13]. Based on these, we used the coefficient types as listed
in Table I.

B. Translation-Invariant Features

In order to obtain translation-invariant features, a nonlinear
function has to be applied on x̂. Based on the transformed
signal x̂, two types of translation-invariant features are de-
scribed in this subsection. While the first method is based on

the aforementioned AVS, the second method uses the cyclic
autocorrelation function for defining a translation-invariant
extended group spectrum.

Similar to the computation of the power spectrum of the
Walsh-Hadamard transformation [16], an AVS for a GCT
transformed signal can be defined. It is shown in [13] that the
period-wise addition of the absolute values of the transformed
signal x̂ yields a translation-invariant spectrum. Formally, let

Fi := N
(
1 − 0.5i

)
, i ∈ N0, (8)

be a supplementary function that is used for the ease of
notation in the following. Then, AVS(x̂) : RN → Rld(N)+1

with AVS(x̂) = (s0, s1, . . . , sld(N)) is defined as

si :=

{∑Fi+1−1
k=Fi

|x̂k|, i = 0, . . . , ld(N) − 1,

|x̂N |, i = ld(N).
(9)

A second translation-invariant feature type for the GCT can
be defined on base of a cyclic autocorrelation function. Based
on [18], the cyclic autocorrelation for the GCT is defined as

RU
x̂x̂ :=


U0 0

U1

. . .
0 1

 · x̂, (10)

where
U i := C

[(
x̂Fi , x̂Fi+1, . . . , x̂Fi+1−1

)]
(11)

for i = 0, 1, . . . , ld(N)−1. According to [19], the autocor-
relation of a GCT transformed signal is highly redundant.
However, by introducing the signum function to the equa-
tion given in (10), a translation-invariant spectrum, denoted
as extended group spectrum (EGS), can be computed. The
EGS : RN → RN of a transformed signal x̂ is defined as

EGS(x̂) := RV
x̂x̂, (12)

where

V i := C
[
sgn

(
x̂Fi , x̂Fi+1, . . . , x̂Fi+1−1

)]
. (13)

The number of separable patterns of the EGS is larger than the
one of the AVS method. The drawback of the EGS function
is the higher dimension of its image compared to the AVS. It
is noteworthy that the AVS is contained within the EGS [19].

C. Application to ASR

For the application of the described feature types within
an ASR system, a time-frequency (TF) representation of an
input speech signal has to be computed. Commonly, a filter
bank is used for the TF analysis. Auditory motivated scales
like the mel or the ERB scale are typically used to locate
the frequency centers of the filters evenly spaced on these
scales. It was shown that these kinds of filter banks map the
spectral changes induced by VTL changes to translations along
the subband index space of the TF representation [5], [20].
Let y(n, k) denote the TF representation of an input speech
signal, where n is the frame index, 1 ≤ n ≤ N , and k is the
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TABLE I
CHARACTERISTIC COEFFICIENT VECTOR FOR DIFFERENT TYPES OF TRANSFORMATIONS

Transformation Coefficient vector b̃

SWT (1, 1, . . . , 1
| {z }

N−3 coeffs.

,−1,−1, 1)

MWHT (0, 0, . . . , 0,−1
| {z }

N/2 coeffs.

, 0, 0, . . . , 0,−1
| {z }

N/22 coeffs.

, . . . ,−1)

C1

`

2N/2−1, 2N/2−2, . . . , 20, 2N/4−1, 2N/4−2, . . . , 20, . . . , 0,−1,−1,−1
´

C2

`

b̃1, b̃2, . . . , b̃N

´

with b̃k = −1/N · cos(π · (k + 1/2)/N)) for k = 1, . . . , N − 1, b̃N = 1

C3 (r0, r1, . . . , rN−1) with rk ∈ N (0, 1)

subband index, 1 ≤ k ≤ K. A vector f = (f1, f2, . . . , fK) =
y(n, k), k = 1, 2, . . . , K, containing all spectral values for a
time index n is called a frame.

The way the GCT is applied for the feature extraction within
ASR is inspired from [13]. For each frame the GCT is applied
on all subframes according to a chosen subframe length and a
subframe shift. An example for a frame of length 8, a chosen
subframe length of 4 and a subframe shift of 2 is shown in Fig.
1. The combination of a chosen subframe length and subframe
shift is called a subframing scheme in the following.

An exemplary computation of AVS and EGS features of a
signal and a translated version of it is shown in Fig. 2.

III. PHONEME RECOGNITION EXPERIMENTS

A. Experimental Setup

We conducted phoneme recognition experiments for the
evaluation of the described feature extraction methods. We
used the TIMIT corpus with a sampling rate of 16 kHz. The
“SA” sentences have not been used to avoid an unfair bias
for certain phonemes [21]. In order to simulate mismatching
training and testing conditions with respect to the mean VTL,
the training and testing data was split into male and female
subsets and three scenarios were defined:

1) Training on both male and female data and testing on
male and female data (FM-FM),

2) training on male data and testing on female data (M-F)
and

3) training on female data and testing on male data (F-M).
For the TF analysis we used a gammatone filter bank [22].

The number of filters was set to 64 and corresponds to the
choice in [23]. We used this number of filters as compromise
between frequency resolution and size of feature vector. The
minimum center frequency was 40 Hz, the maximum center
frequency was set to 8000 Hz. The final frame length was set

f1 f2 f3 f4 f5 f6 f7 f8



Subframe 1



Subframe 3



Subframe 2

Fig. 1. Exemplary application of the GCT to subframes of length 4 and a
subframe shift of 2.
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Fig. 2. Example of a signal and its AVS and EGS using MWHT coefficients.
(a) Signal x (circles) and a translated version of it (crosses). (b) Average group
spectrum (AVS) and (c) extended group spectrum (EGS) of the signal and its
shifted version. One can see that the shift does not change the AVS or EGS.

to 20 ms and the frame shift was 10 ms. The bandwidth was
chosen as 1 ERB for each filter. A power-law compression
with an exponent of 0.1 was applied in order to resemble the
nonlinear compression found in the human auditory system.

The recognizer was based on the hidden-Markov model
toolkit (HTK) [24]. Monophone models with three states
per phoneme, 8 Gaussian mixtures per state and diagonal
covariance matrices were used together with bigram statistics.
According to [21], 48 phonetic models were trained and the
recognition results were folded to yield 39 final phoneme
classes that had to be distinguished. All feature vectors were
supplemented with the first and second order time derivatives.
When the size of the feature vector was greater than 47
elements, a linear discriminant analysis was performed such
that the feature vectors were reduced to a length of 47.

MFCCs were used to obtain baseline recognition accuracies.
They were computed by using the standard HTK setup which
yields 12 coefficients plus the logarithmized energy for each
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TABLE II
ACCURACIES OF C1 TRANSFORMATION AS REPRESENTATIVE FOR

DIFFERENT SUBFRAMING SCHEMES

Subframe length 64, subframe shift 0
FM-FM M-F F-M

AVS 52.01 49.18 46.48
EGS 57.14 52.55 50.03

Subframe length 16, subframe shift 16
FM-FM M-F F-M

AVS 56.63 50.69 49.61
EGS 62.82 55.66 54.87

Subframe length 16, subframe shift 8
FM-FM M-F F-M

AVS 59.04 51.48 51.23
EGS 64.21 56.09 56.17

frame. The accuracies for the three scenarios when using the
MFCCs are as follows: FM-FM: 66.57%, M-F: 55.00% and
F-M: 52.42%. It can be seen that the accuracy of the MFCCs
declines significantly when the training and testing conditions
do not match.

B. Comparison of Individual Transformations & Subframing
Schemes

The first part of the experiments evaluated the two feature
types AVS and EGS for the coefficients shown in Table I.
Three different subframing schemes were considered in these
experiments:

1) trivial subframing scheme with subframe length of 64,
i.e., the GCT applied on the full frame

2) subframe length of 16 and subframe shift of 16
3) subframe length of 16 and subframe shift of 8

A general observation is that all five coefficient-generating
functions from Table I had very similar performances. Thus,
the results of the transformation C1 are shown in Table II as
a representative.

Overall, it can be stated that the EGS feature type performs
better than the AVS feature type for a given subframing
scheme. Using a trivial subframing scheme, both feature types
perform worse then the MFCCs. However, using a nontrivial
subframing scheme increases the accuracies of both the AVS
and the EGS features. The accuracy of the EGS for the
mismatching training-testing scenarios is slightly higher than
the one of the MFCCs which was about 55% and 52% for the
M-F and F-M scenarios, respectively. In comparison with the
non-overlapping subframing scheme, the subframing scheme
with overlapping subframes shows slightly higher accuracies
for both feature types.

C. Combining Translation-Invariant Feature Types

Previous works showed that combinations of translation-
invariant feature types are a promising approach for increasing
the robustness of features in mismatching training-testing
conditions [6], [25]. The second part of the experiments thus
investigated combinations of the presented feature types. In
addition, feature types based on the autocorrelation and cross

correlation [25] of frames were considered in this experiment
as well. These feature types are denoted as ACF and CCF,
respectively. Again, all five coefficient types as shown in
Table I were considered for the GCT. Based on the results
described in the previous section, the best subframing scheme
was used. Therefore, a subframe length of 16 and a subframe
shift of 8 was chosen. For all considered coefficient types, the
EGS was computed as GCT-based feature type. All possible
combinations of the GCT- and correlation-based feature types
with size 2, 3 and 4 have been evaluated. The last part of this
experiment supplemented the considered combinations with
MFCCs. This was necessary in [25] to boost the performance
of the translation-invariant feature types.

Table III shows the combinations that led to the highest
accuracies within the described experiments. Generally, it can
be observed that the feature type that is based on the cross
correlation of two frames is always part of the best feature-
type combinations. This indicates the importance of contextual
information for the feature extraction in ASR systems. At
the top of Table III, results for the best combinations of two
feature types are shown. Compared to the accuracies that were
achieved with individual GCT-based features, the accuracies in
all scenarios further increased to around 65.5% in the matching
and slightly less than 60% in the mismatching training-testing
conditions. The introduction of a third feature type increases
the accuracies in all three scenarios slightly. Again, it can
be observed that the highest accuracies with combinations of
three feature types were achieved by including the correlation
based feature types ACF and CCF. Supplementary, the results
for the combination of ACF and CCF features are shown in the
middle part of Table III. The fact that the combination of only
ACF and CCF leads to lower accuracies in the scenarios shows
that the GCT feature types do contain additional discriminative
information. The combination of four feature types yields only
slight further improvements.

As shown in the last part of Table III the accuracies of the
scenarios do not change significantly when the translation-
invariant features are supplemented by MFCCs. While the
supplementing step was necessary when using only the corre-
lation based feature types ACF and CCF in [25] it was shown
in previous work that the combination of correlation based
features and another translation-invariant feature type did not

TABLE III
ACCURACIES OF FEATURE-TYPE COMBINATIONS

Feature types FM-FM M-F F-M

C3 + CCF 65.51 59.46 59.58
MWHT + CCF 65.54 59.39 59.98

C3 + ACF + CCF 65.74 60.72 60.59
MWHT + ACF + CCF 65.78 60.86 60.52

ACF + CCF 63.17 58.05 56.84

C1 + C2 + ACF + CCF 66.04 60.61 60.71
C3 + SWT + ACF + CCF 65.98 60.43 60.92

M
FC

C C3 + CCF 66.5 59.84 59.20
C3 + ACF + CCF 66.60 60.80 61.22
C1 + C2 + ACF + CCF 66.56 61.14 61.62
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benefit from additional MFCCs [6]. The same observation is
made here. The GCT based feature types in combination with
ACF and CCF seem to include the discriminative information
of the MFCCs.

IV. CONCLUSIONS & FUTURE WORK

In this work we described the principles of the GCT together
with two translation-invariant feature extraction methods as
they were introduced in the field of pattern recognition. The
transformation can be parametrized with different choices of
coefficients. We conducted phoneme recognition experiments
for the evaluation of the methods. Different choices of coeffi-
cients led to results with no significant differences in our ex-
periments. With respect to the two feature extraction methods,
the EGS outperforms the AVS. However, the size of the feature
vector of the EGS is bigger than the one of the AVS. The use
of a subframing scheme with overlapping subframes lead to
higher accuracies than a subframing scheme without overlap
or no subframing at all. While the EGS with overlapping
subframing scheme leads to accuracies comparable to the
one of the MFCCs, the combination of different GCT- and
correlation-based feature types increases the accuracies by
more than 5% in the scenarios in which the training and testing
conditions do not match.

Future work will deal with the refinement of the feature
types in order to further increase their robustness against
mismatching training-testing conditions. The inclusion of con-
textual information into the feature extraction methods will be
part of this refinement. In theory, the GCT can be parametrized
with complex valued coefficients. This could also help to fur-
ther improve the GCT based features. Optimal parameters for
a subframing scheme may also be investigated. Furthermore,
previous publications by the authors presented other robust
feature types. An evaluation and comparison of these feature
types on different corpora and under different noise conditions
will yield more distinctive results.
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