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Abstract. Angiography is a widely used method of vessel imaging for
the diagnosis and treatment of pathological manifestations as well as for
medical research. Vessel segmentation in angiograms is useful for analy-
sis but also as a means to enhance the vessels. Often the vessel surface
has to be quantified to evaluate the success of certain drugs treatment
(e.g. aimed at angiogenesis in the case of transplanted skin) or to gain
insight into different pathological manifestations (e.g. proliferative dia-
betic retinopathy). In this paper we describe algorithms for automatic
vessel segmentation in angiograms. We first enhance likely vessel regions
to obtain a vessel map which is then segmented. To remove false posi-
tives we accept in a second step only those regions showing branchings
and bifurcations which are typical for a vessel tree.

1 Introduction

The success of a skin transplant depends on a proper revascularization of the
transplanted tissue. To promote angiogenesis (vessel growth) different drugs may
be administered. To evaluate the effectiveness of such a drug treatment in a
research environment, we need to segment the newly grown vessels in micro-
angiograms of the transplant area to quantify the surface they cover and also
their length. Proliferative diabetic retinopathy is characterized by neovascular-
ization (the growth of new blood vessels). Evaluating the vessel covered area
during a retina examination is instrumental in diagnosis. Also, in computer
assisted vessel surgery (e.g. PTCA for the treatment of the coronary arteries
disease) vessel segmentation is needed to provide fast and easy assessment of the
principal structure of the vessel tree for navigational help.

Most vessel segmentation algorithms use a two step approach. In a first step
vessel specific information is identified and enhanced. In the second step the
vessels are segmented. In contrasted angiograms, vessels are oriented tubular
structures of a certain size with increased absorption relative to the immediate



surroundings. Many enhancement techniques are based on these observations
[1,2,3]. The results of the enhancement step are used to segment the vessels.
Vessel segmentation can be done using different methods [3]. Some of the vessel
segmentation methods are fully automated while others require user interaction.
Towards the above ends we seek to perform vessel segmentation based on such
a two step strategy.

2 Methods

2.1 Vessel Map

We consider that in the analyzed images the vessels appear darker than their im-
mediate surroundings due to their increased absorption once the contrast agent
reaches them. The main purpose of the vessel map is to increase the separability
between the background and vessel pixel classes facilitating thus a successful
subsequent segmentation. There are two aspects which play a role in determin-
ing the separability of a certain feature space: (i) the intra-class variance which
should be as small as possible and (ii) the inter-class variance which should be as
large as possible. We have thus two main objectives: a homogeneous gray-level
representation for both background and vessels and a large contrast.

The varying background is equalized by a morphological top-hat like oper-
ator [4]. This operator is defined as the difference between the original image
and its closing. If the filter window size is chosen slightly larger than the largest
vessel diameter the vessels will be suppressed after image closing, leaving only
the background. Subtracting this result from the original yields then predom-
inantly vessel information. This morphological operator successfully increases
the homogeneity of the background pixels but it is not a contrast enhancer and
hence it does not further increase the separability.

Conceptually, we divide the vessel pixel class into two categories. One cat-
egory covers the larger vessels which contain enough contrast agent to appear
with sufficient prominence in the original and tophat-filtered angiograms. The
other category covers the small to mid-size vessels, which appear with less con-
trast, thus requiring a further enhancement step. Enhancement is carried out in
the tophat images by analyzing at each scale within a multiscale approach the
largest eigenvalue of the Hessian matrix. The results are combined across the
scales by the maximum rule. The scales are chosen such that the larger vessels
are not affected. To reduce the variance of the vessel class, the results of both
tophat filtering and multiscale Hessian filtering are normalized. Finally, the nor-
malized results are added. Larger vessels appear in the thus obtained vessel map
due to their contrast in the tophat image, while mid-size and small vessels ap-
pear due to the Hessian filtering step. The vessel map computed for one of the
images in our data base is shown in Fig. 1.

2.2 Segmentation

On the vessel map there are ideally only two classes of pixels present: vessel
pixels and background pixels. Starting from an initial over-segmentation result



(a) (b) (c)
Fig. 1. Skin transplant micro-angiogram (1.5 cm in diameter) obtained as a result of
laboratory experiments on rats (a), its vessel map (b), and the segmentation result (c).

several refinement steps are required to obtain a set of vessel candidate pixels.
During these refinement steps every pixel is reclassified according to a decision
rule which takes into consideration: (i) the class conditional pixel gray level
probability and (ii) the influence of the classification results obtained for a certain
set of neighboring pixels. Of particular importance in vessel segmentation is the
detection of so called seed points: pixels which with a high probability belong
to the vessels. To select true vessels among the vessel candidates we use seed
points. Only vessel candidates connected to a seed point are considered in the
final segmentation.

The over-segmentation result is obtained by thresholding the vessel map with
a percentile-based threshold. As the vessel cover always (empirically) less than
50 % of the image area we choose the 50th percentile as threshold. The class con-
ditional pixel probabilities are presumed Gaussian and parametrically estimated
using the thresholding algorithm proposed by Otsu [5]. The prior information
brought to bear on the class of the investigated pixel by the classification results
obtained for its neighbors is modeled by means of a first-order Markov random
field [6]. From this point of view the algorithm described here may also be seen
as an improvement over the classical Otsu threshold.

A first-order Markov random field is the extension to images (2D) of a first-
order Markov random chain. A first-order Markov chain is a random process of
states in which the transition probability to the next state depends solely on
the previous one. For a Markov random field the dependency condition appears
now in the form of a certain neighborhood which influences the state of the
current pixel. The states are assimilated to classes and the over-segmentation
result serves to initialize the Markov random field. Let Y = {yj} denote the gray
level image with a gray level yj at each pixel j, and S = {sj} the segmentation
result, with a binary label sj indicating whether pixel j belongs to background
or vessels. Starting from the maximum a posteriori criterion and invoking the
Bayes theorem, we seek S such that p(Y |S)P (S) is maximized. Here, p(Y |S) is
the likelihood [6] linking the data Y and the segmentation result S, while P (S)
denotes the a priori probability of S. Since the gray level distribution of a pixel
j depends only on its class sj [6, p.203], the yj are conditionally independent,
implying p(Y |S) =

∏
j p(yj |sj). The conditional marginal probability p(yj |sj) is

for each class estimated within the Otsu thresholding method described above.

The Markovian property implies that the conditional probability of sj given
all other labels depends only on the labels in a small neighborhood Nj around
the investigated pixel j, i.e. P (sj |S\sj) = P (sj |si, i ∈ Nj). For a first-order



cross-shaped neighborhood, we compute P (sj |si, i ∈ Nj) as in [7, p.726] by:

P (sj |si, i ∈ Nj) =
e
−sj(α+β

∑
i∈Nj

si)

1 + e
−(α+β

∑
i∈Nj

si)
(1)

where α and β are parameters to be determined experimentally.
Our decision rule is then: chose the class with the largest posterior probability

which we express using the Bayes rule in terms of prior probabilities and class
conditional probability density functions. This decision rule is used to iteratively
reclassify each pixel until the classification result remains unchanged between two
consecutive iteration steps or until a certain number of iterations have passed.

After obtaining the vessel candidate pixels we use a seed points based se-
lection mechanism to determine the real vessels. As a typical vessel tree shows
multiply oriented regions (i.e. bendings, bifurcations, etc.) while the background
does not, we use corner points as seeds. The corners are detected by thresholding
(e.g. using the Otsu algorithm) the lower eigenvalue image of the tensor describ-
ing the orientation in a certain neighborhood [8]. The segmentation result for a
skin transplant micro-angiogram is illustrated in Fig. 1.

3 Results and Experiments

We have tested our algorithm on skin transplant micro-angiograms obtained
from laboratory experiments on rats, coronary cine-angiograms from sequences
acquired in clinical routine and retinal images from a publicly available data base.
All the analyzed images were reduced to a resolution of 256x256. The Tophat
window size was established based on the diameter of the largest observable ves-
sel in the respective angiograms. We have recorded the largest eigenvalue of the
Hessian matrix at four different scales. For the Markov field approximation we
have chosen the parameters: α = 1 and β = −0.65 encouraging thus a decision in
favor of the vessel pixel class. These parameters remained unchanged irrespective
of the analyzed angiogram. The algorithm was allowed to iterate until the classi-
fication result remained unchanged between two consecutive iterations. We have
evaluated both the quality of the vessel map using a quantitative separability
measure (the J1 criterion as described in [9, p. 446]) and the segmentation re-
sults with respect to the percent of correct classifications and the percent of false
positives 1. As reference we have used hand-segmented angiograms. The results
are presented in Table 1. for the vessel map and Table 2. for the segmenta-
tion. The results represent mean values obtained over all available angiograms
for each angiogram type.

4 Conclusions

We have presented a vessel segmentation method for vessel surface quantifica-
tion in angiograms. In developing this algorithm we have followed the typical

1 Most false positives are encountered around vessel edges.



Table 1. Separability of different vessel maps according to the J1 criterion. The higher
the result the better the separability.

Vessel map Micro-angiogram Coronary angiogram Retinal images

Original image 0.1506 0.0009 0.0109
Tophat 0.6510 0.2197 0.7837
Hessian 0.5737 0.2557 0.8551
Proposed vessel map 0.7268 0.2925 0.8963

Table 2. Segmentation results together with the results obtained with the Otsu thresh-
old. Legend: CC = % of correct classifications, FP = % of false positives.

Angiogram CC FP CC-Otsu FP-Otsu

Micro-angiograms 69.6869 2.7358 50.4253 1.0150
Coronary angiograms 74 2.7670 54.4590 0.9874
Retinal Images 64.8626 1.9960 36.8392 0.1576

pattern recognition paradigm: first feature extraction and then classification. In
an initial step the angiograms are processed to enhance the separability between
vessels and background. We obtain thus a vessel feature map which is then seg-
mented. Starting from an over-segmentation result each pixel is reclassified using
a decision rule which takes into account also the segmentation results obtained
in a certain neighborhood of the investigated pixel. We have developed a new
vessel map well suited for subsequent vessel segmentation which considers both
the properties of the image acquisition method and the anatomical properties of
vessels. The classification algorithm described here exhibits better classification
results than the Otsu thresholding algorithm on which it is partially based.
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