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Abstract. An often used approach for separating convolutive mixtures
is the transformation to the time-frequency domain where an instanta-
neous ICA algorithm can be applied for each frequency separately. This
approach leads to the so called permutation and scaling ambiguity. While
different methods for the permutation problem have been widely stud-
ied, the solution for the scaling problem is usually based on the minimal
distortion principle. We propose an alternative approach that shapes the
unmixing filters to have an exponential decay which mimics the form of
room impulse responses. These new filters still add some reverberation
to the restored signals, but the audible distortions are clearly reduced.
Additionally the length of the unmixing filters is reduced, so these filters
will suffer less from circular-convolution effects that are inherent to un-
mixing approaches based on bin-wise ICA followed by permutation and
scaling correction. The results for the new algorithm will be shown on a
real-world example.

1 Introduction

The blind source separation (BSS) problem has been widely studied for the
instantaneous mixing case and several efficient algorithms exist [1I23]. However,
in a real-world scenario in an echoic environment, the situation becomes more
difficult, because the signals arrive several times with different time lags, and
the mixing process becomes convolutive. Although some time-domain methods
for solving the convolutive mixing problem exist [4/5], the usual approach is
to transform the signals to the time-frequency domain, where the convolution
becomes a multiplication [6] and each frequency bin can be separated using an
instantaneous method. This simplification has a major disadvantage though.
As every separated bin can be arbitrarily permuted and scaled, a correction is
needed. When the permutation is not correctly solved the separation of the entire
signals fails. A variety of different approaches has been proposed to solve this
problem utilizing either the time structure of the signals [7I8J9] or the properties
of the unmixing matrices [TOJTT/I2]. When the scaling is not corrected, a filtered
version of the signals is recovered. In [I3/14] the authors proposed a postfilter
method that aims to recover the signals as they have been recorded at the
microphones, accepting the distortions of the mixing system while not adding
new ones. This concept appears to be quite reasonable, but the desired goal is
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often not exactly achieved in practice due to circular convolution artifacts that
stem from the bin-wise independent design of the unmixing filters which does not
obey the filter-length constraints known from fast-convolution algorithms. This
problem has been addressed in [15], where the authors applied a smoothing to
the filters in the time domain in order to reduce the circular-convolution effects.

In this paper, we propose a new method for solving the scaling ambiguity
with the aim of shaping the unmixing filters to have an exponential decay. This
mimics the behavior of room impulse responses and reduces the reverberation.
In order to achieve this, we calculate the dependency between the scaling factors
and the impulse responses of the unmixing filterbank and calculate the scaling
factors that shape the desired form.

2 The Framework for Mixing and Blind Unmixing

The instantaneous mixing process of N sources into N observations can be mod-
eled by an N x N matrix A. With the source vector s(n) = [s1(n),...,sn(n)]T
and negligible measurement noise, the observation signals are given by

x(n) = [z1(n),...,zx(n)]T = A - s(n). (1)
The separation is again a multiplication with a matrix B:

y(n) =B - z(n) (2)

with y(n) = [y1(n),...,y~(n)]T. The only source of information for the esti-
mation of B is the observed process x(n). The separation is successful when B
can be estimated so that BA = DII with IT being a permutation matrix and
D being an arbitrary diagonal matrix. These two matrices stand for the two
ambiguities of BSS. The signals may appear in any order and can be arbitrarily
scaled. For the separation we use the well known gradient-based update rule
according to [I].

When dealing with real-world acoustic scenarios it is necessary to consider
the reverberation. The mixing system can be modeled by FIR filters of length
L. Depending on the reverberation time and sampling rate, L can reach several
thousand. The convolutive mixing model reads

L-1

x(n) =H(n) xs(n) = Z H(l)s(n—1) (3)

=0

where H(n) is a sequence of N x N matrices containing the impulse responses of
the mixing channels. For the separation we use FIR filters of length M > L — 1

and obtain
M-1

y(n) = W(n) sa(n) = Y. W(ha(n 1) (4)

=0

with W(n) containing the unmixing coefficients.
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Using the short-time Fourier transform (STFT), the signals can be trans-
formed to the time-frequency domain, where the convolution approximately be-
comes a multiplication [6]:

Y((.Uk,T) :W<wk)X(wk7T)7 k:Oa17"'aK_17 (5)

with K being the FFT length. The major benefit of this approach is the possibil-
ity to estimate the unmixing matrices for each frequency independently, however,
at the price of possible permutation and scaling in each frequency bin:

Y(wkﬂ') = W(wk)X(wk,T) = D(wk)ﬂ(wk)S(wa) (6)

where II(w) is a frequency-dependent permutation matrix and D(w) an arbitrary
diagonal scaling matrix.

The correction of the permutation is essential, because the entire unmixing
process fails if different permutations occur at different frequencies. A number
of approaches has been proposed to solve this problem. [7USIOUTO/TTITZ].

When the scaling ambiguity is not solved, filtered versions of the sources
are recovered. A widely used approach has been proposed in [13]. The authors
aimed to recover the signals as they were recorded at the microphones accepting
all filtering done by the mixing system. A similar technique has been proposed
in [I4] under the paradigm of the minimal distortion principle, which uses the
unmixing matrix

W (w) = dg(W' () - W(w) (7)

with dg(-) returning the argument with all off-diagonal elements set to zero.
However, as mentioned in the introduction, the independent filter design for
each frequency bin may result in severe circular convolution artifacts in the final
unmixed time-domain signals. In this paper, we therefore propose a method to
re-scale the frequency components in such a way that the resulting unmixing
filters obey a desired decay behavior. This new approach will be described in the
next section.

3 Filter Shaping

The proposed method is to introduce a set of scaling factors ¢(w) for the unmixed
frequency components that ensure that the unmixing filters obey a desired decay
behavior. The motivation for this comes from the fact that the impulse responses
achieved by the minimal distortion principle have a quite arbitrary form. In
particular, they often show many large coeflicients after the main peak, which
results in a significant amount of added reverberation and can even lead to
problems of circular-convolution artifacts. For addressing both above-mentioned
problems we propose to shape the unmixing filters to have an exponential decay.
This reduces the perceived echoes as well as the problems of circular convolution.

In Fig. [ the overall BSS system is shown. It consists of N x N single channels
as depicted in Fig. @ In this representation the permutation has already been
corrected. The dependency of time-domain filter coefficients of a filter vector
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Fig. 1. Overview of frequency-domain BSS
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Fig. 2. Data flow from input ¢ to output j
w;; and scaling factors ¢; = [¢j(wo), ¢j(w1), ..., cj(wkx—1)]T for output j can be
calculated as follows:
’wi]‘:ZEl ']‘—_1 'Cj 'Wij fDl -0
l
= E;-F ' -diag(F - D;-6) - W - ¢ (8)
l

=Vij-¢

where diag(-) converts a vector to a diagonal matrix. The term ¢ is a unit vector
containing a single one and zeros otherwise. D; is a diagonal matrix containing
the coefficients of the STF'T analysis window shifted to the [th position according
to the STFT window shift. F is the DFT matrix. W;; is a diagonal matrix
containing the frequency-domain unmixing coefficients. ¢; is a vector of the
sought scaling factors, and C; is a diagonal matrix made up as C; = diag(c;).
E; is a shifting matrix corresponding to D;, defined in such a way that the
overlapping STFT blocks are correctly merged. Note that for real-valued signals
and filters, the above equation can be modified to exploit the conjugate symmetry
in the frequency domain.

Using the formulation of [I6/17] a desired impulse response dg,; can now be
expressed as

ddi_j = dia‘g(’ydij) : Vij " Cj (9)

with va,; = [ya,;(0),7a,; (1), ..., 7a,, (M — 1)] a vector with the desired shape of
the unmixing filter. Here we use a two-sided exponentially decaying window

1001 (me=1) for 0 < n < ng
’ydij (n) = {10q2(n—na) for no S n (]‘0)
with ng being the position of the maximum of |w;;|. The factors ¢; and g have
been chosen heuristically as g = —0.1 and g2 = —0.05.
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Fig. 3. Comparison of filter sets using the minimal distortion principle (left) and the
new method (right)

An undesired part is formulated analogously as

with
109(me=1) for 0 < n < ng

Yuiy (n) = {1OQ4(nno) for ng <n (12)

Here the factors have been chosen heuristically to be g3 = 0.001 and g4 = 0.0005.

As the filters corresponding to the same output channel have the same scaling
factors, ¢;(w) has to be optimized simultaneously for these filters. Therefore V;;
corresponding to the same output j are stacked to Vj. The same applies for g,
and dg,, which are stacked into 74,(n) and dg; respectively.
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Fig. 4. Magnitudes of filters designed via the minimal distortion principle (left) and
the new method (right)

Now the matrices A and B can be calculated as in [I8]:

dild, =dfl - Vi diag(vyl]) - diag(yu,) - V- du, =d] - A-d,, (13)
difds =dl - Vi diag(v}]) - diag(va,) - Vj-da, = dl - B-da;  (14)

Finally, the optimal scaling factors c,p,+ are the solution of the generalized
eigenvalue problem [I8]

B - Copt = A Copt * )\maw (15)

with Apqe being the largest eigenvalue and ¢, being the corresponding eigen-
vector.
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4 Simulations

Simulations have been done on real-world data available at [I9]. This data set
consists of eight-seconds long speech recordings sampled at 8 kHz. The chosen
parameters were a Hann window of length 2048, a window shift of 256, and
an FFT-length of K = 4096. Every frequency bin has been separated using 200
iterations of the gradient-based rule from [I]. As the original sources are available
for the considered data set, the permutation problem has been ideally solved,
so that permutation ambiguities do not influence the results, and the scaling
problem can be studied exclusively.

Table 1. Comparison of the signal-to-interference ratios in dB between the minimal
distortion principle and the new algorithm

Left Right Overall

MDP 16.07 16.72 16.41
New Alg. 24.88 28.81 26.75

In Figs. B and [ the filters designed with the traditional method (7)) and
the proposed method are shown, respectively. The main difference is the clearly
visible and significantly bigger main peak and the faster decay of the impulse
responses designed with our method. As one can observe by comparing Fig. [
the energy difference between the main peak and the tail of the impulse response
could be increased by about 25 dB.

The new filters are also able to significantly enhance the separation perfor-
mance as shown in Table [l

5 Conclusions

In this paper, we have proposed the use of the scaling ambiguity of convolutive
blind source separation for shaping the unmixing filters. We calculate a set of
scaling factors that shape exponentially decaying impulse responses with less
reverberation. On a real-world example, the energy decay could be improved by
25dB, which also translated into better signal-to-interference ratios.
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