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ABSTRACT

In this paper we propose a new clustering approach for solving the
permutation ambiguity in convolutive blind source separation. Af-
ter the transformation to the time-frequency domain, the problem of
separation of sources can be reduced to multiple instantaneous prob-
lems, which may be solved using independent component analysis.
The drawbacks of this approach are the inherent permutation and
scaling ambiguities, which have to be corrected before the transfor-
mation to the time domain. Here, we propose a new method that
allows for aligning up to several hundreds of consecutive bins into
clusters. The depermutation of these clusters using some known
techniques is then much easier than the original problem. The per-
formance of the proposed method is evaluated on real-room record-
ings.

Index Terms— Blind source separation, permutation problem,
convolutive mixture, frequency-domain ICA

1. INTRODUCTION

In the case of linear and instantaneous mixtures of non-Gaussian
signals, blind separation may be performed using the Independent
Component Analysis (ICA). For this, numerous algorithms have
been proposed [1, 2, 3]. The methods are called blind, as typically
neither the sources nor the mixing system are known.

For real-world mixtures of acoustic signals, as for example
speech, this simple approach fails. Due to the finite speed of sound
and multiple reflections in closed rooms, the signals arrive at the
microphones multiple times with different lags. This convolutive
mixing process can be modeled using FIR filters. In typical scenar-
ios, as for example office rooms, the length of these mixing filters
can reach up to several thousand coefficients. Such mixtures can be
separated using a set of unmixing FIR filters with at least the same
length.

The unmixing filters can be calculated directly in the time
domain [4, 5]. Unfortunately, this method suffers from high com-
putational load and often poor convergence. Therefore, another
approach is widely used: With the transformation to the time-
frequency domain the convolution becomes a multiplication, and
an instantaneous ICA algorithm can be used independently in each
frequency bin. However, this simplification has a major disadvan-
tage, as each bin can be arbitrarily scaled and permuted. These
ambiguities need to be solved before the transformation to the time
domain, as otherwise the separation process will fail.

The correction of scaling is needed, as otherwise only a filtered
version is recovered. A typical solution is the minimal distortion

principle [6] or inverse postfilters [7]. These methods accept the
filtering done by the mixing system without adding new distortions.
Other approaches solve the scaling ambiguity with the aim of filter
shortening [8] or shaping [9, 10].

The correction of the random permutation of the discrete fre-
quency bins is even more important as otherwise the whole sepa-
ration process will fail. The depermutation algorithms can be or-
ganized in two major groups. The first group relies on the prop-
erties of the unmixing matrices. For example, they can be inter-
preted as beamformers, and the direction of arrival (DOA) informa-
tion is used for a depermutation criterion [11]. Alternative formula-
tions evaluate directivity patterns [12] or time differences of arrivals
(TDOA) [13, 14, 15]. These approaches assume specific directions
for the sources, and, in the case of reverberation, usually only a
small part of the bins the TDOA can be estimated with high enough
confidence for an effective depermutation. The remaining bins have
to be aligned in a second stage using some other approach.

The second group of algorithms uses the alike time structure
of the separated bins. The early approaches often exploited the as-
sumption of high correlation between neighboring bins [7]. The
dyadic sorting, as proposed in [16], also allows for a more robust
depermutation scheme. The dyadic sorting has also been used in
[17] with combination of a sparsity criterion. Other approaches in-
clude a statistical modeling of the single bins using the generalized
Gaussian distribution. Small differences of the parameters lead to a
depermutation criterion in [18].

In this work, we follow the argumentation from [11]. There the
authors state that the direction of arrival, which is closely related to
TDOA, is robust only for bins where this direction can be estimated
with high confidence. Additional robustness is based on the fact
that these bins are usually distributed over the whole range. After
depermutation, the remaining bins are then aligned using the corre-
lation approach. This is justified by high similarity of neighboring
bins, which but is typically not true for distant bins.

In this paper, we propose to use the high similarity of neigh-
boring bins for achieving a robust depermutation for some clusters
of neighboring bins. The information of this depermutation is then
used for estimation of an average TDOA for these clusters, which is
then used for a calculation of a robust depermutation for all bins.

The proposed method is simple, as it does not require any con-
fidence functions or harmonics analysis as in [11]. Additionally, the
clustering procedure using a greedy algorithm is also simpler than
the one proposed in [13]. The computational cost of the new ap-
proach is almost negligible compared to the ICA-stage. The robust-
ness of the proposed method will be shown on real-world examples.
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2. MODEL AND METHODS

The instantaneous mixing and unmixing processes form the basis
for the convolutive case. Both methods will be described in the
following.

2.1. BSS for instantaneous mixtures

The instantaneous mixing process of N sources into N observa-
tions is modeled by an N × N matrix A. With the source vector
s(n) = [s1(n), . . . , sN (n)]T and negligible measurement noise,
the observation signals x(n) = [x1(n), . . . , xN (n)]T are given by

x(n) = A s(n). (1)

The separation is again a multiplication with a matrix B:

y(n) = B x(n) (2)

with y(n) = [y1(n), . . . , yN (n)]T . The only source of information
for the estimation of B is the observed process x(n). The separa-
tion is successful when B can be estimated so that BA = DΠ
with Π being a permutation matrix and D being an arbitrary diag-
onal matrix. These two matrices stand for the two ambiguities of
BSS. The signals may appear in any order and can be arbitrarily
scaled.

For the separation, we use the well known gradient-based up-
date rule [1]

Bk+1 = Bk + ∆Bk (3)

with
∆Bk = µk(I − E

n
g(y)yT

o
)Bk. (4)

The term g(y) = (g1(y1), . . . gn(yn)) is a component-wise vec-
tor function of nonlinear score functions gi(si) = −p′i(si)/pi(si)
where pi(si) are the assumed source probability densities.

2.2. Convolutive mixtures

When dealing with real-world acoustic scenarios it is necessary to
consider reverberation. The mixing system can be modeled by FIR
filters of length L:

x(n) = H(n) ∗ s(n) =

L−1X
l=0

H(l)s(n− l) (5)

where H(n) is a sequence of N × N matrices containing the im-
pulse responses of the mixing channels. For the separation, we use
FIR filters of length M and obtain

y(n) = W(n) ∗ x(n) =

M−1X
l=0

W(l)x(n− l) (6)

with W(n) containing the unmixing coefficients.
Using the short-time Fourier transform (STFT), the signals can

be transformed to the time-frequency domain, where the convolu-
tion approximately becomes a multiplication:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . ,K − 1 (7)

with K being the FFT length. The major benefit of this approach is
the possibility to estimate the unmixing matrices for each frequency
independently, however, at the price of possible permutation and
scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ) (8)

where Π(ω) is a frequency-dependent permutation matrix and
D(ω) an arbitrary diagonal scaling matrix.

Without correction of scaling, a filtered version of the sources
is recovered. Using the minimal distortion principle [6] to resolve
this ambiguity, the unmixing matrix reads

W ′(ω) = dg(W−1(ω)) ·W (ω) (9)

with dg(·) returning the argument with all off-diagonal elements set
to zero.

Without correction of the permutation, different signals will be
restored at different frequencies and the whole separation process
will fail. In the next section, we will propose a new scheme for
calculation of the depermutation.

3. DEPERMUTATION ALGORITHMS

In this section, we describe the basic algorithms for depermutation.
At first the basics of the correlation approach will be summarized
and a new robust clustering method will be presented. Then the
basics of TDOA will be shown and the needed extension for the
average cluster TDOA will be discussed. The two new extensions
then lead to a robust and fast depermutation algorithm.

3.1. Correlation approaches

Many depermutation algorithms are based on the statistics of the
separated signals. For example, the assumption of high correlation
of envelopes of neighboring bins yields a simple depermutation
criterion [7]. With V (ω, τ) = |Y (ω, τ)|, the correlation between
two bins k and l is defined as

ρqp(ωk, ωl) =

PT −1
τ=0 Vq(ωk, τ)Vp(ωl, τ)qPT −1

τ=0 Vq
2(ωk, τ)

qPT −1
τ=0 Vp

2(ωl, τ)
(10)

where p, q are the indices of the separated signals, Vq(ωk, τ) is the
q-th element of V (ωk, τ), and T is the number of frames. The
alignment of the bins is made on the basis of the ratio

rkl =
ρpp(ωk, ωl) + ρqq(ωk, ωl)

ρpq(ωk, ωl) + ρqp(ωk, ωl)
. (11)

With rkl > 1 the bins are assumed to be correctly aligned, and
otherwise a permutation has occurred. The simple method, where
consecutive bins are examined is not robust, as single wrong per-
mutations lead to whole blocks of falsely permuted bins.

The dyadic sorting from [16] depermutes pairs of bins using
(11). In the second step, these pairs are aligned, and then the result-
ing quadruples are depermuted. This scheme is continued until all
bins are processed. Within this procedure, single wrong permuted
bins at the early stages usually do not outbalance the majority.

3.2. Clustering using correlation

The method of dyadic sorting accepts some wrongly permuted bins.
In order to increase robustness, we present a simple greedy cluster-
ing procedure, which assures that a cluster contains only correctly
aligned bins:
Step 1. Initialize the bin counter to the first bin: k = 1.
Step 2. Start a new cluster at k.
Step 3. Calculate the correlation and the alignment coefficient

rk+1,l according to (11) of bin k + 1 to all bins in the
current cluster.
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Figure 1: Visualization of the proposed clustering method. a) Align-
ment coefficients for all bins from (11). White points (rkl > 1) in-
dicate a correct and black (rkl < 1) a false decision for a perfectly
depermuted case. b) The detected clusters with nonambiguous co-
efficients.

Step 4. If all rk+1,l > 1 then add the k-th bin to the current cluster.
k ← k + 1. Continue at Step 3.

Step 5. If all rk+1,l < 1 then the k-th bin can be added to the
current cluster after depermutation. k ← k + 1. Continue
at Step 3.

Step 6. Otherwise, as the depermutation information is ambiguous,
start a new cluster, k ← k + 1, and continue at Step 3.

In Figure 1 the result of this procedure for the dataset form [19]
is presented. In Figure 1(a) the alignment coefficients for all bins,
calculated using (11) are shown. White points (rkl > 1) indicate a
correct and black points (rkl < 1) a false decision for a perfectly
depermuted case. This matrix is symmetric, and the high number of
black points in the upper right corner indicate a very low similarity
between the low and high frequencies for the signals. In Figure
1(b) the result of the greedy clustering procedure is shown. The
black areas indicate the bins, where all alignment coefficients are
unambiguous and can be joined to a cluster. In this case there are
only 36 clusters. This is a major simplification compared to the
original problem with 4097 discrete bins.

3.3. DOA and TDOA

For the case of no spatial aliasing, the authors of [11] calculate the
direction of arrival for the 2× 2-case for a single bin as

Θi(ωk) = arccos
arg
“

[H(ωk)]1i
[H(ωk)]2i

”
2πfc−1∆d

(12)

with Θi(ωk) being the angle relative to the microphone array,
[H(ωk)]li, l ∈ {1, 2} the coefficients of the mixing matrix corre-
sponding to the i-th source, f the frequency, c the speed of sound,
and ∆d the distance between the microphones.

By knowing the array dimensions and using an additional con-
fidence function, which indicates the quality of the estimation of
the direction, a clustering of bins could be achieved. The remain-
ing bins could be depermuted using the correlation approach with
additional analysis of the harmonics structure.

The TDOA approach, as for example in [13], does not need the
knowledge of the exact geometry of the recording array. The time
difference can be calculated as

TDOAi(ωk) =
1

2πf
arg

„
[H(ωk)]1i
[H(ωk)]2i

«
. (13)
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Figure 2: TDOAs of single frequency bins for a 2× 2 case.
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Figure 3: Average cluster TDOAs. Vertical lines indicate cluster
boundaries.

In Figure 2 the results of the TDOA calculation for the data set
from [19] are shown. In this case, it is quite easy to calculate the
depermutation for almost all bins above 520. But below bin 520,
there are numerous bins whose TDOA is ambiguous. No simple
clustering is possible as the TDOAs scatter beyond the averages of
the other source.

3.4. Average cluster TDOA

Using the information form the clustering allows for a much more
robust calculation of the average cluster TDOA:

acTDOAi(Cm) = mean(TDOAi(ωk)), k ∈ Cm (14)

with Cm being a set of indices of the bins of the m-th cluster. In
Figure 3 the result of this calculation is shown. The average clus-
ter TDOA is much more consistent and the scattering of values is
significantly reduced. This allows for a simple final clustering pro-
cedure that aligns acTDOAj(Cm) on acTDOAi(CM ), withCM be-
ing the largest cluster, by minimizing

2X
i=1

(acTDOAj(Cm)− acTDOAi(CM ))2, j ∈ {1, 2}. (15)

The overall procedure is much simpler than [11]. The calculation
of the clustering and average cluster TDOAs is easy and does not
require any confidence functions or harmonics analysis. The com-
putational cost is almost negligible compared to the ICA-stage.

4. SIMULATIONS

The experiments using the proposed algorithm have been performed
using real-world data available at [19]. The setup was chosen to be
similar to that in [17] and [11]. With a sampling rate of 8 kHz, the
FFT length was chosen to be 8192, and a 2048 point Hann analysis
window has been used.

This dataset contains two speech signals (one male, one female)
in a low reverberant room. As the signals do not have meaningful
energy below 110 Hz, only bins above this frequency are taken into
consideration. The separation in the ICA stage is successful for
almost all bins, and a non-blind depermutation algorithm results in
a very good separation ratio of 17.6 dB, as shown in Table 1.
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Table 1: Comparison of the results for different depermutation al-
gorithms in terms of separation performance in dB.

Algorithm SIR in dB

Proposed 17.3

DOA-Approach [11] 17.3

Sparsity approach [17] 15.4

Dyadic sorting [16] 2.7

Non blind 17.6
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Figure 4: Separation performance over frequency after final align-
ment for the proposed algorithm. Only few poorly separated bins
around 350 are wrongly permuted. These errors do not have any
significant impact on the overall SIR.

The new clustering procedure was able to group the 4097 fre-
quency bins into 36 clusters with only a few poorly separated bins
being wrong. After calculation of the average cluster TDOAs the re-
maining grouping using (15) could depermute all clusters correctly.
The overall separation performance is 17.3 dB, which is the same,
as in [11] and only slightly less than the ideal nonblind depermu-
tation with 17.6 dB. In Figure 4 the final result of the separation
performance per bin is shown. Here, the few wrongly permuted
bins around 350 are visible, as they have a negative SIR. The sepa-
ration of these bins with less than 5 dB failed at the ICA-stage, and
both permutations are almost equally bad.

5. CONCLUSIONS

In this paper we propose a new clustering approach for solving the
permutation ambiguity in convolutive blind source separation. The
new approach is to group frequency bins using the time structure
into nonambiguous clusters. The calculation of the average cluster
TDOA allows then for a simple and fast depermutation of all bins.
The performance of the approach has been shown on real-world
example.
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