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CS-Dixon: Compressed Sensing for Water-Fat Dixon Reconstruction 
 

M. Doneva1, P. Börnert2, H. Eggers2, A. Mertins1, J. Pauly3, and M. Lustig3,4 
1Institute for Signal Processing, University of Lübeck, Lübeck, Germany, 2Philips Research Europe, Hamburg, Germany, 3Electrical Engineering, Stanford University, 

CA, United States, 4Electrical Engineering, UC Berkeley, CA, United States 
 

Introduction: Water-fat separation is of interest in several MRI applications including fat suppression and fat quantification. Chemical shift imaging 
allows robust water-fat separation [1, 2], however the acquisition of multiple images results in prolonged scan time.  Accelerated water-fat separation 
using compressed sensing (CS) was partly addressed in [3] by considering the separation as a spectroscopic problem and exploiting the spectral 
sparsity in the reconstruction. However, this approach requires data acquisition at multiple echo times (significantly more than 3), prolonging the scan 
time and limiting the effective acceleration factor.  In this work we consider the commonly used three point Dixon approach for water-fat separation. 
Dixon reconstruction already assumes signal sparsity in the spectral dimension by modeling the signal by a two point spectrum at fixed frequencies. 
An integrated CS-Dixon algorithm is proposed, which applies a sparsity constraint on the water and fat images and jointly estimates water, fat and 
field map images. The method allows scan time reduction of above 3 in 3D MRI, fully compensating for the additional time necessary to acquire the 
chemical shift encoded data. 
Theory:  Compressed sensing [4, 5, 6] is a promising method for scan time reduction by exploiting signal sparsity. Incoherent sampling, signal 
sparsity and a nonlinear, sparsity promoting reconstruction are the key ingredients of CS. In chemical shift imaging additional subsampling  in the  
chemical shift dimension  could be employed  resulting in undersampling a higher dimensional k-߱ space, and thus, improved incoherence. Applying 
a sparsity constraint in the water and fat images effectively exploits that additional subsampling dimension. It 
can also be assumed that water and fat images are usually sparser than combined images.  
In chemical shift imaging data are acquired at several different echo times. Denoting the k-space data acquired 
at echo time ݐ௟ with ݕ௟, the measurement vector can be written as  ܡ ൌ ሾݕଵ, ,ଶݕ …  ௅ሿ with typically L = 3. Theݕ
signal model is given by: ݕ௟ ൌ ࣠൛൫ߩ௪ ൅  ௙ߩ ௪ andߩ  ,௙݁ଶగ௜Δ௙௧೗ ൯݁ଶగ௜Δఝ௧೗ൟ, where ࣠ is the Fourier transformߩ
are the complex water and fat images, Δ݂ is the chemical shift and Δ߮ is the field map. The goal is to find the 
vector  ܠ ൌ , ௪ߩ ൣ , ௙ߩ ܡ ൧ from the undersampled measurement data according to the model߮߂ ൌ ݂ሺܠሻ. The 
proposed method solves the problem jointly for all voxels, simultaneously updating the water, fat and field map  
estimates. The CS-Dixon reconstruction problem can be formulated as: argmin ܠ ห|݂ሺܠሻ െ หଶଶ|ܡ ൅  λଵห|Ψܠ|หଵ ൅ λଶห|Φܠ|หଶଶ           ሺ1ሻ, 
where the first term accounts for data fidelity, the second term applies a sparsity constraint on the water and 
fat images and the last is a smoothness constraint on the field map. Different transforms can be used for water 
and fat (e.g.  wavelets for water and TV for fat) to account for the different structure in the images. Solving the 
problem jointly for all voxels and applying a smoothness constraint on the field map is advantageous in 
reducing the ambiguity between water and fat present in pixel-wise reconstruction methods [7, 8]. However, 
Eq.(1) still poses a high dimensional, non-linear, non-convex optimization problem, and a good initialization of ߮߂ is important.  A low resolution 
field map obtained from the fully sampled central part of  k-space is used here to initialize the algorithm. The map is obtained by analytically finding 
all possible solutions for ߮߂ within one period and choosing the value for each pixel under smoothness constraint from the set of possible field map 
values within a given range (several periods). The optimization problem (1) is iteratively solved using a regularized Gauss-Newton method.  
Methods:  3D multi gradient echo measurements [9] were performed in the 
abdomen with the following parameters: TE1 = 1.8ms ∆TE = 1.66ms, TR = 
6.9ms, FOV = 400x320x216mm, 240x192x54 matrix, flip angle 10° on a 
1.5T clinical scanner (Philips Healthcare, Best, The Netherlands). The data 
were retrospectively undersampled according to the sampling scheme 
described in Fig.1. Randomized multi-echo acquisition can be performed as 
described in [10]. The 3D CS-Dixon reconstruction algorithm was 
implemented in C. 3D images were reconstructed using finite differences 
as a sparsifying transform and second order finite differences as a 
smoothness constraint.  
Results: Fig.2 shows a slice from the 3D water and fat images obtained 
with Nyquist sampling and with an undersampling factor of 3. Excellent 
image quality without any swaps is obtained with a reduction factor of 3. 
Good image quality can also be achieved with higher reduction factors; 
however, a loss of contrast and eventually residual aliasing become visible 
as the acceleration is increased.  
Conclusion: We have shown the feasibility of the proposed integrated CS-
Dixon reconstruction. CS helps to regain the extra time spent on chemical 
shift encoding facilitating water-fat separation just for free in total scan 
time equal to the time of a single scan. Further acceleration could be 
achieved in combination with parallel imaging. The method can be further 
improved employing a more efficient algorithm for solving the nonlinear 
problem in (1) and parallel computing.  
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Fig. 2 CS-Dixon reconstruction. Water / fat images reconstructed from
fully sampled data a) and with reduction factor of 3 b)  

Fig. 1  3D CS-Dixon k-space 
sampling pattern. Phase encoding 
lines are chosen at random in theሼ࢟࢑, ,ࢠ࢑ ࣓ሽ domain. A small por-
tion around the k-space origin is 
fully sampled.  
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