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Abstract
In this paper we propose a modification to a new clustering

approach for solving the permutation ambiguity in convolu-

tive blind source separation. After the transformation to the

time-frequency domain, the problem of separation of convolu-

tively mixed sources can be reduced to multiple instantaneous

problems, which may be solved using independent component

analysis. The drawbacks of this approach are the so called

permutation and scaling problems, which have to be corrected

before the transformation to the time domain. Here, we use

a new method that allows for aligning up to several hundreds

of consecutive bins into clusters and propose a modification

which allows for an even more effective clustering. The

depermutation of these clusters using some known techniques

is then much easier than the original problem.

Introduction
Blind Source Separation (BSS) of linear and instantaneous

mixtures can be performed using the Independent Component

Analysis (ICA). For this case, numerous algorithms have been

proposed [1].

When dealing with real-world recordings of speech, this sim-

ple approach is not effective anymore. As the signals arrive

multiple times with different delays, the mixing procedure

becomes convolutive. These characteristics can be modeled

using FIR filters. In this case, the separation is only possible

when the unmixing system is again a set of FIR filters.

As the direct calculation of the unmixing filters in time domain

is very demanding, time-frequency approaches are often used.

Here, the convolution becomes a multiplication and each

frequency bin can be separated using an instantaneous method.

However, this simplification has a major disadvantage. The

separated signals usually have arbitrary scaling and are ran-

domly permuted across the frequency bins. Without the

correction of the scaling, only filtered versions of the signals

are restored. This ambiguity is often solved using the minimal

distortion principle [3]. This method accepts the filtering done

by the mixing system without adding new distortions.

The random permutation of the single frequency bins has an

even bigger impact. Without a correct alignment, different

signals appear in the single outputs and the whole separation

process fails.

Many different approaches for solving this problem have

been proposed. Often, the time structure of the separated

bins is used and the assumption of high correlation between

neighboring bins is utilized. This has been used for example

in [2]. Other approaches include a statistical modeling of the

single bins using the generalized Gaussian distribution. Small

differences of the parameters lead to a depermutation criterion

in [5].

The second type of approach relies on the properties of the

unmixing matrices. For example, they can be interpreted as

beamformers, and the direction of arrival (DOA) information

is used for a depermutation criterion [8]. Alternatively, time

differences of arrivals (TDOA) have been used in [7, 6].

In [8, 7] the approach is based on estimating DOAs and

TDOAs. Frequency bins, whose TDOAs are estimated with

high confidence, are used for aligning the remaining bins

using the correlation method. In [4] this approach has been

reversed: First calculate clusters of correctly depermuted bins

using the correlation and then use the average TDOAs of these

bins for final arrangement. The first stage of the algorithm is

based on the fact, that large portions of the frequency bins

can be depermuted with very high confidence when creating

clusters with unambiguous correlations.

In this work we modify the calculation of these clusters, as

the requirement of unambiguous correlations is too hard and

some easing on this criterion allows for bigger clusters.

BSS for instantaneous mixtures
The instantaneous mixing process of N sources into N
observations is modeled by an N×N matrix A. With

the source vector s(n) = [s1(n), . . . , sN (n)]T and negli-

gible measurement noise, the observation signals x(n) =
[x1(n), . . . , xN (n)]T are given by

x(n) = As(n). (1)

The separation is again a multiplication with a matrix B:

y(n) = Bx(n) (2)

with y(n) = [y1(n), . . . , yN (n)]T . The single source of

information for the estimation of B is the observed process

x(n). The separation is successful when B can be estimated

so that BA = DΠ, with Π being a permutation matrix and D

being an arbitrary diagonal matrix. These two matrices stand

for the two ambiguities of BSS. The signals may appear in any

order and can be arbitrarily scaled.

For the separation we use the well known gradient-based

update rule [1]

Bk+1 = Bk +∆Bk (3)

with

∆Bk = µk(I − E
{

g(y)yT
}

)Bk. (4)

The term g(y) = (g1(y1), . . . gn(yn)) is a component-

wise vector function of nonlinear score functions

gi(si) = −p′i(si)/pi(si) where pi(si) are the assumed

source probability densities.
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Convolutive mixtures
When dealing with real-world acoustic scenarios, it is nec-

essary to consider reverberation. The mixing system can be

modeled by FIR filters of length L:

x(n) = H(n) ∗ s(n) =

L−1
∑

l=0

H(l)s(n− l), (5)

where H(n) is a sequence of N×N matrices containing the

impulse responses of the mixing channels. For the separation

we use FIR filters of length M and obtain

y(n) = W(n) ∗ x(n) =
M−1
∑

l=0

W(l)x(n− l), (6)

with W(n) containing the unmixing coefficients.

Using the short-time Fourier transform (STFT), the signals

can be transformed to the time-frequency domain, where the

convolution approximately becomes a multiplication:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . ,K − 1, (7)

where K is the FFT length. The major benefit of this approach

is the possibility to estimate the unmixing matrices for each

frequency independently, however, at the price of possible

permutation and scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ)
(8)

where Π(ω) is a frequency-dependent permutation matrix and

D(ω) an arbitrary diagonal scaling matrix.

The scaling can be solved the minimal distortion principle

[3]. A modified approach for the permutation problem will

be shown in the next section.

Depermutation Algorithm
In this work, we follow the two stage approach from [4]. The

first stage uses the time structure of the separated bins to

calculate correlation coefficients

rkl =
ρpp(ωk, ωl) + ρqq(ωk, ωl)

ρpq(ωk, ωl) + ρqp(ωk, ωl)
, (9)

with ρpq(ωk, ωl) being the correlation of the outputs p and q
at frequencies ωk and ωl. In [4] a simple greedy algorithm for

unambiguous clustering has been used: With Cm being a set

of indices of the m-th cluster add the following bin k only if

rkl > 1, for all l ∈ Cm (10)

and start a new cluster otherwise. This criterion assures that

all bins in a cluster are alike correlated. Large clusters usually

indicate, that their the bins are correctly depermuted.

Since the correlation assumption is not valid for distant bins,

this method can not be used for depermuting the clusters.

Therefore, the second stage in [4] uses the TDOAs

TDOAi(ωk) =
1

2πf
arg

(

[H(ωk)]1i
[H(ωk)]2i

)

(11)

for calculation of the average cluster TDOA

acTDOAi(Cm) = mean(TDOAi(ωk)), k ∈ Cm. (12)

The aligning of the acTDOAi(Cm) on acTDOAi(CM ), with

CM being the largest cluster finally yields the depermutation

algorithm for all frequencies.

Table 1: Comparison of the cluster sizes for the different Algorithms

Clustering # Clusters Average Cluster Size

None 4097 1

Old (10) 36 113

New (13) 27 151

Here, we propose to ease the requirement (10) in order to

create larger clusters and make the depermutation method

more robust. Based on the assumption, that frequency bins,

which are further away, do not necessarily correlate positively

and the observation, and that with bigger clusters the criterion

(10) is violated only for a very few bins, we use the criterion

rkl > 1, for all l ∈ Cm, |k − l| < 1

2
|Cm| (13)

with |Cm| being the number of bins in Cm. Here we assure,

that every bin is positively correlated with all bins in the

cluster, which are not further away than half the cluster size.

The results of the new clustering method are compared on

the same dataset as in [4]. The number of clusters could be

reduced and the average cluster size increased. The separation

performance did not change.

Conclusions
In this work, we presented a modification of an algorithm for

solving the permutation ambiguity in convolutive blind source

separation. The new algorithm allows for creating of bigger

clusters of correctly depermuted bins, which make the overall

procedure more robust.
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