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Abstract—We propose in this work an approach for early
prediction of hand movements using recurrent neural networks
(RNNs) and a novel weighting loss. The proposed loss function
leverages the outputs of an RNN at different time steps and
weights their contributions to the final loss linearly over time
steps. Additionally, a sample weighting scheme also constitutes
a part of the weighting loss to deal with the scarcity of the
samples where a change of hand movements takes place. The
experiments conducted with the Ninapro database reveal that
our proposed approach not only improves the performance in
the early prediction task but also obtains state of the art results
in classification of hand movements. These results are especially
promising for the amputees.

Index Terms—hand movement classification, hand movement
prediction, electromyography, early prediction, RNN

I. INTRODUCTION

Nowadays, for many fields the determination of hand move-
ments is useful like virtual reality. Particularly, the determi-
nation of hand movements becomes very important when it
comes to the control of upper limb prostheses. In order to
regain the functionalities of the hand, a variety of different
hand movements has to be reliably recognized. For this
application, surface electromyogram (sEMG) data are often
the best modality [1]–[3].

In control systems of upper limb prostheses it is crucial
to achieve two goals: (1) being reliable in hand movement
determination and (2) minimizing the time delay between
executing the hand movement and the system response. How-
ever, in general, the methods for determining hand movements
given sEMG signals apply or adopt the standard classification
scheme that introduces an unavoidable time delay [4]–[7].
Firstly, around the current time point a window of sEMG data
is required for which a feature representation is calculated.
This causes a time delay of half the window length, not to
mention the time needed for feature extraction. Secondly, as
the classification of the corresponding hand movement using
the feature representation takes place, the time required for
performing the classification also contributes to the time delay.
Regarding the delay caused by the window length, one faces a
trade-off problem. Window-wise classification produces better
performance when using longer windows at the cost of a
longer delay [8]. In general both long delays and unreliable
classification results severely worsen the usability.

In an attempt to tackle the trade-off problem, we refor-
mulated in recent works [9], [10] the classification problem

Fig. 1. Illustration of early prediction of hand movements. A label yt0+τ
is assigned to the current window represented by xt0 with respect to
representations of previous windows xt0−η ,xt0−2η , . . .. In our formulation
of the classification task is τ = 0 in contrast to the common formulation where
τ = −w
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, causing a delay of w
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. For τ > 0 we name it early prediction and

if then yt0+τ 6= yt0 it is called a true prediction case.

to avoid such delays. Motivated by the sequential nature of
sEMG data, we proposed the early prediction of future hand
movements and incorporated information of previous windows
into the hand movement recognition for more reliability (see
Fig. 1). By determining a future hand movement it is possible
to compensate for the delay in the classification pipeline.

For predictors of future hand movements the most difficult
case is seemingly the true prediction case. By that we mean
the case in which the label corresponding to the end of the
current window is different from the future label that should
be predicted (in Fig. 1: yt0+τ 6= yt0 ). The accuracy in these
cases is significantly lower than for the classification case.
Presumably, the main reason for this is the low number of
training examples for the true prediction case. In databases
like the ones of the Ninapro project [11] the hand movements
are quite long and there are not many transitions between hand
movements. Consequently, for a vast majority of training (and
test) examples the label that should be predicted is the same as
the one assigned to the window. In this work, we propose an
RNN-based approach for early prediction of hand movements
and investigate different strategies to deal with the low number
of true prediction examples. More specifically, during training
the RNN, we introduce a weighting scheme to the loss function
in order to make examples corresponding to the true prediction
case more important than others. Furthermore, we also per-
form oversampling to increase the number of true prediction
examples in training data. To improve the performance of the



RNN for classification and early prediction, we calculate the
loss function over all time steps presented to the system. The
influence of the time steps is increased in a linear way in order
to make the final output the most important one.

The results on the Ninapro database [11] reveal that the pro-
posed modifications of the training procedure help to improve
both classification and early prediction of hand movements.

II. EARLY PREDICTION OF FUTURE HAND MOVEMENTS

Let xt0 ∈ RD denote the D-dimensional feature represen-
tation of the sEMG window lasting from t0 − w to t0 with t
being the current time point and w being the window length.
Furthermore, let yt0 ∈ L where L = {1, 2, ..., C} denotes
the corresponding label specifying one of the C possible hand
movements. When future hand movements should be deter-
mined, the prediction offset τ is introduced. The determination
of the future movement with respect to the information of
previous windows reads

P̃ : (xt0 ∈ RD,xt0−η,xt0−2η, . . .) 7−→ yt0+τ ∈ L (1)

where η denotes the hop between consecutive windows.
If the information of previous windows xt0−η,xt0−2η , and

so on is ignored and τ = −w2 then the formulation in
(1) becomes the standard mapping used for hand movement
classification.

III. CLASSIFIER AND PREDICTOR

The mapping in (1) can be modelled by different types of
classifiers. However, RNNs are natural candidates due to their
capability in sequential modelling. The general principle of
RNNs is the processing of sequences by producing an output
for each input and storing information in a state. Given a new
input the old state and the input are used to calculate the output
and the new state. Therefore, in an RNN cell several different
weights have to be learned during a training phase.

In our system the input is iteratively fed into an RNN cell
and the output of the cell is then passed to a fully-connected
layer followed by a softmax layer for classification.

To allow for a comparison with previous works, we em-
ployed gated recurrent unit (GRU) [12] based RNN architec-
ture as in [10] and use the sequence-to-label approach. That
is, the accuracy of the system is determined by considering
the result of the final input/output only.

The network is trained to minimize a loss function. We make
use of the cross-entropy and introduce a scheme to weight the
contribution of the loss at different time steps of the RNN. The
most important part of this loss function is the cross-entropy
E. For one training example, it is calculated as

E (Θ|X,yt) = −yt log (ŷt (Θ|X)) . (2)

Here, yt is a one-hot encoded label vector representing the
ground truth label corresponding to the last time step t.
ŷt (Θ|X) denotes the prediction of the network for the final
time step given the sequence of inputs X and the set of
trainable parameters Θ.

Instead of calculating the cross-entropy with respect to the
last time step T exclusively, the contribution of the network
output at a time step t, where 1 ≤ t ≤ T , into the
final loss Ew is weighted by weighting coefficient α(t). Let
Y = (y1,y2, ...,yT ) be the sequence of one-hot encoded label
vectors corresponding to a sequence of feature vectors X ,
then, the weighted cross-entropy Ew is given by

Ew (Θ|X,Y ) = −
T∑
t=1

α (t)yt log (ŷt (Θ|X1:t)) (3)

with X1:t denoting a part of the sequence of feature vectors
upto time step t. For the experiments in this work, α is chosen
to be a linear weighting in the form

α (t) =
2t

T (T + 1)
. (4)

This weighting ensures that early time steps that are likely
influenced by the initialisation of the cell state contribute less
to the loss function than later time steps that should lead to
more reliable predictions. The chosen linear weighting can
easily be replaced by other weightings that meet the condition

T∑
t=1

α (t) = 1 (5)

to prevent that a varying number of time steps T changes the
proportion of the elements contributing to the loss function.

For further regularisation, we used `2-norm regularisation
as well as dropout on the output of the GRU cell [13]. During
training, min-batches were used. For optimization of the whole
network, the Adam optimizer was used [14].

IV. TRAINING ADAPTATION TO IMPROVE EARLY
PREDICTION PERFORMANCE

A challenge regarding the early prediction problem is the
low number of training examples for the true prediction case.
Given a windowed signal covering multiple consecutive hand
movements, in most cases, the label corresponding to a given
window yt is the same as the label yt+τ with τ > 0 that should
be predicted. Thus, it is basically a classification. The early
prediction case where yt 6= yt+τ is very rare. Since the true
prediction case is highly under-represented in training data,
the classifier will easily ignore this case in order to achieve
the best possible overall accuracy. Therefore we used two
strategies to improve the performance regarding these cases.

A. Oversampling

One approach to deal with the under-representation of the
true prediction case is the generation of more samples for true
prediction using oversampling. Let tc denote a point in time of
a label change. Consequently, all windows ending in (tc−τ, tc]
result in a true prediction example. Usually, training examples
are generated by cropping overlapping windows out of the
signal. By increasing the degree of overlapping in the region
of (tc − τ, tc] more training samples for the true prediction
case are generated.



This partial oversampling remedies the unbalance between
the true prediction samples and others in the training data.
With this approach, it is possible to harvest more training data
for the under-represented case without reusing existing training
samples. However, the oversampled training samples are more
correlated due to the larger overlap of the windows.

B. Weighting of Training Samples

We studied an additional approach which handles the
problem without utilizing methods of data augmentation. As
shown in [15] a weighting of the loss can help to deal with
imbalanced classes. In this work, the idea is to weight training
samples differently. Samples with low weights are considered
less important during training while those associated with
high weights have stronger influence in the training process.
All samples that belong to the true prediction case are con-
sidered the higher-rate samples. To the remaining majority
of the training samples a lower weight is assigned. During
the training procedure, this approach penalizes the network
more for misclassification of the true prediction case. With
this weighting it is possible to increase the influence of true
prediction samples for the training of the network.

In order to incorporate the introduced weighting approach
into the training procedure of the RNN, the loss values of
different training samples are individually weighted by multi-
plying each calculated loss value with a weighting coefficient.
For simplification, training examples corresponding to the
true prediction case are equally weighted by a pre-defined
weighting coefficient which is larger than 1.0. The loss values
of other training samples remain the same.

In order to inject this weighting scheme into the weighting
loss function in (3) we compare for a time step t the label
of the current window yt (corresponding to the right border
of the windowed signal) with the label yt+τ that should be
predicted. If both labels are the same, the weight wTP is set to
one. Otherwise, it is set to the pre-defined value. The weighting
loss in (3) is then re-written as

Ew (Θ,X,Y ) =
−2

T (T + 1)

T∑
t=1

twTP
t yt log (ŷt (X1 : t,Θ))

(6)

with wTP
t denoting the weight wTP for time step t.

V. EXPERIMENTS

A. Datasets

Three databases from the Ninapro project [11] were used
to conduct the experiments. These databases have been used
often in the field of sEMG based hand movement classification
[4], [16], [17].

The experiments of the first database (DB I) are conducted
for 27 subjects who were abled and healthy. The subjects
performed 53 different hand movements (including rest) which
were repeated 10 times for each movement except rest. The
signals were recorded using 10 MyoBock 13E200-50 elec-
trodes (Otto Bock HealthCare GmbH, www.ottobock.com).

The second and third database (DB II and DB III) differ
slightly form DB I in the experimental setup. Instead of
53 just 50 hand movements were conducted. Also, the sub-
jects were asked to repeat the movements just 6 times. For
DB II and DB III 12 Trigno Wireless electrodes (Delsys,
Inc, www.delys.com) were used for data acquisition. DB
II includes experiments conducted by 40 abled and healthy
subjects, whereas DB III contains measurements of 11 trans-
radial amputated subjects.

In this work, preprocessing, feature extraction, and the
splitting in training and test data where done as in [11].

B. Preprocessing and Features

As in previous works, the preprocessing followed the
scheme in [18]. Firstly, the raw signals were channel-wise
normalised to achieve a zero mean and unit standard deviation.
The statistics used for the normalisation were estimated on
training data only. Subsequently, overlapping windows (w =
100 ms) were extracted using a hop of 10 ms. Afterwards,
each window was represented by a set of features which were
calculated channel-wise. Note that the selected features are the
same as the ones in previous works as well as the channel-wise
normalisation of the resulting feature vectors [9], [10].

C. Error Measure for True Prediction

We have introduced strategies for dealing with the early
prediction of hand movements. To evaluate their influence, it is
necessary to quantify their performance in the true prediction
case. Therefore, a slightly modified version of the accuracy
is used. The so called true prediction accuracy is defined as
accTP = N̂TP

NTP
, where NTP is the number of samples correspond-

ing to the true prediction case and N̂TP denotes the number
of true prediction case samples that are correctly recognized
by the predictor. A combined evaluation of accuracy and
true prediction accuracy allows us to investigate the trade-off
problem between the overall performance and the reliability
in the true prediction case.

D. Experimental Results

In all experiments a single GRU cell with a state of size
256 was used. The accuracies and true prediction accuracies
reported for each database individually are the average over
all of the subjects of the experimental database.
Classification:

To show that the proposed approach is sufficient to handle
the classification of hand movements the results achieved using
100 ms long windows are compared with the baseline systems
applied on windows of length 200 ms. Since we compare
with the commonly used classification the prediction offset
is τ = −50 ms. For DB I, DB II, and DB III we achieved
accuracies of 79.3 %, 78.0 %, and 55.3 % respectively. The
proposed method outperforms the best systems in [11] by
4.0 %, 2.7 %, and 9.0 % absolute as well as the state of
the art methods as [19] even though we used windows of
half the length. The comparison of the obtained results with
the reported results for classification in [10] reveals that the
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Fig. 2. Results on early prediction obtained with the RNN based network.
(a) Accuracy, (b) true prediction accuracy.

results for the proposed approach are better, especially for DB
III where the improvement is 1.5 %. Since the approaches
only differ in their training, the proposed strategies in Section
III could be helpful for improving the performance.
Early Prediction – Naive:

Fig. 2 show the results for the early prediction using none of
the techniques introduced in Section IV. A prediction offset of
τ = 0 ms corresponds to classifying the label that belongs to
the end of the window. As expected, the accuracy decreases
with increasing prediction offset. But the drop of accuracy
is marginal. Regarding the true prediction accuracy there is
no such trend. For DB I the true prediction accuracy drops
more for higher offsets. For the other databases the true
prediction accuracy has a tendency to increase with increasing
prediction offset. That might be due to the larger number of
true prediction samples in the training and test data. Overall,
the true prediction accuracy is for all cases significantly better
than guessing.
Early Prediction – Oversampling:

In the following, we present the results achieved using the
proposed methods for improving the performance in the true
early prediction cases described in Section IV beginning with
the oversampling approach (see Section IV-A). The results in
Fig. 3 were obtained using an oversampling factor of 20. Since
the sampling frequency of the data in DB I is too low for
this experiment, this experiment was conducted using DBs
II and III only. A comparison of the overall accuracies of
the naive approach and the oversampling approach reveals
that when using the oversampling method the accuracy is not
as good as for the naive approach. The difference between
them becomes worse with increasing prediction offset and
can exceed 5%. Nevertheless the true prediction accuracy
can be improved with the oversampling approach. In general,
the effect of the oversampling becomes more obvious with
increasing prediction offset. In some experiments, the true
prediction accuracy can be improved by more than 10%
absolute.
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Fig. 3. Results on early prediction obtained with the RNN based network
and the oversampling approach. (a) Accuracy, (b) true prediction accuracy.

Early Prediction – Weighting:
In order to evaluate the second strategy for improving the

early prediction performance which uses a different weighting
of the training examples as explained in Section IV-B, two
experiments with weightings wTP of 10 and 25, respectively,
were conducted. Fig. 4 show the obtained results. Consid-
ering the weighting wTP = 10 (see Fig. 4(a-b)) for all
three databases, the overall accuracy drops often less than
1.0% compared to the results without additional methods
for improving true prediction performance, except for higher
predictions offsets like 150ms and 200ms where the accuracy
can drop around 2.0%. However, considering the true predic-
tion accuracy shown in Fig. 4(b), it becomes obvious, that
this modification of the training process improves the perfor-
mance in true prediction cases quite significantly for all three
databases. The true prediction accuracy can be improved by
up to 10.8% absolute. Consequently, the proposed technique
is beneficial for both abled subjects as well as amputees.
Considering DBs II and III, for nearly all positive prediction
offsets the true prediction accuracy exceeds 20%. For DB I,
the true prediction accuracy can be more than twice as good
compared to the results for the naive approach. A comparison
of the true prediction accuracies in Fig. 4(b) reveals that for
higher prediction offsets no drop in true prediction accuracy is
seen, often even slightly better true prediction accuracies are
achieved. This may be counter-intuitive, but one explanation
might be that the number of true prediction samples in the
training set is increased by longer prediction offsets.

To evaluate the influence of the weighting wTP and to
validate the suitability of the approach, the experiments were
repeated with wTP = 25. The results are shown in Fig. 4(c-
d). In general, the observations made are similar to the ones
for wTP = 10 but more extreme. The overall accuracies are
lower than for the naive approach but the drop is often slightly
bigger as for the lower weighting wTP. However, in general the
true prediction accuracies are remarkably higher. It is obvious
that the different weighting of the training examples allows
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Fig. 4. Results on early prediction obtained with the RNN based network and a weighting of true prediction examples. For a weighting of wTP = 10: (a)
accuracy, (b) true prediction accuracy. For a weighting of wTP = 25: (c) accuracy, (d) true prediction accuracy.

us to significantly improve the true prediction accuracy while
causing only marginal impairment of the overall accuracy.

VI. CONCLUSION

We showed in this work that the used RNN based clas-
sification approach in combination with the proposed modi-
fication of the training procedure outperform state of the art
systems for hand movement classification by far. The approach
works for both abled subjects and amputees. Also, promising
results for the early prediction task could be achieved. The
performance on early prediction was significantly improved
by relatively simple methods. Both, the oversampling strategy
and the weighting of the training examples cause directly or
indirectly a change of the training data distribution in a way
that the true prediction case becomes more important. Since
both strategies lead to good results, it is likely that a higher
number of hand movement changes in the dataset would cause
an enhancement of the performance in true prediction case. A
combination of differently trained early predictors could be a
promising approach as well.
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