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Abstract—The conventional sampling of sound fields by use of
stationary microphones is impractical for large bandwidths. Satis-
fying the Nyquist–Shannon sampling theorem in three-dimensional
space requires a huge number of sampling positions. Dynamic
sound-field measurements with moving microphones together with
a compressed-sensing recovery allow for weakening the spatial
sampling problem. For bandlimited signals, the dynamic samples
taken along the microphone trajectory may be related to the room
impulse responses on a virtual grid in space via spatial interpola-
tion. The tracking of the microphone positions and the knowledge
of the excitation sequence allow for setting up a linear system of
equations that can be solved for the room impulse responses on the
modeled virtual grid. Nevertheless, there is still the necessity for
recovering a huge number of sound-field variables, in order to en-
sure aliasing-free reconstruction. Thus, for practical applications,
random or suboptimally chosen trajectories may be expected to
lead to underdetermined sampling problems for a given volume of
interest. In this paper, we present a compressed sensing framework
that enables us to uniquely solve the dynamic sampling problem
despite having underdetermined variables. The spatio-temporal
sampling problem is integrated into compressed sensing models
that allow for stable and robust sub-Nyquist sampling given inco-
herent measurements. For a modeled equidistant grid and sparse
Fourier representations, the influence of the microphone trajecto-
ries on the compressed sensing problem is investigated and a sim-
ple expression is derived for evaluating trajectories with regard to
compressed-sensing based recovery.

Index Terms—Compressed sensing, room impulse responses, dy-
namic sound-field measurement, microphone array.

I. INTRODUCTION

IN CLOSED-ROOM scenarios, sound propagation usually
involves multiple reflections from the walls leading to re-

verberation. However, acoustic applications such as multichan-
nel sound systems and wavefield-synthesis systems typically
assume a free-field or low-reverberation environment and de-
crease their performance when the sound field is influenced by
multiple strong interfering reflection paths. In order to reduce
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the acoustical scene effects and improve performance in rever-
berant environments, methods for listening-room compensation
are often applied [1]–[6]. For this, the exact knowledge of the
sound field within the volume of interest is essential.

Common stationary methods for measuring room impulse re-
sponses (RIRs) that describe the sound field are the use of perfect
sequences [7], [8], maximum-length sequences (MLS) [9], and
exponential sine sweeps for excitation [10].

In [11], the spatio-temporal sampling of RIRs has been in-
vestigated. The spatial sampling of RIRs by use of stationary
microphones requires an extremely high effort in calibration.
In addition to the need for compensating spatio-temporal de-
viations, the frequency response of each microphone must be
equalized. Moreover, an array of microphones will most likely
never be dense enough to satisfy the Nyquist-Shannon sam-
pling theorem without significant problems for very large audio
bandwidths.

In order to make spatial sampling practical, methods for the
dynamic measurement of RIRs have been proposed. In [12],
a technique is presented that allows for the reconstruction of
RIRs along the trajectory of a moving microphone by exploiting
the Doppler effect. At this, a special input signal is required
and the velocity of the microphone must be constant. A totally
different dynamic approach has been proposed very recently
in [13], where measurements taken along tracked microphone
trajectories are related to a modeled sampling grid in space via
interpolation. Based on this, a linear system of equations is set
up, whose solution yields the RIRs on the modeled grid.

For the case that only a small number of unknown parameters
are nonzero, the theory of compressed sensing (CS) [14], [15]
allows for uniquely solving underdetermined systems of lin-
ear equations with sparsity constraint. From a signal processing
point of view, this translates to sub-Nyquist sampling of a signal
by merging compression and sampling into one step. Given in-
coherent measurements [16], the reconstruction of an unknown
signal is possible, although the Nyquist-Shannon requirements
are not directly met.

There exist methods that exploit the sparsity of the early parts
of RIRs and the exponential decay of later parts for CS based
RIR recordings. In [17], large sets of RIRs for multiple fixed
source-microphone configurations have been recovered by using
a convex optimization algorithm that considers convex penalties
promoting both sparsity and the exponentially decaying enve-
lope of RIRs. Also for the recovery of entire sound-fields with
only a few stationary, randomly placed microphones, there are
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CS based techniques available [18], [19]. In [18], the sparsity
of RIRs in time domain is exploited to interpolate the early-
reflection part within a volume of interest (VOI). In [19], a
sparse plane wave approximation is applied to reconstruct the
sound field at low frequencies up to 400 Hz. Based on mea-
surements with a spherical microphone array, a CS framework
using spherical harmonics for sound-field reconstruction has
been proposed in [20]. Also a sparse spherical-harmonics ap-
proximation is used in [21], in order to interpolate RIRs given
stationary measurements.

In this paper, we present a CS framework for the sound-
field recovery from samples taken by moving microphones that
move within the volume or area of interest. The method allows
us to provide the information required for techniques such as
listening-room compensation. The measurement framework is
based on the dynamic model proposed in [13]. While in [13]
the sampling matrix was required to have full column rank, we
here consider the underdetermined case. This is important for
practical applications in which the microphone travels along
quasi random trajectories (e.g., using hand-held microphones),
where the resulting linear system turns out to be ill-posed and
underdetermined.

By exploiting that the spectrum of sound fields is ideally re-
stricted to a hypercone along the temporal frequency axis [11],
we combine the dynamic sampling procedure with a CS frame-
work that allows for stable and robust sound-field recovery de-
spite of underdetermined variables. The influence of the micro-
phone trajectory on the resulting CS matrix is investigated and
a simple trajectory-dependent expression for the coherence of
the CS problem is derived for spectrally flat excitation. Fur-
thermore, we embed two extensions of the dynamic sampling
model into the CS based recovery. By using perfect sequences
for excitation, the time-decoupled problem [13] enables us to
recover the sound field at reduced computational demand. The
multigrid approach [22] allows us for decomposing the sound-
field spectrum into disjoint subbands which may be recovered
separately.

The paper is organized as follows. Models of sound-field sam-
pling and reconstruction as well as the dynamic sampling model
with its extensions are outlined in Section II. Section III empha-
sizes spatial sampling difficulties that go along with sound-field
sampling, even in case of dynamic measurements. The com-
mon theoretical tools that allow for CS based recovery and our
CS model for the dynamic sound-field sampling are given in
Section IV. The structure of the CS matrix for Fourier repre-
sentations, including a trajectory and coherence analysis, are
presented in Section V. Based on the iterative hard thresholding
method (IHT) [23], we provide a simple CS algorithm for the
sound-field recovery in Section VI and present the results of
experiments with simulated data in Section VII.

II. DYNAMIC SAMPLING MODEL

For a given configuration of a sound source emitting a Dirac
pulse, the room impulse response h(t) characterizes the course
of the received sound pressure at a specific listener position de-
pending on time t. Assuming an acoustical environment which is

a linear time-invariant (LTI) system for a fixed emitter-receiver
pair, the temporal relation between the excitation signal s(t) and
the observation signal x(t) is

x(t) =
∫ ∞

−∞
h(τ)s(t − τ)dτ. (1)

Sound fields describe the sound pressure with respect to both
time t and receiver position r = [rx, ry , rz ]T . For a single sound
source at fixed position, the sound pressure field is

p(r, t) =
∫ ∞

−∞
h(r, τ)s(t − τ)dτ, (2)

where h(r, t) is the spatially varying RIR from the source lo-
cation to the point r. In [24], the sound field according to (2)
was termed plenacoustic function. Characteristics and sampling
of that function are explicitly described in [11]. For the case in
which a single source at a fixed position emits a Dirac pulse at
t = 0, the sound field is simplified to the spatio-temporal RIR
p(r, t) = h(r, t) [11], [24].

A. Models for Sound-Field Reconstruction

For our dynamic sampling scheme, we define fixed virtual
sampling locations inside the volume of interest. Moving mi-
crophones, in general, sample at varying intermediate positions
between these virtual points. The idea is to use the dynamic mea-
surements to set up a linear system of equations with RIRs at the
virtual locations as variables. Accordingly, the sampling matrix
defined as A must perform the interpolation task of relating the
spatio-temporal data acquired at intermediate positions to the
sought RIRs at the virtual locations. Solving the system for the
unknown variables, in our framework by use of CS principles,
provides the desired sound-field information at the virtual points
in space. In order to allow for the reconstruction of band-limited
sound fields, these virtual points must follow sampling strategies
for which it is known that an error-free interpolation is possible,
such as, e.g., uniform, quincunx, and spherical patterns.

In comparison to a uniform-grid model, quincunx and spher-
ical models may lead to a smaller number of unknowns in the
linear system, however, they clearly raise the complexity in
modeling and analyzing the sampling matrix. For quincunx sam-
pling [11], the non-trivial interpolation filters building A are not
separable in dimensions. For spherical sampling patterns, phys-
ically inspired by the Helmholtz integral theorem [25], A would
need to model the dependence of the microphone samples taken
within the VOI to the coefficients of a spherical-harmonics ex-
pansion. Alternatively, one might also consider sampling with
a moving microphone on the surface of the VOI only, lead-
ing to a different interpolation problem, but this would require
a completely different measurement setup in which sampling
with a hand-held, position-tracked microphone is not an option.
While the spherical array is specially designed to address the
measurement of 3D volumes, a uniform-grid model provides
the full scalability to recover along lines, on planes, and within
volumes. Further, a virtual equidistant grid allows for a simple
and straightforward approach to relate samples acquired during
the dynamic sampling process to the unknowns in the linear
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system. The resulting sampling matrix A only contains the
source signal and spatial interpolation coefficients that depend
on the microphone trajectory. The effort for setting up and
solving the system is extremely low. In general, the spatial
dimensions on the uniform grid are separable, which allows
for efficiently implementing sparsifying transforms for our CS
framework. Also the interpolation coefficients in A become sep-
arable, which reduces the effort for calculating and evaluating
higher-order interpolation polynomials. Taking all these points
into account, we chose a uniform-grid model for the dynamic
sampling problem, as also considered in [13], [26].

Let T = 1/fs denote the sampling interval in time with sam-
pling frequency fs fulfilling the Nyquist-Shannon sampling the-
orem fs > 2fc , where fc is the temporal cutoff frequency that,
in our case of sound-field sampling, is assumed to be equal to
the audio bandwidth involved. Accordingly, we have samples
at equidistant points tn = nT with n ∈ N0 being the discrete
variable of the causal time signal. For the uniform sampling in
the spatial dimensions, we model a Cartesian grid where the
equidistant sampling points rg ∈ G are given by the set

G =
{

rg | rg = r0 + [gxΔx , gyΔy , gzΔz ]
T
}

(3)

with the grid origin r0 and the discrete grid variables in g =
[gx, gy , gz ]

T ∈ Z3 . In order to reconstruct sound waves in space
with minimal wavelength λ = c0/fc without aliasing, the spatial
grid requires Δξ < c0/(2fc)∀ ξ ∈ {x, y, z}, where c0 is the
speed of sound and Δξ denotes the spatial sampling interval for
each dimension x, y, z.

By using a 4D sinc filter with infinite support, the continu-
ous sound field h(r, t) can be perfectly reconstructed from the
discrete grid RIRs h(rg, tn ). However in practice, the sampling
process and thus the number of sampling points are limited.
The amplitudes of the grid RIRs decrease exponentially and are
assumed to vanish into the noise level beyond tL−1 for given fs .
Hence, despite limiting the time samples of the signal h(rg, tn )
to L taps, finite length interpolation filters allow for reasonable
approximations in the temporal dimension. The spatial sampling
is restricted to a volume of interest in practice, leading to a finite
grid in space of size X × Y × Z. This translates to a rectangular
windowing of the sound field along the spatial dimensions, and,
thus, to a convolution of the sound-field spectrum with a sinc
function along each spatial frequency variable. Nevertheless,
the larger the region of sampling is, the faster the spectral de-
cay of the windowed sound field will be [11]. Consequently, to
improve the spatial reconstruction despite finite support, either
the measuring area has to be chosen larger than the volume of
interest, or the spatial sampling grid has to be chosen finer, well
above the Nyquist rate. The number of spatial sampling points
increases in both cases.

B. Dynamic Sampling Procedure

The sound-field measurement with moving microphones may
be regarded as the reverse interpolation problem in space [13].
In general, the sampling points x(r, n) are uniformly taken in
the time dimension, but dynamically taken at intermediate po-
sitions r of a virtual spatial grid according to (3). The following

description considers a single microphone sampling on trajec-
tory r(n), however the extension to multiple microphones is
straightforward.

Aiming at the recovery of the finite set of N = XY Z RIRs
at discrete grid positions g ∈ G, with

G = {0, . . . , X − 1} × {0, . . . , Y − 1} × {0, . . . , Z − 1}
(4)

spanning a regular grid inside the volume of interest, the dy-
namic measurement process is modeled as

x(r(n), n) =
L−1∑
m=0

∑
g∈G

ϕn (g)h(g,m) s(n − m) + η(n), (5)

where ϕn (g) is an interpolation function for approximating the
sound field at continuous position r(n) for discrete time points
n as linear combination of the grid RIRs h(g, n) subject to the
displacements rg − r(n). The term η(n) is a perturbation com-
prising the measurement noise and the error of the bandlimited
interpolation in space. Accordingly, for M samples taken by the
moving microphone, the linear measurement model is

x =
N∑

u=1

ΦuShu + η, (6)

where x ∈ RM is the measurement vector,

x = [x(r(0), 0), . . . , x(r(M − 1),M − 1)]T , (7)

η ∈ RM is the noise vector,

η = [η(0), . . . , η(M − 1)]T , (8)

hu ∈ RL contains the u-th RIR on a virtual grid in space,

hu = [h(gu , 0), . . . , h(gu , L − 1)]T , (9)

S ∈ RM ×L is the convolution matrix of the source signal, and
Φu ∈ RM ×M is a diagonal matrix stacking all M interpolation
coefficients for the u-th virtual-grid RIR,

Φu = diag {ϕ0(gu ), . . . , ϕM −1(gu )} . (10)

The modeling of positions rgu
forming a uniform grid in space,

the tracking of the trajectory r(n), and the knowledge about the
excitation signal s(n) allow for setting up the system of linear
equations

x = Ah + η, (11)

with system matrix A ∈ RM ×U having the block structure

A =
[
Φ1S,Φ2S, . . . ,ΦN S

]
(12)

and vector h = [hT
1 , . . . ,hT

N ]
T

consisting of U = NL un-
known sound-field variables in total, i.e., the concatenated grid
RIRs. In [13], the sampling matrix A was assumed to have full
column rank and to formulate a well-posed problem, in order to
obtain the estimate of h(g, n) by simply calculating the unique
least-squares solution of the linear system (11). Then, for spec-
trally flat excitation, it could be shown by analyzing AAT with
M = U that the recovery error is highly dependent on the terms∑N

u=1 ϕ2
n (gu ) and, thus, on the trajectory, the modeled spatial

grid, and the used interpolation function. Apart from the actual
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interpolation accuracy, the error is smaller for positions r(n)
sampled closer to the grid points rg and minimal for the set of
parameters P = {(r(n),G)} ensuring

argmax
P

M −1∑
n=0

N∑
u=1

ϕ2
n (gu ), (13)

which corresponds to a moving microphone sampling exclu-
sively on the grid positions in an arbitrary temporal order [13].

C. Time-Decoupled Problem

By using a repetitive source sequence s(n) of period length
L with perfect autocorrelation function leading to the circular
convolution matrix So ∈ RL×L with ST

o So = γIL×L for one
period of excitation in steady state, the computational complex-
ity for the recovery of h can be substantially reduced [13].
Such a perfect sequence allows for decomposing (11) into L
time-decoupled sub-problems, each with a number of unknowns
growing only with the size of the spatial grid, i.e., proportional to
only f 3

c instead of f 4
c . For R periods of excitation, the problem

(11) simplifies to

x = Ãh̃ + η, (14)

with the highly structured RL × NL system matrix

Ã =

⎡
⎢⎢⎣

Φ1,1 . . . ΦN,1

...
. . .

...

Φ1,R . . . ΦN,R

⎤
⎥⎥⎦ (15)

consisting of R × N blocks of diagonal matrices Φu,r carrying
the L interpolation coefficients of the u-th grid RIR at the r-th
period of excitation, and the vector

h̃ = [(Soh1)T , . . . , (SohN )T ]
T

= (IN ⊗ So)h (16)

containing a time-filtered version of h(g, n), where ⊗ denotes
the Kronecker product and IN is the identity matrix of size N ×
N . The filter given by the excitation sequence in So only scales
the magnitude and changes the phases of the temporal frequency
components of the sound-field variables in h. According to
the block-diagonal structure of Ã, the problem (14) is actually
composed of L sub-problems of size R × N which may be
solved separately [13]. Unique least-squares solutions are only
possible for R ≥ N . The sought grid RIRs are obtained by
subsequent inverse time-filtering according to h = γ−1(IN ⊗
ST

o )h̃.

D. Multigrid Problem

By exploiting the dispersion relation of propagative sound
waves, the dynamic sampling problem (11) may also be decom-
posed into multiple subband problems by using a multiresolu-
tion recovery scheme [22]. According to the LTI model ensuring
a constant speed of sound c0 , the dispersion relation

κ2
x + κ2

y + κ2
z =

ω2

c2
0

(17)

Fig. 1. Spectral cone of sound fields in 2D space. By using the multigrid
model, the broadband cone is decomposed into V distinct subbands H(v ) (κ, ω)
that may be reconstructed separately.

gives a direct relationship between the spatial frequencies κx ,
κy , κz in rad m−1 and the temporal angular frequency ω = 2πf
in rad s−1 for the continuous case [11]. Consequently, the de-
composition of the sound field into V temporal subbands with
band limits ω

(v−1)
c ≤ ω < ω

(v )
c (v ∈ {1, . . . , V }) inherently in-

duces band limiting in the spatial domain and allows for restrict-
ing the corresponding spectra in space to

ω
(v−1)
c

c0
≤
√

κ2( v )
x + κ2( v )

y + κ2( v )
z <

ω
(v )
c

c0
. (18)

A subband scheme with constant temporal bandwidth is outlined
in Fig. 1 for a plane grid in 2D space.

The idea of the multigrid approach is to decompose the mea-
surement signal x(n) into distinct temporal subbands. Accord-
ing to (18), lower temporal frequencies involve lower spatial
frequencies, thus, for the recovery of lower sound-field bands,
simply a coarser virtual grid in space may be modeled. By de-
signing resolution levels v ∈ {1, . . . , V } of the virtual grid in
space, where the highest resolution Δ(V ) is supposed to fulfill
the sampling theorem for the global cutoff ωc , the broadband
problem (11) is decomposed into the subband problems

x(v ) = A(v )h(v ) + η(v ) (19)

with h(v ) ∈ RLN ( v )
containing RIRs on the downsampled grid

of level v and x(v ) containing the bandpass filtered measure-
ment signal which guarantees the spatial Nyquist-Shannon con-
dition for the particular downsampling factor. The number of
samples M is unchanged for each sub-problem, whereas the
number of unknown variables is smaller for coarser grids, i.e.,
A(v ) ∈ RM ×LN ( v )

with N (v ) < N (v+1) . Consequently, lower
grid levels allow for more samples per grid RIR, which makes
the recovery of low frequencies more robust against noise. The
subproblems (19) may be incorporated into a CS based opti-
mization algorithm for further performance gain. In order to
obtain the broadband sound field sampled on the finest modeled
grid, each of the distinct bands recovered by (19) is spatially
upsampled to Δ(V ) and finally summed up. The multiresolution
recovery for CS is tested in the experimental part of this paper.

III. SUB-NYQUIST SAMPLING WITH MOVING MICROPHONES

For practical applications, arbitrary microphone trajectories
most likely lead to ill-posed or even underdetermined problems
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for a given volume of interest. In fact, also microphones that
are moved in a controlled way along a pre-defined trajectory
while taking a number of M samples that is in the order of U
will hardly result in a sampling process that allows for uniquely
determining all U sound-field variables on a large grid in space.
This is due to the following circumstances:

1) In order to satisfy the Nyquist-Shannon sampling theorem
in time and 3D space, the number of unknown sound-field
variables grows proportionally to f 4

c , thus, the problem
becomes very large in practice.

2) A spectrally flat FIR filter approximation for 3D interpo-
lation generally has fast spatial decay, thus, one sample
taken by moving microphones effectively cumulates in-
formation of a very narrow segment on the grid to be
recovered.

3) Boundary grid-positions are not fully surrounded by sam-
ples. Measurements are only available from the inside
of the volume of interest. For measuring each grid point
with equal amount, the boundary of the grid requires more
samples than inner parts.

4) With respect to the omnidirectional support of appropriate
interpolation kernels (cf. Section V-B), the boundary of
the virtual grid needs to be extended beyond the sampled
volume of interest, which increases the number of un-
knowns and inherently leads to an underdetermined linear
system (11).

The combination of all above-mentioned points in fact leads
to a trajectory dilemma that makes it impossible to solve (11)
with conventional methods unless an elongated measurement
and a very dense trajectory are used. The problem requires sub-
Nyquist sampling in practice, which is possible by exploiting
the principle of CS. Therefore, in this work, we combine the
dynamic sampling procedure with a CS framework allowing for
stable and robust recovery of h(g, n) despite having underde-
termined variables. The framework also incorporates the two
extensions of the dynamic sampling model, namely the time-
decoupling (14) and the multigrid partitioning (19).

By comparison with (11), the formulation (14) tightens the
requirements on the trajectory for obtaining a linear system with
fully determined variables. Due to the periodic excitation, the
trajectory needs to fulfill

r(n) �= r(n − lL) ∀ l ∈ Z\{0}, (20)

in order to avoid linearly dependent rows in Ã. Furthermore, the
time-decoupling demands that the microphone measures each
phase of the periodic excitation completely within the spatial
interpolation range of any grid RIR. To give an extreme exam-
ple, consider the spatial split of the virtual-grid positions into
disjoint subsets G1 ∪ G2 = G with G1 ∩ G2 = ∅ and the tempo-
ral split of the excitation phases ρ(n) = (n mod L) into disjoint
subsets T1 ∪ T2 = {0, . . . , L − 1} with T1 ∩ T2 = ∅. In case of
a moving microphone with spatial sampling points r(n) cov-
ering the entire volume of interest, but being located in the
interpolation range of G1 only at time points n with ρ(n) ∈ T1
and in the range of G2 only for ρ(n) ∈ T2 , the linear system (14)
will always be underdetermined, even for an infinite number
of dynamic samples. The reason behind this is the structure of

Ã, which inherently turns the temporal order of positions r(n)
into an important key factor for obtaining a well-posed problem.
The CS based recovery involving additional regularization may
weaken this strong dependency on the trajectory.

IV. COMPRESSED SENSING FRAMEWORK

Room impulse responses in closed rooms are usually sparse
in their early parts (due to direct and a few successive sound re-
flections at the room walls) and dense in their later parts (due to
multiple reflections). In addition, following the dispersion rela-
tion (17), the spatio-temporal spectrum of h(r, t) is ideally mea-
surable on the 3D surface of a 4D hypercone along the temporal
frequency axis ω. In Sections IV-A and IV-B, we outline the
common theoretical tools that generally allow for CS based re-
covery under ideal and non-ideal conditions, respectively. Based
on that theory, the CS model for the introduced spatio-temporal
measurement procedure is characterized in Section IV-C.

A. Sparse Recovery From Noiseless Data

The basic sampling model (6) allows for the recovery of signal
h(g, n) in vector h ∈ RU using M samples of measurement
x(n) in vector x ∈ RM . The link between both signal vectors is
given by the system matrix A ∈ RM ×U whose m-th row is the
sampling vector φH

m performing the projection of the unknown
parameters onto measurement space,

x(m − 1) = 〈h,φ〉 = φH
m h. (21)

For the underdetermined case with a set of linearly independent
sampling vectors smaller than U , the principle of CS enables
us to identify a unique vector h that solves the linear system
together with a sparsity constraint.

The general requirement for CS is that h lives in a subspace of
dimension K � M with respect to an appropriate basis. Con-
sidering the sparsely occupied hypercone forming the sound-
field spectrum, let T B ∈ CB×B be a unitary matrix performing
an orthogonal transform of a 1D signal into some frequency
representation. For a multidimensional regular grid, assume the
separability of the transform. Regarding grid RIRs concatenated
in h first along the x dimension and then along the y and z di-
mensions in succession, the sampled sound field is described by
the coefficients of the 4D frequency representation encapsulated
in

c = Ψh, (22)

where Ψ = T Z ⊗ T Y ⊗ T X ⊗ T L is a unitary U × U matrix
and c ∈ CU is a K-sparse vector, which means that only a small
number of, at most, K frequency coefficients in c is non-zero.

In case of no perturbations and perfect sparsity of c, the basic
sampling problem (11) can be regularized according to

argmin
c∈CU

‖c‖�0 s.t. x = AΨH Ψh = Ac (23)

with A = AΨH and the pseudonorm ‖c‖�0 counting the num-
ber of non-zero elements in c. Defining CK as the set of all
K-sparse signal vectors and the spark of matrix A as the
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smallest number of columns being linearly dependent,

spark(A) = min{K : kern(A) ∩ CK �= {0}}, (24)

a unique solution of the regularized problem (23) is guaranteed
for spark(A) > 2K [27]. This means that vectors living in the
null space of A, except the trivial zero vector, must have at
least 2K + 1 non-zero elements in order to distinguish between
measurements resulting from two different K-sparse signals and
to ensure the implication c �= c′ ⇒ Ac �= Ac′ for any c, c′ ∈
CK . Note that the difference c − c′ ∈ C2K is maximally 2K-
sparse.

To identify a unique signal vector solving (23), an extensive
combinatorial search over all possible

(
U
K

)
sparse subsets of c is

required, which constitutes an NP-hard problem [28]. However,
under stronger conditions on the null space of A, the relaxation
into an �1-norm minimization problem is feasible, such as basis
pursuit [29], [30], LASSO [31], or Dantzig selector [32]. For
instance, the optimization problem in terms of basis pursuit is
set up by simply replacing the pseudonorm in (23) with the
�1-norm according to

argmin
c∈CU

‖c‖�1 s.t. x = Ac. (25)

Such �1-minimization problems can be easily cast into linear
programs or second-order cone programs and thus can be solved
via interior point methods [33].

The equivalence of the solution for the �1-problem with the
unique K-sparse solution for the �0-problem is guaranteed for
a measurement process where A is built in such a way that the
energy of any signal vector v living in the null space of A is
sufficiently spread over multiple coefficients. This requirement
is formalized by the so-called null space property (NSP) of order
K, defined as

‖v‖�1
> 2 ‖vI‖�1

,∀v ∈ kern(A)\{0},∀ |I| ≤ K, (26)

where I is a set of indices restricting v to the corresponding
vector elements. If A satisfies (26), then there exists a K-sparse
signal vector c ∈ CK uniquely solving (23) and (25), since, for
any other other signal vector c′ ∈ CU with Ac′ = Ac, (26)
guarantees that ‖c′‖�1

> ‖c‖�1
[34], [35].

Evaluating the spark or the NSP of a measurement matrix
A has combinatorial computational complexity and is as hard
as the �0-problem (23) itself [36]. For practical applications, a
more tractable property of A is the coherence [16]

μ(A) = max
1≤u �=v≤U

|〈ac
u ,ac

v 〉|
‖ac

u‖�2 ‖ac
v‖�2

∈
[√

U − M

M(U − 1)
, 1

]
,

(27)
where ac

u denotes the u-th column of A. The theoretical guar-
antees for unique �0-recovery and �1-recovery improve for a
smaller coherence [27], [37].

B. Stable and Robust Recovery

In practice, the samples taken by moving microphones are bi-
ased by certain error sources [13], and the 4D sound-field spec-
trum is not exactly K-sparse, e.g., due to evanescent waves [11].
Hence, with respect to (25), we are rather interested in solving

the �1-problem with quadratic constraints according to

argmin
c∈CU

‖c‖�1
s.t. ‖Ac − x‖�2

≤ ε (28)

with ε being the upper magnitude bound of the residual.
Signals that are well approximated by K-sparse represen-

tations via hard thresholding of the absolute values are called
compressible [35]. In order to guarantee stable and robust CS
based recovery of compressible signal vectors c, a stronger con-
dition than the NSP is necessary. Any subset of 2K columns
of A must behave like a nearly orthogonal transform that al-
most preserves the signal energy. In other words, A is required
to map any 2K-sparse vector nearly isometrically from sig-
nal space into measurement space. The sampling matrix, with
�2-normalized columns, is said to have the restricted isometry
property (RIP) of order 2K and level δ ∈ (0, 1) if

(1 − δ) ‖c‖2
�2

≤ ‖Ac‖2
�2

≤ (1 + δ) ‖c‖2
�2

, ∀ c ∈ C2K . (29)

On the one hand, this property guarantees a unique solution
via �0-minimization [38]. On the other hand, a small amount
of additive noise in measurement space with energy ‖Ac −
Ac′‖2

�2
for c, c′ ∈ CK , leads to an error energy ‖c − c′‖2

�2
on

the recovered signal that is not arbitrarily large for a system
matrix satisfying (29). Moreover, the RIP ensures robustness in
terms of multiplicative noise caused by a mismatch of A [39],
in our case, due to inaccuracies during the positional tracking
of the microphones.

The smallest δ for which A satisfies (29) is called the RIP
constant δ2K . A certain upper limit of δ2K guarantees the unique
distinction between measurements obtained from two different
K-sparse signal vectors when solving the �1-problem [38], [40],
i.e., the RIP implies the NSP. Furthermore, the RIP constant
determines upper bounds for the recovery error. It controls the
impact of perturbations induced by noise and by the K-sparse
signal approximation [38], [41].

Verifying the RIP of a matrix is a combinatorial NP-hard prob-
lem [36]. Nevertheless, it was shown in previous works that mea-
surement matrices generated by identical and independent distri-
butions, such as Gaussian, Subgaussian and Bernoulli [42]–[44],
random Fourier ensembles [45], [46], and random convolution
ensembles [47], [48] satisfy the RIP with exponentially high
probability for a wide range of M < U . Obviously, a realistic
trajectory cannot be totally random, since the current position of
the microphone is highly dependent on its previous position: the
speed of the microphone is limited, so, usually, it is impossible
to reach any location inside the volume of interest instantly. For
non-random sampling, the coherence property (27) may be used
as an indicator for RIP guarantees. The coherence of A directly
affects the upper bound for its RIP constant [37].

Dropping the idea of uniform recovery guarantees, weaker
conditions that cope without the RIP suffice for stable and ro-
bust recovery [49]. A uniform recovery guarantee in terms of
CS means that, for a fixed instance of A, all (approximately)
K-sparse signals can be recovered with high probability. In con-
trast, for a fixed compressible signal and a random choice of the
measurement matrix, guarantees for the so-called non-uniform
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recovery of the specific signal can be provided. Thus, uniform
recovery implies non-uniform recovery [46].

C. Dynamic and Compressive Sound-Field Sampling

The CS based recovery of h(g, n) can be divided into two
central problems, since the samples x(r(n), n) taken by the
moving microphone are regular in time domain, but generally
non-equidistant in space domain.

First, let us simplify the aggregated sampling problem by con-
straining the dynamic microphones to perform measurements
exactly on the points of the modeled spatial grid, i.e., r(n) ∈ G.
Then, it is obvious that random trajectories translate to random
time sampling of each grid RIR. Thus, the measurement with
moving microphones becomes equivalent to the measurement
with equidistant stationary microphones, each of them neglect-
ing particular time points. The overall sound field h(g, n) can
be recovered by separately solving the N linear systems of
equations

Rux = RuShu , (30)

where the binary Mu × M matrix Ru restricts x and S to the
actual Mu rows that were randomly measured by the moving
microphones for the particular grid position. Assume that each
grid RIR is Ku -sparse (e.g., because it is dominated by a few
direct reflections). Provided that the magnitudes of the excitation
sequence s(n) are similar and that its spectrum is flat, sampling
a convolution product at randomly selected time points as in (30)
is an isotropic and incoherent process guaranteeing non-uniform
CS recovery by

argmin
hu∈RL

‖hu‖�1
s.t. ‖RuShu − Rux‖ �2

≤ ε (31)

for a wide range of Ku � Mu < L [49]. Moreover, for S being
a circular convolution matrix, also uniform recovery was shown
in [47], [48] by proving low RIP constants with high probability.
For circulant matrices constructed by independent, identically
distributed variables that follow the Gaussian or Rademacher
distribution, even any arbitrary (non-random) subset of Mu rows
in (30) suffices for uniform recovery [48]. Therefore, regard-
ing the basic model (11) of the dynamic sampling procedure,
the excitation with white Gaussian noise is suitable for the CS
based recovery. Note that linear convolution can be extended
to the circular convolution case [47]. For the time-decoupled
problem (14), which inherently involves circular convolution
matrices, we propose the use of pseudo-random MLS for exci-
tation: they are spectrally flat (except for DC) and closely follow
a Rademacher process where the values +1 and −1 appear with
almost equal probability [9]. Thus, the energy of MLS is max-
imally spread over the time signal. In contrast, tertiary Ipatov
sequences [8], which also have a perfect autocorrelation func-
tion and allow for time-decoupling, are disadvantageous for the
CS based recovery that exploits sparsity in time domain. They
contain a certain number of zeros leading to a signal where the
energy is concentrated on a smaller set of time points (cf. [47]).

Indeed, in practice, the moving microphone will be mainly
located at intermediate positions of the spatial grid, so sam-
ples are taken in continuous space. For random sampling, the

procedure is isotropic and incoherent and provides stability and
robustness for non-uniform recovery [49]. Regarding (28) and
considering the sparse spectral cone of sound fields, a randomly
moving microphone measures a sparse multivariate trigonomet-
ric polynomial at random positions in space. Note that bandlim-
ited signals are represented by trigonometric polynomials with a
specific maximum degree. Exact CS recovery of a sparse poly-
nomial from its random samples by basis pursuit was shown
in [50]. More generally, in [46], uniform and non-uniform re-
covery guarantees were presented for signals that have a sparse
expansion in a bounded orthonormal system of functions.

The time-decoupled problem (14) generically allows for de-
composing the overall issue of spatio-temporal sound-field sam-
pling into multiple spatial problems. By incorporating the spar-
sifying frequency transform and using (15), (16), and (22), the
CS based optimization problem can be formulated as

argmin
c∈CU

‖c‖�1
s.t. ‖Ãc − x‖ �2

≤ ε (32)

with Ã = Ã(IN ⊗ So)ΨH . Obviously, this reformulation in-
volving frequency representation no longer allows for decom-
posing and solving multiple subproblems separately. However,
the block diagonal structure of Ã and the circularity of So may
heavily reduce the number of calculations performed by CS
recovery algorithms.

In the following section, the influence of the trajectory on
the CS problem is analyzed. At this, we will see that the sparse
representation via Ψ performing discrete Fourier transforms
possess many advantages. On the one hand, the structure and
the properties of the CS matrices can be easily determined.
On the other hand, the choice of the spectrally flat excitation
signal becomes irrelevant for the coherence of the resulting CS
problem. As mentioned above, when exploiting the sparsity of
RIRs in time domain by use of Ψ = IU , the temporal energy
distribution of the excitation sequence is crucial for the CS
problem.

V. TRAJECTORY ANALYSIS FOR SPECTRALLY FLAT EXCITATION

In Section V-A the general structure of the CS matrix A is
characterized. Also the time-decoupled problem involving Ã
is considered, where s(n) is a periodic sequence with perfect
autocorrelation function as described in Section II-C. The de-
pendency of the CS matrix on the trajectory is investigated in
Section V-B, given a spectrally flat excitation sequence s(n),
assuming a perfect interpolator, and applying discrete Fourier
transforms for the sparse frequency representation of h. Based
on this, in Section V-C we deduce an expression that reduces
the computational cost for calculating the coherence (27) of the
given CS problem from a quadratic problem in the number of
sound-field variables to a linear problem. The coherence of the
CS matrix only depends on the trajectory relative to the spatial
grid to be recovered. Exploiting this, the requirement on the
microphone trajectory considered optimal for CS sampling is
formalized. This enables us to evaluate given dynamic measure-
ments at low computational cost.
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To keep the initial description and analysis simple, in
Sections V-A and V-B the measurement space will be confined
to the x-dimension only. This means that we consider the re-
covery of RIRs at uniform points along a line in the x-direction.
The extension to spatial 3D sampling is straightforward, since
both the interpolation function and the sparsifying transform are
assumed to be separable on the virtual grid in space.

A. General Structure of the CS Matrix

Let Ψ = T X ⊗ T L perform some orthonormal 2D transform
along both discrete variables of the sought impulse response
h(gx, n) contained in h. Correspondingly, c ∈ CX L comprises
the concatenated values of the 2D transformed sound-field spec-
trum. Following (21), the unknown parameters are projected
onto measurement space according to

φH
mΨH Ψh = 〈Ψh,Ψφm 〉 = 〈c, φ̌m 〉. (33)

Hence, the new representation by c leads to the CS matrix

A ∈ CM ×X L whose m-th row ar
m = φ̌

H
m contains the 2D trans-

formed values of the components in the m-th row of A. Corre-
sponding to (10) and (12), the m-th row of A is built up by the
sampling vector

φH
m = [ϕm−1(0) s(m), . . . , ϕm−1(X − 1) s(m)] , (34)

with

s(m) = [s(m − 1), s(m − 2), . . . , s(m − L)] . (35)

Thus, one row in A is formed by the corresponding sequence
of the time reversed and spatially weighted source signal

sm (gx, n) = ϕm−1(gx) s(m − 1 − n). (36)

Accordingly, one row in A contains the values of the 2D or-
thonormal transform of (36).

The CS matrix Ã of the time-decoupled problem essentially
possess the same structure as A. In fact, the repetitive exci-
tation leads to a basic sampling matrix A that is equivalent
to Ã(IN ⊗ So). However, due to the periodicity in time, the
temporal component in (34) is identical for every L-th row.

For Ψ performing the 2D discrete Fourier transform on the
sound field, the m-th row ar

m building A is composed of the
Fourier representation

Sm (kx, l) =
1√
XL

X−1∑
gx =0

L−1∑
n=0

sm (gx, n) e−2πj l
L n e−2πj k x

X gx ,

(37)
where kx ∈ {−X−1

2 , . . . , X−1
2 } and l ∈ {−L−1

2 , . . . , L−1
2 } are

the sampled frequency variables for the space and time dimen-
sion, respectively. For simplicity and without loss of generality,
both the grid length X and the RIR length L are assumed to be
odd.

B. Influence of the Trajectory on the CS Matrix

From the point of view of signal processing, the coefficients
given by the interpolation function act like a digital filter in the
spatial domain that depends on the microphone position relative
to the modeled grid. Accordingly, the rows of A and Ã, are

primarily determined by the trajectory rx(n) for spectrally flat
excitation. This issue is described in the following subsection.

Regarding (5), we can consider ϕn (gx) to fulfill a spatial
alignment task, i.e., to perform a fractional delay (FD) in space
on the sound field h(gx, n), in order to fit samples x(rx(n), n)
taken in continuous space into the modeled spatial grid. The
impulse response of an ideal FD filter is a shifted and sampled
sinc function, ϕid

n (gx) = sinc(gx − Dx(n)), where

Dx(n) =
rx(n) − r0

Δx
(38)

is the delay consisting of the integer part �Dx(n)� and the
fractional part dx(n) = Dx(n) − �Dx(n)�. Thus, the ideal fre-
quency response of a FD filter reads

Φid
n (ejκx ) = e−jDx (n)κx , (39)

with constant magnitude response

|Φid
n (ejκx )| = 1, (40)

linear phase response

arg
{
Φid

n (ejκx )
}

= θid
n (ejκx ) = −Dx(n)κx, (41)

and constant phase delay τ id
n = Dx(n). For Dx(n) �= 0, the ideal

FD filter has infinite length, and, thus, is not realizable.
In order to design a realizable FD filter, several finite-length

approximations for the sinc function have been proposed. A
discussion and comparison of common techniques including
non-recursive (FIR) and recursive (IIR) filter approximations
can be found in [51]. The maximally flat FD FIR filter ap-
proximation of length P + 1 is equivalent to the coefficients of
the classical Lagrange interpolation method, given by the P -th
order polynomial

ϕn (gx) =
P∏

p=0
p �=gx

Dx(n) − p

gx − p
. (42)

In [13], [22], an odd-order Lagrange interpolator was used for
both spatial measurement interpolation and spatial subband syn-
thesis (cf. Section II-D), respectively, given a well-posed prob-
lem. The maximum order of the interpolating polynomial was
limited by confining the support of the Lagrange kernel to lo-
cal grid points. The support was centered around the measure-
ment position rx(n), since the odd-order Lagrange interpolator
yields the best approximation for P −1

2 ≤ Dx(n) ≤ P +1
2 [51].

Then, it never overestimates the amplitude of the signal, i.e.,
the maximum of the magnitude response of the FD filter ap-
proximation is one. The approximation error highly depends on
the fractional part dx(n). The worst case occurs with a frac-
tional delay of dx(n) = 0.5, which leads to an excessive mag-
nitude error at high frequencies and even to an exact zero at
the Nyquist frequency. However, at low frequencies, the mag-
nitude and phase delay curves coincide with the ideal response
for any dx(n). Thus, for a virtual grid with spacing Δx lead-
ing to more than a twofold spatial oversampling, the Lagrange
interpolation shows nearly optimal performance (cf. [13]). The
magnitude and phase delay responses of Lagrange interpolators
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Fig. 2. Magnitude and phase delay responses of Lagrange FD filters Φ(ejκ ) of
order P = 3 (upper row) and order P = 11 (lower row). The curves are plotted
for eleven equidistant fractional delay values D in the interval [ N −1

2 , N +1
2 ].

Note that in (a), (c) there are only six curves, since the magnitude responses for
fractional delays D and P − D are the same.

with P = 3 and P = 11 are illustrated in Fig. 2 for various
fractional delay values.

In addition to the actual interpolation accuracy, ϕn (gx) and
rx(n) directly influence the appearance of the CS matrix, and,
therefore, the guarantees for the CS based recovery. Let the
columns in A consist of values of the Fourier spectra Sm (kx, l)
defined in (37):

ac
(kx ,l) = [S1(kx, l), . . . ,SM (kx, l)]T . (43)

Using (36), (37), (38), and (39), it can be seen that the change
of the microphone position from measuring point rx(n) to point
rx(n + m) ideally corresponds to recursive phase shifts in the
discrete Fourier spectrum given by

Sn+m (kx, l) = Sn (kx, l) e−2πj (Dx (m )−Dx (n)) k x
X e−2πjm l

L .
(44)

Thus, for a spectrally flat excitation sequence and a perfect
interpolation kernel fulfilling (39) for any frequency, each of
the XL columns of A can be described by use of structured
spatial and temporal phase terms according to

ac
(kx ,l) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0
(kx ,l)

a0
(kx ,l) e−2πj (Dx (1)−Dx (0)) k x

X e−2πj1 l
L

a0
(kx ,l) e−2πj (Dx (2)−Dx (0)) k x

X e−2πj2 l
L

...

a0
(kx ,l) e−2πj (Dx (M −1)−Dx (0)) k x

X e−2πj (M −1) l
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(45)
where the initial phase state

a0
(kx ,l) = e−2πjDx (0) k x

X σs ejθ0 (l) (46)

is determined by the initial grid delay Dx(0) and by the ini-
tial phase θ0(l) of the excitation signal with power σ2

s leading

to the first microphone sample at time n = 0. Consequently,
all columns of A possess consistent �2-norm, ‖ac

(kx ,l)‖�2 =√
Mσ2

s . The rows of A only differ in the phases: the temporal
domain fulfills a uniform phase delay, and in the spatial domain,
in general, a fractional phase shift is performed depending on
the trajectory rx(n) in accordance with (38). Note that (45)
also holds for the time-decoupled model with CS matrix Ã.
Here, due to the L-periodic excitation sequence, the temporal
phase terms appear repetitively at rows n + mL for fixed n and
varying m.

C. Coherence of Measurements

From the column representation (45), the deduction of the
coherence (27) belonging to the particular CS matrix is straight-
forward. Defining the differences of discrete frequency variables
k′

x , k′′
x ∈ {−X−1

2 , . . . , X−1
2 } and l′, l′′ ∈ {−L−1

2 , . . . , L−1
2 } as

Δkx = k′
x − k′′

x , Δkx ∈ {−(X − 1), . . . , X − 1}, (47)

Δl = l′ − l′′, Δl ∈ {−(L − 1), . . . , L − 1}, (48)

the coherence of A is

μ(A) = max
(k ′

x ,l ′) �=(k ′′
x ,l ′′)

∣∣∣
〈
ac

(k ′
x ,l ′) ,a

c
(k ′′

x ,l ′′)

〉∣∣∣∥∥∥ac
(k ′

x ,l ′)

∥∥∥
�2

∥∥∥ac
(k ′′

x ,l ′′)

∥∥∥
�2

(49)

= max
(Δkx ,Δ l) �=(0,0)

1
M

∣∣∣∣∣
M −1∑
n=0

e−2πj
D x (n )

X Δkx e−2πj n
L Δ l

∣∣∣∣∣ ,
(50)

where the initializing temporal phase ej (θ0 (l ′)−θ0 (l ′′)) resulting
from the scalar product in (49) is independent of the sum over
n, and, thus, dissolves in (50). Considering a 3D grid in space,
let us define, by analogy with (38) and (47), the trajectory

rD (n) = [Dx(n),Dy (n),Dz (n)]T (51)

relative to the modeled grid coordinate system, and the vector

d = [Δkx,Δky ,Δkz ]T (52)

containing the frequency difference for each spatial dimension.
Using

X (rD (n),d) = e
−2πj

(
D x (n )

X Δkx + D y (n )
Y Δky + D z (n )

Z Δkz

)
,
(53)

the coherence of the modeled sound-field sampling problem
reads

μ(A) = max
(d,Δ l)

1
M

∣∣∣∣∣
M −1∑
n=0

X (rD (n),d) e−2πj n
L Δ l

∣∣∣∣∣ (54)

with (d,Δl) �= (03×1 , 0). The following observations can be
made by reference to the expression (54) for an ideal interpola-
tion kernel:

� Any arbitrary spectrally flat excitation signal s(n) leads to
one and the same coherence of the CS problem, indepen-
dent of its spectral phases.
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� The coherence of the CS problem only depends on rD (n),
which is the microphone trajectory relative to the virtual
grid in space to be recovered.

� The periodic excitation considered in the time-decoupled
model promotes a high correlation of samples taken
for equal phases of excitation at similar positions (cf.
Section III), and, thus, may easily lead to a higher co-
herence of Ã than given by (54).

� For determining the coherence of A, only varying tuples of
frequency differences (d,Δl) have to be regarded. Com-
pared to the naive approach of testing any scalar product
between two different columns in A, this knowledge re-
duces the effort for computing the coherence of a given
CS matrix from a quadratic problem in O(U 2) to a linear
problem in O(U), where U = XY ZL is the number of
unknown parameters.

� Since the rows of A are represented by real-valued sig-
nals in practice, the particular spectra in A are conju-
gate symmetric. This may be exploited for saving further
computational cost. For example, the maximum in (54)
could be found by regarding only parameter combinations
(d,Δl) with Δl ∈ {0, . . . , L − 1}, Δkx ∈ {0, . . . , X −
1}, Δky ∈ {−(Y − 1), . . . , Y − 1}, and Δkz ∈ {−(Z −
1), . . . , Z − 1}.

As mentioned in Sections IV-A and IV-B, the theoretical
guarantees for CS based recovery improve for lower coherence.
The RIP requires that the columns of A consisting of measured
phases according to (45) must build up a nearly orthogonal sys-
tem for any set of 2K different frequency tuples (kx, ky , kz , l).
If the coherence is small, then all columns of A are almost
mutually orthogonal, thus, (54) provides an upper bound for the
RIP constant of A. An even sharper bound may be achieved by
exploiting (54) for calculating the �1-coherence function [52],
which measures the maximum total coherence between a fixed
column and a set of 2K other columns. In this context, the CS
trajectory may be considered optimal for the set of parameters
P = {(rD (n),G)} ensuring

argmin
P

(
max
(d,Δ l)

∣∣∣∣∣
M −1∑
n=0

X (rD (n),d) e−2πj n Δ l
L

∣∣∣∣∣
)

. (55)

The expression (55) may be used for several tasks that arise in
practice. In addition to finding optimal trajectories for sought
grids or modeling optimal grids for given measurements, the
formula may be exploited for an efficient reconstruction strat-
egy where the bandwidth is spatially adapted according to the
number of neighbouring samples and their coherence.

Indeed, a perfect interpolator with ideal frequency response
(39) is unrealizable in practice. Nevertheless, considering a vir-
tual grid leading to spatial oversampling by a factor α > 2, the
FD filter approximation by an appropriate Lagrange interpolator
achieves ideal magnitude and phase response for the relevant
range of these normalized frequencies |κx | < π

α at which the
bandlimited signal actually lives (cf. Fig. 2(c) and (d)). Accord-
ingly, the non-ideal columns in A, that refer to sampled spatial
frequencies where the FD filter is not perfect according to (39),
correspond to entries in c being for sure (approximately) zero.

Thus, all columns of the CS matrix that potentially span the mea-
surement space may be described by (45) and their coherence
is given by (54).

VI. EFFICIENT CS ALGORITHM FOR RIR RECOVERY

In the experimental part of this paper, we adapt the IHT
algorithm for CS based sound-field recovery. The IHT method
provides near-optimal and robust error guarantees for solving
CS problems and requires low effort in computation and memory
[23]. It approaches the K-sparse solution by applying the simple
update rule

ĉ(i+1) = TK

{
ĉ(i) + μΨAT

(
x − AΨH ĉ(i)

)}
, (56)

where TK is the nonlinear thresholding operator that sets all but
the K largest absolute values in the updated signal to zero. One
iteration according to (56) involves a simple gradient descent
step into the direction of the least-squares solution with step
size μ followed by a hard projection of the signal estimate
onto the subspace of its K-sparse representation. Applied to our
sound-field sampling model (11), (56) simplifies to a fast update
scheme involving the calculation of the residual according to

ε(i) = x −
N∑

u=1

ΦuSĥ
(i)
u , (57)

the update of the estimated grid RIRs subject to

ĥ
(i+1)
u = ĥ

(i)
u + μST Φuε(i) (58)

and the transform of the updated sound-field variables ĥ
(i+1)

into their sparse frequency representation ĉ(i+1) = Ψĥ
(i+1)

for
hard thresholding. In (57) and (58), the convolutions of the
source signal with the estimated RIRs and the residual can be
computed very efficiently in Fourier domain. The diagonal ma-
trices Φu only contribute weighting factors subject to the spatial
interpolation.

Considering the time-decoupled problem (14), the IHT update
rule becomes

ĉ(i+1) = TK

{
ĉ(i) + μΨST

o Ã
T
(
x − ÃSoΨH ĉ(i)

)}
.

(59)
Accordingly, the computation of the residual reads

ε(i) =

⎡
⎢⎢⎣

ε
(i)
1
...

ε
(i)
R

⎤
⎥⎥⎦ = x −

N∑
u=1

⎡
⎢⎣

Φu,1

...

Φu,R

⎤
⎥⎦So ĥ

(i)
u , (60)

and the RIR correction step is

ĥ
(i+1)
u = ĥ

(i)
u + μST

o

R∑
r=1

Φu,r ε(i)
r , (61)

with the partial residual signal in ε
(i)
r corresponding to the r-

th period of excitation. By comparison with S, the matrix So

is circular and only of size L × L instead of M × L , which
reduces the effort for computing the convolution products.
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Fig. 3. Error of the CS based sound-field recovery as a function of the number of IHT iterations for the cases of (a)–(d) M = 1.28 U samples (i.e., slight
oversampling) and (e)–(h) M = 0.8 U samples (i.e., slight undersampling), taken along four different microphone trajectories: (a), (e) sampling at random
positions exactly on grid points, (b), (f) sampling at random positions exactly in the middle between grid points, (c), (g) sampling along a Lissajous trajectory, and
(d), (h) sampling at random positions inside the region of interest. In the upper row (M = 1.28 U), the dashed lines indicate the quality given by the LS solutions
of the basic model. The dotted lines in (a) and (b) show the results for the LS solutions and the time-decoupled model. The LS solution for the time-decoupled
model and Lissajous and random sampling lies above 0 dB NSM and is not shown.

By decomposing the measurement signal of the moving mi-
crophone into V distinct subband signals x(v ) , both update rules
(56) and (59) may be easily incorporated into a multiresolution
recovery scheme according to (19).

VII. EXPERIMENTS AND RESULTS

For the following experiments, we simulated RIRs and mi-
crophone measurements by use of the image source method
[53] considering a room of size 5.8 m × 4.15 m × 2.55 m. The
reverberation time of the room was chosen as RT60 = 0.3 s.
The cutoff frequency of the RIRs was fc = 4 kHz. The posi-
tion of the sound source was set to [1.4, 1.6, 1.0]T in a world
coordinate system with unit 1 m. The origin of the spatial grid
G was set to r0 = [2.75, 1.4, 0.8]T . Measurements were taken
by one moving microphone. For the recordings, white Gaussian
measurement noise was added.

As error measure for the overall sound-field recovery in-
volving N grid RIRs, the mean normalized system misalign-
ment [13]

MNSM =
1
N

N∑
u=1

‖hu − ĥu‖2
�2

‖hu‖2
�2

(62)

is used, with hu ∈ RL containing the true RIR and ĥu ∈ RL

being the reconstructed RIR at grid index u. In order to provide
a frequency-dependent error measure for each estimated grid
RIR, we define the mean energy spectral density of the error
[22] as

ME-ESD(f) =
1
N

N∑
u=1

|Hu (f) − Ĥu (f)|2 , (63)

where Hu (f) and Ĥu (f) are the Fourier transforms of the true
RIR and the corresponding reconstructed RIR, respectively.

The first experiment gives a comparison between the CS based
sound-field recovery proposed in this paper and the strategy used
in [13], where the sound-field estimate was the least-squares
(LS) solution obtained by the pseudoinverse of A. Accordingly,
we consider a sampling scenario ensuring that the system matrix
is small enough to allow for computing the pseudoinverse. We
sampled the sound field on a planar grid of size 5 × 5 with spac-
ings Δx,y = 0.02 m at fixed height 0.8 m. The RIRs were limited
to length L = 511. In total, this problem involves U = 12,775
sound-field variables. We tested four different types of trajec-
tories covering the entire modeled grid: rG(n) taking samples
exactly on random grid points, rM(n) taking samples at ran-
dom positions exactly in the middle between grid points, rR(n)
taking samples at random positions, and rL(n) taking samples
along a Lissajous trajectory with frequency ratio fx/fy = 3/4
[54]. Of course, the trajectories rG(n) and rM(n) are completely
unrealistic in practice. They are just used to identify fundamental
differences between individual recovery algorithms. For excita-
tion, we used white Gaussian noise for the basic sampling model
and a scaled MLS sequence of length L with zero DC offset for
the time-decoupled model. The signal-to-noise ratio (SNR) for
the measurement signal was set to 40 dB.

The sampling process was modeled with φn (g) being the
Lagrange interpolator of order three in each spatial dimension.
For the CS based recovery via IHT, the step size μ = 5·10−4

was chosen. As sparse frequency representation of the sound-
field variables we used their Fourier transforms. The iterative
recovery was started with the zero vector. Beginning with K0 =
1000, the sparsity constraint was successively relaxed every 40
iterations.

The recovery results for M = 16,352 = 1.28 U samples and
M = 10,220 = 0.8 U samples, taken along the considered tra-
jectories, are presented in Fig. 3. The markers on the curves
indicate the iterations where the sparsity parameter K was
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increased by 1000. Regarding the potentially overdetermined
case M = 1.28 U, the quality of the LS solutions is indicated
with a dashed line for the basic sampling model, and with a
dotted line for the time-decoupled model with periodic excita-
tion. For the CS based recovery, we further tested the case in
which the modeled grid is extended beyond the actual region
of interest, denoted with EG, in order to avoid impairments of
the interpolator for samples taken at the boundary of the con-
sidered plane. According to the order of the used interpolation
filters, this strategy increases the size of the modeled grid to
7 × 7, which certainly leads to underdetermined variables even
for M = 16,352. Also for the grid-extended case, the MNSM
measure was calculated regarding the inner 5 × 5 sector that
spans the actual region of interest.

Concerning the setup with M = 1.28 U, Fig. 3(a)–(d) show
the following results:

� The basic model with random white Gaussian excitation
yields overdetermined problems with proper LS solutions,
whereas the time-decoupled model leads to underdeter-
mined problems due to the temporal correlations of the
periodic MLS excitation as described in Section III.

� The CS based recovery substantially reduces the drawback
of periodic excitation.

� The trajectory rG(n) (Fig. 3(a)) performs best, and the
trajectory rM(n) (Fig. 3(b)) performs worst for sound-field
recovery, which corresponds to the analysis in [13].

� For non-optimal trajectories (Fig. 3(b)–(d)), the proposed
CS approach significantly improves the sound-field esti-
mate, even for the overdetermined case.

Reducing the number of sampling points by 38% leads to sub-
Nyquist sampling with M = 0.8 U. The results for this setup
are depicted in Fig. 3(e)–(h). Except for the optimal trajectory
rG(n) involving no interpolation, the quality of the sound-field
estimate obtained by CS reconstruction remains stable despite
significantly reduced data.

The strategy of extending the modeled grid beyond the region
of interest improves the CS based recovery inside the targeted
area in most cases. Despite increasing the overall number of
underdetermined sound-field variables, this strategy weakens
the boundary problem that occurs when interpolating at the
edges of the finite grid, and, thus, leads to a more consistent
sampling model.

For the extended-grid scenario, the used interpolator of order
three for determining the CS matrix A possesses magnitude
and phase delay responses according to Fig. 2(a) and (b). Ob-
viously, the interpolation kernels are non-ideal for a wide range
of higher frequencies. Nevertheless, we tested the expression
(54) derived for the efficient calculation of the coherence un-
der the assumption of ideal interpolators. For M = 0.8 U, we
ran 10,000 experiments where the sound field was recovered
by the IHT algorithm using samples from randomly generated
hybrids of the four trajectories described above. The samples
were corrupted with Gaussian noise at 40 dB SNR. In Fig. 4,
the resulting recovery errors and the corresponding values for
the coherence estimated by the formula (54) are presented. We
observe a high correlation between both quantities, even for the
low-order FD filter considered in this scenario. In all of the

Fig. 4. Error of the CS based sound-field recovery versus the coherence cal-
culated by use of the formula (54) for 10,000 experiments.

Fig. 5. Frequency-dependent error with and without involving a multiresolu-
tion scheme into CS recovery for (a) SNR = 40 dB and (b) SNR = 20 dB.

experiments, the coherence according to (54) was found at
Δl = 0, which reveals the trajectory-dependent function (53)
as the only important factor for determining the coherence.

Further, both the time-decoupling and the multiresolution re-
covery scheme were incorporated into the IHT algorithm. For
the same room scenario, a volume of interest covered by a
5 × 5 × 5 grid with spacings Δx,y ,z = 0.02 m was considered.
The lengths of the RIRs and the MLS was set to L = 1023.
The scenario involves U = 1.27 · 105 sound-field variables to
be recovered. The microphone took M = 105 samples along
a 3D Lissajous trajectory with frequency ratios fx/fy = 9/10,
fx/fz = 9/8.

Following the CBM scheme from [22], we modeled V = 4
resolution levels, each with temporal bandwidth of 1000 Hz.
Hamming windowed bandpass filters of order 50 were used.
The step size of the IHT algorithm optimizing on subbands
was μ = 8 · 10−5 and the initial sparsity parameters were K0 =
2000/(5 − v), constantly relaxed after each 50 iterations.

Compared to the wideband recovery, the CS multigrid ap-
proach significantly improves the sound-field recovery at low
frequency bands for several SNRs. The frequency-dependent
error after 600 iterations is presented in Fig. 5 for SNR = 40 dB
and SNR = 20 dB.

VIII. CONCLUSION

In this paper, we have presented a CS framework for dy-
namic sound-field recovery. The method allows for uniquely
determining RIRs on a virtual array in space by use of mov-
ing microphones performing sub-Nyquist sampling. Compared
to conventional RIR measurements, the method not only saves
time due to sub-Nyquist sampling, but also because no transient
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times are involved at all. The signals of the microphones, the
tracking of their positions, and the knowledge of the source sig-
nal enable us to model the dynamic sampling process by means
of a linear system of equations. However, in practice, especially
for hand-guided microphone trajectories, the linear system will
be underdetermined with high probability unless an excessive
number of samples is acquired. In order to ensure stable and
robust sound-field recovery even in the underdetermined case, a
CS solution has been derived. The presented framework exploits
the sparsity of sound fields in the frequency domain. By mod-
eling an equidistant grid and using Fourier representations, the
structure of the CS matrix and its dependency on the microphone
trajectory have been shown. Based on that, a computationally
efficient trajectory-dependent expression for the coherence of
measurements given spectrally flat excitation has been derived.
It allows for efficiently evaluating trajectories in terms of CS
reconstruction. Following the IHT algorithm, we provided sim-
ple iterative update rules that incorporate two extensions of the
dynamic sampling model and enable us to recover sound fields
at low cost in computation and memory. Future works will be
directed toward using the fast coherence computation to locally
adapt the reconstruction bandwidth to the trajectory and to in-
clude sparsity measures for the early-reflection part.
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