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ABSTRACT

Measuring a large set of room impulse responses inside a volume of
interest is time-consuming unless a large number of microphones is
involved. However, increasing the number of microphones requires
more hardware and raises effort, e.g., in calibration. Instead of mea-
suring at any desired position, it is possible to spatially interpolate
the sound field between sampled positions, in order to obtain es-
timates at unknown positions. Nevertheless, the Nyquist-Shannon
sampling theorem should be met, which still demands a large num-
ber of spatial sampling points for large bandwidths. In this paper,
we present a compressed-sensing approach that allows for stable and
robust interpolation of room impulse responses using less measure-
ments than required by the sampling theorem. Based on a small
set of spatially subsampled room impulse responses, the proposed
method is capable of providing an enlarged set allowing for aliasing-
free reconstruction in space.

Index Terms— Room impulse responses, spatial interpolation,
compressed sensing

1. INTRODUCTION

The knowledge of spatio-temporal room impulse responses (RIRs)
provides useful information on acoustic scenes and is essential for
algorithms focussing on, e.g., listening-room compensation [1, 2]
and sound-field reproduction [3, 4].

For determining the RIR between a fixed emitter-receiver pair
inside a room, common techniques use perfect sequences [5, 6],
maximum-length sequences [7], and sine sweeps [8] for excitation.
However, measuring multiple RIRs with stationary microphones
over larger volumes involves either high effort in calibration and
positioning of multiple microphones or a time-consuming mea-
surement procedure when only one microphone is used. The use
of moving microphones, which allow for accelerating the process,
either requires specific demands on the microphone trajectory and
speed [9] or needs real-time position tracking [10, 11].

Instead of measuring RIRs at all targeted positions, a smaller set
of RIRs may be used for spatial interpolation in order to obtain esti-
mates at positions where no microphone measurements were taken.
Usually, to allow for spatial interpolation between measured loca-
tions, the Nyquist-Shannon sampling theorem should be met. For
larger audio bandwidths, this still requires a high number of mi-
crophone locations. Considering conventional sound-field sampling
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with equidistant microphone arrays, spatial intervals of

∆ <
c0
2fc

(1)

are required for aliasing-free reconstruction [12], where c0 is the
speed of sound and fc is the temporal cutoff frequency.

In order to relax the spatial sampling and interpolation problem
for sound fields, the principle of compressed sensing (CS) may be
used [13, 14]. By encapsulating the problems of sampling and com-
pression to one joint object, CS allows for sampling a signal below
the Nyquist rate, provided that the signal has a sparse representation
and that incoherent measurements are available [15].

There exist various methods that exploit the compressed-sensing
paradigm for RIR interpolation. In [16], a large set of RIRs is recov-
ered from a smaller set of RIR samples by using convex optimization
methods that enforce both sparsity of the early-reflection parts and
the exponential decay of RIRs. Sparsity in time domain is also used
in [17] for interpolating early reflections of RIRs within a volume
of interest (VOI). Sparsity in frequency domain is exploited in [18],
in order to reconstruct spatio-temporal RIRs at low frequencies via
plane-wave approximations. In [19, 20], the sound field is spatially
parametrized via spherical-harmonics solutions of the wave equa-
tion. The method in [19] extracts spherical-harmonics parameters,
which may be used for sound-field reconstruction, from measure-
ments of a spherical microphone array. A sparse approximation em-
ploying spherical harmonics is also applied in [20] for interpolating
RIRs between stationary measurements.

In this paper, we propose a CS based method that allows for
recovering spatio-temporal RIRs at desired positions from spatially
subsampled RIRs acquired at arbitrary points. In order to do this,
a linear system of equations is build up, similar to the dynamic
measurement approach presented in [10]. Unlike the measured
points, the targeted positions are supposed to ensure aliasing-free
reconstruction in space, thus, the problem is underdetermined and
is solved exploiting sparsity in frequency domain. We focus on a
model with targeted positions forming a virtual grid in space, keep-
ing the computational effort small and allowing for straightforward
analysis. Then, the system matrix only consists of interpolation
coefficients in structured diagonal blocks and both the interpolation
kernel and the sparsifying transform may become separable, which
enables us to provide a fast coherence analysis for a given set of
measured points. Nevertheless, also other arrangements than regular
ones would be possible for target positions, e.g., designs follow-
ing spherical sampling patterns where a sparse spherical-harmonics
expansion may be used for setting up the linear system.
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2. SPATIO-TEMPORAL RECONSTRUCTION OF RIRS

Assuming an echoic environment that constitutes a linear time-
invariant system, the transmission of sound pressure between fixed
emitter-receiver positions may be described as x(t) =

∫∞
−∞ h(τ)s(t−

τ)dτ , where t ∈ R is the time variable, s(t) and x(t) are the
emitted and received signals, respectively, and h(t) is the RIR
for the fixed setup. Considering a variable listener position r =
[rx, ry, rz]

T ∈ R3, the resulting sound pressure field p(r, t) =∫∞
−∞ h(r, τ)s(t − τ)dτ is characterized by h(r, t) composing

spatio-temporal RIRs that describe sound transmission from the
source position to various points r.

For the temporal domain, let T = 1/fs be the sampling interval
of a microphone sampling with frequency fs > 2fc. Then, the mea-
sured RIR may be perfectly reconstructed from equidistant sampling
points tn = nT (n ∈ N) by using a sinc filter with infinite support.
Since the amplitudes of RIRs decrease exponentially and vanish into
the noise level beyond tL−1, finite length interpolation kernels may
obtain reasonable approximations in time domain.

Let us now consider the spatial interpolation of RIRs, i.e., the re-
construction of RIRs at arbitrary listener positions r from the sound-
field data h(rm, n) acquired at M microphone positions rm (m ∈
{1, . . . ,M ). For the conventional arrangement of points rm form-
ing a uniform grid in space, i.e., rm ∈ G with

G =
{
rg | rg = r0 + [gx∆x, gy∆y, gz∆z]

T
}
, (2)

r0 being the grid origin, and g = [gx, gy, gz]
T ∈ Z3 represent-

ing the discrete grid variables, the Nyquist-Shannon sampling the-
orem requires a grid spacing according to (1), in order to allow
for aliasing-free reconstruction. Since RIRs are acquired at a finite
number of D = XY Z grid coordinates G = {0, . . . , X − 1} ×
{0, . . . , Y − 1} × {0, . . . , Z − 1}, only estimates

h(r, n) ≈
∑
g∈G

ϕr(g)h(g, n) (3)

are available for RIRs at arbitrary positions r, where ϕr(g) with
g ∈ G denotes a realizable interpolation kernel that approximates
the sinc function.

3. RIR INTERPOLATION USING SPARSE PRIORS

The proposed method is based on solving a linear system of equa-
tions that is built up by representing spatially subsampled RIRs mea-
sured at arbitrary points rm by means of targeted RIRs at desired po-
sitions r̃d (d ∈ {1, . . . , D). For targeted points forming an equidis-
tant grid (2), this step is equivalent to solving the reverse interpola-
tion problem according to (3), i.e., determining h(g, n) from mea-
sured data h(r, n). Unlike the measured points rm, the targeted po-
sitions r̃d are supposed to satisfy the Nyquist-Shannon sampling the-
orem, thus, in general, the problem is underdetermined withD > M
and must be solved using CS. Finally, the recovered RIRs may be
used for conventional interpolation in line with (3).

3.1. Modeling the Reverse Interpolation Problem

Mathematically, the linear system of equations is set up by projecting
spatio-temporal RIRs on a uniform grid onto the measurement space
spanned by RIRs acquired at arbitrary positions. Let us define the

measurement vector

m =
[
hT1 ,h

T
2 , . . . ,h

T
M

]T
(4)

as concatenation of the measured RIRs

hm = [h(rm, 0), h(rm, 1), . . . , h(rm, L− 1)]T (5)

at arbitrary positions rm ∈ R, and the target vector

d =
[
h̃T1 , h̃

T
2 , . . . , h̃

T
D

]T
(6)

as concatenation of the desired RIRs

h̃d = [h(gd, 0), h(gd, 1), . . . , h(gd, L− 1)]T (7)

at positions r̃d ∈ G on a uniform grid fulfilling (1). For reasons of
clarity, we use the discrete variables gd of the spatial grid. Further,
let us define the vector

ϕm = [ϕrm(g1), ϕrm(g2), . . . , ϕrm(gD)]T (8)

containing the kernel for interpolating the m-th measurement posi-
tion relative to the spatial grid, and the M ×D interpolation matrix

Φ = [ϕ1,ϕ2, . . . ,ϕM ]T (9)

comprising any kernel for the M measured points. In the manner
of the spatial interpolation given by (3), we can then formulate the
overall interpolation problem in terms of the linear system of equa-
tions

m = Ad+ η, (10)

where η ∈ RLM is a noise vector, incorporating both the mea-
surement noise and the error of the bandlimited interpolation, and
A ∈ RLM×LD is the system matrix having the blockwise diagonal
structure

A = Φ⊗ IL, (11)

with ⊗ denoting the Kronecker product and IL being the identity
matrix of size L× L.

3.2. Compressed-Sensing Formulation

Since D > M , the linear system (10) provides an infinite number
of least-squares solutions for d. Nevertheless, the principle of CS
allows for finding a stable and robust solution also in the underde-
termined case. The spectrum of sound fields is ideally confined to
a hypercone along the temporal frequency axis [12], thus, we can
represent the equidistantly sampled sound field h(g, n) collected in
d by a sparse coefficient vector

c = Ψd,

where Ψ = TZ ⊗ TY ⊗ TX ⊗ TL performs a 4D frequency trans-
form that is supposed to be separable into multiple 1D transforms
given by unitary matrices TU ∈ CU×U . The vector c ∈ CLXY Z is
assumed to be K-sparse, i.e., at most K coefficients are non-zero.
Accordingly, the least-squares problem may be regularized as

argmin
c∈CU

‖m−Ac‖2`2 s.t. ‖c‖`0 ≤ K, (12)

with the CS matrix A = AΨH and the pseudonorm ‖c‖`0 count-
ing the number of non-zero elements in c. The problem (12) is
NP-hard [21] and is solved in practice by using greedy algorithms

2



[22, 23, 24] or applying convex optimization tools to correspond-
ing `1-minimization problems [25, 26, 27, 28]. For stable and ro-
bust recovery of any (approximately) K-sparse signal, any set of
K columns in A must form a nearly orthogonal system. A useful
property to evaluate the sampling process according to that is the
coherence

µ(A) = max
1≤u6=v≤LD

|〈acu,acv〉|
‖acu‖`2‖acv‖`2

, (13)

with acu being the u-th column in A [15]. The error bounds of the
CS based recovery improve for a smaller coherence [29].

3.3. Fast Coherence Analysis

Determining the coherence naively by calculating any scalar product
of any two columns in A poses a problem in O(L2D2). However,
similar to the dynamic approach in [11], this effort may be easily
reduced to complexity of O(D) for Ψ performing discrete Fourier
transforms (DFTs).

To keep the description simple, let us first consider the mea-
surement space to be a line in x-direction only, i.e., Ψ = TX ⊗
TL achieves the 2D DFT involving the sampled frequency variables
kx ∈ {−X−1

2
, . . . , X−1

2
} and l ∈ {−L−1

2
, . . . , L−1

2
}. Then, as-

suming perfect interpolation kernels ϕrm(gx) = sinc(gx − τmx ),
with

τmx =
rm − r0

∆x
(14)

being the spatial-grid delay to measured point rm, the columns
building A can be described by ac(kx,l) =

[
ρT1 , . . . ,ρ

T
M

]T
using

the structured phase vectors

ρm = ξm
[
e−2πj0 l

L , e−2πj1 l
L , . . . , e−2πj(L−1) l

L

]T
, (15)

with ξm = e−2πjτ1
x

kx
X e−2πj(τmx −τ

1
x) kx

X giving the phase shift cor-
responding to position rm relative to r1. Using column represen-
tations through (15) and defining differences between two discrete
frequencies as in [11], ∆kx = k′x−k′′x , ∆l = l′− l′′, the coherence
according to (13) may be found by determining the maximum over
tupels (∆kx,∆l) 6= (0, 0) as

µ(A) = max
(∆kx,∆l)

1

LM

∣∣∣∣∣
M−1∑
m=0

L−1∑
n=0

e−2πjτmx
∆kx
X e−2πjn∆l

L

∣∣∣∣∣ (16)

=
1

LM
max
∆kx

∣∣∣∣∣
M−1∑
m=0

e−2πjτmx
∆kx
X

∣∣∣∣∣ max
∆l

∣∣∣∣∣
L−1∑
n=0

e−2πjn∆l
L

∣∣∣∣∣
(17)

=
1

M
max

∆kx 6=0

∣∣∣∣∣
M−1∑
m=0

e−2πjτx(m) ∆kx
X

∣∣∣∣∣ , (18)

where (17) results from the Cauchy product formula and (18) is ob-
tained since the maximum over ∆l must be L at ∆l = 0.

For measurements in 3D space, we can exploit the separability
of the uniform-grid dimensions and obtain

µ(A) =
1

M
max
∆k

∣∣∣∣∣
M−1∑
m=0

e
−2πj

(
τmx

∆kx
X

+τmy
∆ky
X

+τmz
∆kz
Z

)∣∣∣∣∣ , (19)

with ∆k = (∆kx,∆ky,∆kz) 6= (0, 0, 0). For a grid design with
suffiently small spacing, the expression (19) may be used for find-
ing microphone positions being optimal for the CS problem, also

in practical applications where realizable interpolation filters are in-
volved (cf. [11]).

4. EXPERIMENTS AND RESULTS

Experiments have been carried out on simulations using the image
source method [30]. A box-shaped room with dimensions of size
5.8 m × 4.15 m × 2.55 m and reverberation time of RT60 = 0.3 s
was considered. An omnidirectional sound source was placed at
[1.4, 1.6, 1.0]T m. The sampling frequency fs = 8 kHz was used.
The simulated RIR were corrupted by additive white Gaussian noise
with a signal-to-noise ratio of 40 dB and their length was set to L =
500. Interpolation results are presented for a VOI of size (0.1 m)3

having the origin according to (2) at r0 = [2.75, 1.4, 0.8]T m.
As error measure for the interpolated RIRs, the normalized sys-

tem misalignment [10]

NSM =
‖hr − ĥr‖2`2
‖hr‖2`2

(20)

is used, where hr ∈ RL contains the true RIR at position r and
ĥr ∈ RL contains the corresponding interpolation result.

In order to allow for a baseline of the interpolation quality,
we first sampled the VOI conventionally using regular microphone
arrays with spacing ∆ ∈ {0.033 m, 0.02 m} for each dimension.
Thus, we obtained two data sets of equidistantly sampled RIRs for
baseline: spatio-temporal RIRs at positions on a coarse grid close to
the Nyquist rate and RIRs on a finer grid that leads to twofold spatial
oversampling. The coarse grid involves D = 64 grid points, the fine
grid leads to D = 216. Based on these sets of data, the interpolation
errors over the centered xy-plane of the VOI (z = 0.85 m) are
presented in Figs. 1(a) and 1(e), respectively. The errors result from
separable Lagrange interpolators of order three for each dimension
(cf. [10]). The smallest errors are, of course, obtained close to the
regular points. The largest interpolation errors occur at intermediate
positions on the left-hand and right-hand border. At these sides,
the direct sound paths and their reflection paths initially enter the
sampled volume, which obviously decreases the performance of the
interpolation kernels that had to be truncated at grid edges.

In the following, we compare the above mentioned results for
regular sampling with the outcomes of our proposed CS based strat-
egy. Therefore, we modeled the linear system (10) for each of the
two targeted grids. For measurements, we acquired RIRs at random
positions rm ∈ R3 inside the VOI. The linear systems were solved
for several cases with full and partial measurement data provided
(M = αD with α ∈ {1, 0.8, 0.6}), where for α = 1 the num-
ber of measured positions is equal to the number of points on the
grid to be recovered, and for α < 1, fewer measurements are taken
and an underdetermined system is obtained. For the CS based re-
covery, we used the iterative hard-thresholding algorithm (IHT) [24]
with step size µ = 5 · 10−3 and 3000 iterations. The 4D DFT was
applied for sparse frequency representations. The iterative recovery
was started with the initial estimate being the zero vector. Beginning
with a smallK,K0 = α500 for ∆ = 0.033 m andK0 = α1500 for
∆ = 0.02 m, the sparsity constraint was successively relaxed every
50 iterations by Ki+1 = Ki +K0 (cf. [11]).

We observed that the extension of the modeled grid beyond the
measured VOI improves the CS recovery for an unchanged number
of measurements, although this results in linear systems with even
more unknowns. Following this strategy, a truncation of the interpo-
lation kernels may be avoided. Interpolation errors based on RIRs
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Fig. 1. Errors of RIR interpolation over the centered xy-plane of a VOI of size (0.1 m)3 using sets of RIRs on a virtual uniform grid with
spacing ∆ = 0.033 m (first row) and ∆ = 0.02 m (second row). (a), (e) Baseline with M grid RIRs conventionally sampled. (b), (f) Grid
RIRs recovered by the proposed CS method using M RIRs, (c), (g) 0.8M RIRs, and (d), (h) 0.6M RIRs measured at random positions.

recovered in this way are presented in Figs. 1(b)-(d) and Figs. 1(f)-
(h), regarding ∆ = 0.033 m and ∆ = 0.02 m, respectively, for
different numbers of measurements. For setting up the linear sys-
tems and subsequent interpolation of positions inside the VOI, also
Lagrange interpolators of order three were used.

Since, in general, the random measurements are located at in-
termediate positions, the proposed CS method obtains the smallest
interpolation errors between grid points. In Figs. 1(b) and 1(f), for
example, the modeled grid may be reproduced by tracking lines of
slightly higher errors among areas where the interpolation error is
very small. Compared to the RIR interpolation by using measure-
ments on a uniform grid, the CS approach obtains a smaller interpo-
lation error on average for an equal number of random measurements
(Figs. 1(b) and 1(f)). However, a small number of outliers with high
error appear at some border positions where, obviously, not enough
random measurement points were available. Providing only 80%
and even 60% of the measured data still yields robust interpolation
results for the fine-grid scenario (Figs. 1(g) and 1(h)). For the coarse-
grid model, we also obtain adequate results when solving the linear
system with 80% of the measured data (Figs. 1(c)). However, for the
case using 60% of data, larger regions with high interpolation errors
are present at the grid border Fig. 1(d).

5. CONCLUSIONS

In this paper, we presented a CS based method for RIR interpolation.
By using a small set of spatially subsampled RIRs measured at arbi-
trary positions inside the VOI, a linear system of equations was set
up that leads to the estimation of RIRs at targeted positions allowing
for aliasing-free interpolation in space. In general, the linear system
is underdetermined. In order to obtain a stable and robust solution,
principles of CS were used exploiting the sparsity of spatio-temporal

RIRs in frequency domain. For Fourier representations and targeted
positions on a virtual grid in space, the structure of the CS matrix
and its dependency on measuring positions have been shown. Fur-
ther, a simple position-dependent expression for the coherence of
measurements has been derived, allowing for the efficient evaluation
of microphone arrangements in terms of CS reconstruction. Future
works will be directed toward using the fast coherence computation
to optimize the microphone positions and to include sparsity mea-
sures for the early-reflection part of RIRs.
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[5] H.-D. Lüke, “Sequences and arrays with perfect periodic cor-
relation,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 3,
pp. 287–294, May 1988.

[6] V. P. Ipatov, “Ternary sequences with ideal periodic autocor-
relation properties,” Radio Eng. Electron. Phys., vol. 24, pp.
75–99, Oct. 1979.

4



[7] D. D. Rife and J. Vanderkooy, “Transfer-function measurement
with maximum-length sequences,” J. Audio Eng. Soc., vol. 37,
no. 6, pp. 419–444, June 1989.

[8] A. Farina, “Advancements in impulse response measurements
by sine sweeps,” in Proc. 122nd Audio Engineering Society
Convention, May 2007, pp. 1–21.

[9] T. Ajdler, L. Sbaiz, and M. Vetterli, “Dynamic measurement
of room impulse responses using a moving microphone,” J.
Acoust. Soc. Am., vol. 122, no. 3, pp. 1636–1645, July 2007.

[10] F. Katzberg, R. Mazur, M. Maass, P. Koch, and A. Mertins,
“Sound-field measurement with moving microphones,” J.
Acoust. Soc. Am., vol. 141, no. 5, pp. 3220–3235, May 2017.

[11] F. Katzberg, R. Mazur, M. Maass, P. Koch, and A. Mertins,
“Compressive sampling of sound fields using moving micro-
phones,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, April 2018, pp. 181–185.

[12] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic function
and its sampling,” IEEE Trans. Signal Process., vol. 54, no. 10,
pp. 3790–3804, Sept. 2006.

[13] E. Candès and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509,
Febr. 2006.

[14] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. The-
ory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[15] D. L. Donoho and X. Huo, “Uncertainty principles and ideal
atomic decomposition,” IEEE Trans. Inf. Theory, vol. 47, no.
7, pp. 2845–2862, Nov. 2001.

[16] A. Benichoux, L. Simon, E. Vincent, and R. Gribonval, “Con-
vex regularizations for the simultaneous recording of room im-
pulse responses,” IEEE Trans. Signal Process., vol. 62, no. 8,
pp. 1976–1986, April 2014.

[17] R. Mignot, L. Daudet, and F. Ollivier, “Room reverberation re-
construction: interpolation of the early part using compressed
sensing,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 21, no. 11, pp. 2301–2312, July 2013.

[18] R. Mignot, G. Chardon, and L. Daudet, “Low frequency in-
terpolation of room impulse responses using compressed sens-
ing,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol.
22, no. 1, pp. 205–216, Jan. 2014.

[19] E. Fernandez-Grande and A. Xenaki, “Compressive sensing
with a spherical microphone array,” J. Acoust. Soc. Am., vol.
139, no. 2, pp. EL45–EL49, Feb. 2016.

[20] N. Antonello, E. De Sena, M. Moonen, P. A. Naylor, and
T. von Waterschoot, “Room impulse response interpolation us-
ing a sparse spatio-temporal representation of the sound field,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25,
no. 10, pp. 1929–1941, Oct. 2017.

[21] B. Natarajan, “Sparse approximate solutions to linear sys-
tems,” SIAM J. Comput., vol. 24, no. 2, pp. 227–234, April
1995.

[22] J. A Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans.
Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[23] D. Needell and J. A. Tropp, “CoSaMP: iterative signal recov-
ery from incomplete and inaccurate samples,” Appl. Comput.
Harmon. Anal., vol. 26, no. 3, pp. 301–321, May 2009.

[24] T. Blumensath and M. E. Davies, “Iterative thresholding for
sparse approximations,” J. Fourier Anal. Appl., vol. 14, no.
5-6, pp. 629–654, Dec. 2008.

[25] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic de-
composition by basis pursuit,” SIAM J. Sci. Comput., vol. 20,
no. 1, pp. 33–61, Aug. 1998.

[26] E. Candès, J. Romberg, and T. Tao, “Stable signal recov-
ery from incomplete and inaccurate measurements,” Commun.
Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223, March 2006.

[27] R. Tibshirani, “Regression shrinkage and selection via the
LASSO,” J. R. Stat. Soc., Series B, vol. 58, no. 1, pp. 267–
288, 1996.

[28] E. Candès and T. Tao, “The Dantzig selector: Statistical esti-
mation when p is much larger than n,” Ann. Statist., vol. 35,
no. 6, pp. 2313–2351, 2007.

[29] D. L. Donoho and M. Elad, “Optimally sparse representation
in general (nonorthogonal) dictionaries via `1 minimization,”
in Proc. Natl. Acad. Sci., March 2003, pp. 2197–2202.

[30] J. Allen and D. Berkley, “Image method for efficiently simu-
lating small-room acoustics,” J. Acoust. Soc. Am., vol. 65, no.
4, pp. 943–950, 1979.

5


