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ABSTRACT

A multiresolution technique is presented for sound field recovery
based on measurements of one or multiple moving microphones.
The interpolation of the spatial samples enables us to set up a sys-
tem of linear equations that recovers room impulse responses on a
virtual uniform grid in space. The spacing of the virtual grid must be
very small when directly recovering for the entire bandwidth, thus,
the system to be solved requires a large number of measurement po-
sitions. In this work, we propose two recovery schemes based on
multiple virtual grids that represent distinct subbands of the spatio-
temporal sound field. This allows for faster reconstruction of low
frequencies at minor computational cost and improves the recovery
quality when measurement noise is present.

Index Terms— Plenacoustic function, room impulse responses,
moving microphones, spatial multigrid, multiresolution scheme

1. INTRODUCTION

Acoustic applications that assume free-field environments typically
decrease their performance in the presence of reverberation. How-
ever, if the information on room impulse responses (RIRs) that de-
scribe the sound transfer from the sources to the receivers is given,
techniques for listening room compensation can be applied [1, 2, 3].

In order to describe the spatio-temporal sound field, the con-
cept of the plenacoustic function (PAF) [4, 5] has been introduced.
This function encapsulates the information on the entire set of spatio-
temporal RIRs for any receiver position in space, depending on the
constellation of sound sources and the room attributes.

Common approaches for the stationary measurement of RIRs
use perfect sequences [6, 7], maximum-length sequences (MLS) [8,
9], and exponential sine sweeps [10]. Applying these signals for
excitation enables one to obtain the RIRs by use of simple correlation
techniques with low computational demand.

A method for the dynamic measurement of a set of RIRs has
been proposed in [11]. Here, the use of one moving microphone
allows for the reconstruction of all RIRs along the given trajectory.
However, an input signal that is specially designed for the given tra-
jectory is needed, and the speed of the microphone must be constant.
In this case, quite different from RIR measurements with a fixed
microphone, the excitation signal must not contain all frequencies,
but only a certain subset. The omitted frequencies are essentially
generated through the Doppler effect. In [12], direction dependent
head-related RIRs (HRIRs) are estimated. With a rotating setup, the
dynamic procedure is able to reconstruct HRIRs on single circles.
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In this work, we propose a multigrid technique that allows for
the recovery of the spatio-temporal sound field within a given re-
gion of interest. For the subband decomposition of the sound field,
successive filtering is applied on the measurement signals given by
microphones on a moving array. According to the dispersion rela-
tion of propagative sound waves, this filtering in time domain di-
rectly affects the frequencies of the spatial domains since the four-
dimensional spectrum of sound fields forms a hypercone along the
temporal frequency axis [5]. This inherent relationship between time
and space domains was also used in [13] for low frequency interpo-
lation of RIRs based on compressed sensing (CS) [14, 15].

Exploiting the structured sparsity of the spectral cone, we model
multiple virtual grids with different resolutions in space on which
subband room impulse responses are stage-wisely recovered by solv-
ing systems of linear equations. These are built up by interrelating
the dynamic measurements with the grid RIRs through spatial inter-
polation as proposed in [16]. For the subsequent subband synthe-
sis, filtering is applied in the spatial domains, in order to obtain the
spatio-temporal sound field at full bandwidth.

In total, we present two general schemes for multiresolution
recovery. One method successively performs two-band frequency
splits in the decomposition step. Consequently, the virtual grid
points of any coarser grid with lower resolution in space fit into the
sample points of any finer spatial grid by some integer delay. In
contrast, the other proposed scheme considers the decomposition
into subbands of constant bandwidth, and, thus, considers fractional
delays between the uniform grid points of each resolution level.
This requires fractional delay interpolation techniques [17] for the
subband synthesis step.

2. SAMPLING OF SOUND FIELDS

In the following, the concept of the plenacoustic function giving a
description of sound fields is outlined, and its sampling and recon-
struction are formalized. Further, the inherent relationship between
the temporal and spatial dimensions is pointed out, which is the basis
for the design of the proposed multiresolution recovery schemes.

2.1. The Plenacoustic Function

For a given pair of sound source and listener at fixed positions in
space, the time t dependent room impulse response (RIR) h(t) de-
scribes the received sound resulting from a Dirac pulse emitted at
time t = 0. Assuming the acoustic environment to be linear time-
invariant (LTI), for the source signal s(t), the observed signal is
given by x(t) = h(t) ∗ s(t), where the asterisk ∗ denotes convo-
lution. In order to include spatial dependencies, the plenacoustic
function (PAF) has been introduced in [4, 5]. It gathers all RIRs of a
room for a given source configuration. The PAF, denoted as p(r, t),



describes the sound field in space as a function of both time t and
listener position r = [rx, ry, rz]

T . For the simplest setup with one
single sound source emitting s(t) at fixed position, the PAF is

p(r, t) =

∫ ∞
−∞

h(r, τ)s(t− τ)dτ, (1)

where h(r, t) is the spatio-temporal RIR from the source position
to the point r. Due to the LTI system model, the PAF for multiple
fixed sound sources consists of a sum of integrals as given in (1).
Referring to [4, 5], we consider the PAF, without loss of generality,
only for the case where a single source at fixed position emits a Dirac
pulse at t = 0. With this, p(r, t) = h(r, t).

2.2. Inherent Connection of the Dimensions

For positions sufficiently far away from the sound source and room
walls, evanescent sound waves can be ignored, thus, the dispersion
relation

k2x + k2y + k2z =
ω2

c20
(2)

gives an explicit relationship between the spatial frequencies kx, ky ,
kz in rad m−1 and the temporal angular frequency ω = 2πf in
rad s−1 [5, 13]. The velocity of the waves is c0 = ω/ǩ, with the an-
gular wavenumber ǩ = |k| and the wave vector k = [kx, ky, kz]

T .
Since air is a non-dispersive medium for frequencies within the hu-
man hearing range, c0 is independent of ω. So, the speed of sound is
only a function of atmospheric conditions inside the closed room,
e.g. temperature and pressure, which are assumed to be constant
according to the LTI model. In consequence, (2) provides a di-
rect connection between the temporal and spatial frequencies: the
four-dimensional spectrum of the PAF ideally lives on the three-
dimensional surface of a hypercone along the temporal frequency
axis ω. Moreover, when the PAF is bandlimited in time domain to
ωc, then it is also bandlimited in the spatial domain by ǩc = ωc/c0.

2.3. Uniform Sampling and Reconstruction

Under the assumption that the PAF is bandlimited, it can be recon-
structed through equidistant sampling in time and space dimensions.
For the uniform sampling in time, let T denote the sampling in-
terval leading to measurements at sampling points tn = nT with
n ∈ Z being the discrete time variable. Considering the cutoff fre-
quency fc = ωc/2π, the sampling frequency fs = 1/T has to fulfill
fs < 2fc according to the Nyquist-Shannon sampling theorem.

The uniform sampling in space requires a Cartesian grid where
the equidistant sampling points rg ∈ G are given by the set

G =
{
rg | rg = r0 + [gx∆, gy∆, gz∆]T

}
, (3)

with the grid origin r0 and the discrete grid variables in g =
[gx, gy, gz]

T ∈ Z3. Following (2), the sampling interval for each
space dimension x, y, z must be ∆ < c0/(2fc) to avoid aliasing.

The ideal reconstruction of the continuous sound field h(r, t)
from samples h(g, n) is accomplished by a 4D sinc filter with infi-
nite support. Since the amplitudes of RIRs decrease exponentially
and are assumed to vanish into the noise level beyond tL−1 for
given fs, finite length interpolation filters achieve reasonable ap-
proximations for the time dimension when limiting the temporal
sample points to n ∈ [0, L−1]. However, due to limited positions
g ∈ G = {0, . . . , X−1}×{0, . . . , Y−1}×{0, . . . , Z−1} on a finite
sampling grid in space, the PAF is rectangularly windowed along the
spatial dimensions. Oversampling in space, i.e. using a much finer

grid than demanded by the Nyquist rate, reduces the effect of spatial
windowing.

3. THE PROPOSED MULTIGRID RECOVERY

We first outline the underlying dynamic sampling procedure de-
scribed in [16], where a system of linear equations is built up whose
solution estimates RIRs on a modeled virtual grid in space. Then,
two new multigrid recovery schemes are deduced by exploiting the
dispersion relation of propagative sound waves.

3.1. Dynamic Sampling Procedure

For the recovery of RIRs h(g, n) on a virtual grid G in space with
∆ fulfilling the Nyquist-Shannon sampling theorem, we consider a
scenario in which a single source emits a pre-defined signal and one
or more microphones are moved through the volume of interest while
their signals are simultaneously recorded together with the position
information. The following description is given for a single moving
microphone. The use of multiple microphones is straightforward and
allows for a tradeoff between calibration effort and measuring time.

The RIR at any position inside the volume of interest can be
computed via interpolation from h(g, n), including the locations on
the microphone trajectory. Assuming perfect interpolation and us-
ing (1), each sample x(n) recorded by the microphone at position
r(n) = [rx(n), ry(n), rz(n)]T contributes an equation of the form

x(n) =

L−1∑
k=0

∑
g∈G

ϕ(r(n), rg)h(g, k) s(n− k) + η(n), (4)

where η(n) is measurement noise and ϕ(r(n), rg) is an interpola-
tion function weighting the sought RIRs on the modeled grid subject
to the displacements r(n)−rg . Of course, the interpolation is not
ideal due to the finite spatial support. However, a dense virtual grid
with a sampling frequency well above the Nyquist rate in combi-
nation with an interpolation kernel that is maximally flat in the fre-
quency domain may provide sufficient results. By concatenating the
N = XY Z grid RIRs of length L in vector h ∈ RNL and defining
x = [x(0), . . . , x(M − 1)]T and η = [η(0), . . . , η(M − 1)]T , (4)
leads to the system of linear equation

x = Ah+ η. (5)

The matrix A has block structure, A = [Φ1S,Φ2S, . . . ,ΦNS],
where Φu ∈ RM×M is a diagonal matrix stacking the interpolation
coefficients of all M measurements for the u-th RIR on the virtual
grid and S ∈ RM×L is the convolution matrix of the source signal.
In case the linear system is not underdetermined, its unique least-
squares solution yields the estimate of h(g, n).

3.2. Multiresolution Approaches

Instead of solving for the entire bandwidth of the PAF, we propose
a model of multiple virtual grids in space with different resolutions,
leading to multiple linear systems of different sizes. Based on (4), a
separate system of linear equations

x(v) = A(v)h(v) + η(v) (6)

is set up for each resolution level v ∈ {1, . . . , V }, where x(v) is
the filtered measurement signal of the moving microphone with fre-
quencies ω limited to the subband ω(v−1)

c ≤ ω < ω
(v)
c . Due to (2),



for lower temporal subbands, h(v) ∈RLN
(v)

may contain a smaller
number N (v) of RIRs on a coarser virtual grid g(v) ∈ G(v) inside
the volume of interest. Let ∆(v) denote the spatial sampling inter-
val at resolution level v. The initial spacing ∆(1) of the coarsest
grid G(1), with N (1) = 2d RIRs for the d-dimensional case, covers
the entire volume of interest. The positions of the inital RIRs frame
the sampling area and are also present on any finer grid for v > 1.
According to (2), the temporal subband limits must be

ω(v)
c ≤ πco

∆(v)
, (7)

in order to avoid spatial aliasing. The lowest bound is ω(0) = 0. At
the final resolution level V , ∆(V ) is supposed to fulfill the spatial
Nyquist-Shannon condition for the broadband cutoff ωc. Due to the
finite grid and the Doppler effect, all cutoff frequencies are chosen
sufficiently smaller in practice than required by (2).

By decomposing the original large problem (5) into smaller
problems (6), the sound field recovery at low frequencies is al-
ready possible using a few measurements acquired after a short
sampling time. Vice versa, by fixing the sampling time, a coarser
virtual grid allows for more dynamic measurements per grid RIR
than a finer one, which makes the recovery of low frequencies
more robust against noise. Moreover, for trajectories which lead to
ill-conditioned or undetermined systems (5), the proposed method
allows for a spatial adaptation of the bandwidth to be recovered. Of
course, the formulation (6) is suitable to apply CS based techniques
reducing the dimensionality of the wanted signal. For example, a
frequency representation of the solution vector allows one to explic-
itly reconstruct frequency quartets on the spectral cone according to
(2) which defines the subspace in which the signal actually lives.

3.2.1. Half Bandwidth Multigrid (HBM)

We first present a multigrid recovery scheme, referred to as HBM,
which is based on cascaded half-band decompositions of the mea-
sured signal x(n). This allows us to model the virtual grid for each
resolution level v > 1 with halving intervals ∆(v) = ∆(v−1)/2, so
N (v) = (2v−1 + 1)d. Thus, the virtual uniform grid in space is
successively upsampled by factor two as outlined in Fig. 1(a). The
gradual doubling of the temporal subband width, ω(v)

c = 2ω
(v−1)
c ,

is indicated in Fig. 1(b) by exponentially increasing segments of the
spectral cone.

Overall, the solutions h(v) of the linear systems (6) yield the
parts h(g(v), n) of the broadband PAF, each at distinct temporal sub-
bands on spatial grids G(v) with different resolutions. For synthesis
of the subbands, recursive interpolation in space is applied,

h(g(v), n) = h(g(v), n) + h(g
(v−1)
↑2 , n) ∗ ϕ0(g(v)), (8)

where g(v)↑2 denotes the upsampled virtual grid of level v by factor
two along each spatial dimension and ϕ0(g(v)) is a d-dimensional
low-pass filter for interpolating the intermediate positions on the
finer grid.

3.2.2. Constant Bandwidth Multigrid (CBM)

Given an initial grid G(1) for the first resolution level as described
above, it might be more appropriate to model the more highly re-
solved grids according to ∆(v) = ∆(1)/v as shown in Fig. 1(c). For
level v, only one more grid position per room dimension is taken
into account compared to level v − 1, so N (v) = (v + 1)d. Con-
sequently, grid points on any coarser grid may possess a fractional

(a) (b)

(c) (d)

Fig. 1. Outline of the virtual grids G(v) in two-dimensional space
and the corresponding PAF subbandsH(v)(k, ω) to be recovered for
(a)-(b) the HBM method and (c)-(d) the CBM method.

delay referred to the points on any finer grid, i.e. non-uniform in-
terpolation in space is necessary for the subband synthesis step (cf.
Figs. 1(a) and 1(c)). This multigrid procedure considers the decom-
position of x(n) into temporal narrow bands with constant band-
width (ω(v)

c = vω
(1)
c , cf. Fig. 1(d)), and is denoted as CBM.

Defining the interpolated RIR on a finer grid G(v) by use of
samples on a coarser grid G(l) as

h̃l(g
(v), n) =

∑
g(l)∈G(l)

h(g(l), n)ϕ(rg(v) , rg(l)), (9)

the CBM method with instantaneous subband synthesis by analogy
with (8), denoted as CBM1, demands the recursive scheme

h(g(v), n) = h(g(v), n) + h̃v−1(g(v), n). (10)

Nevertheless, we propose an algorithm with one single synthesis step
at the final resolution level V , in order to avoid that the errors caused
by fractional delay interpolation propagate through every subsequent
resolution level. This method is named CBM2. It estimates the
broadband PAF according to

h(g, n) = h(g(V ), n) +

V−1∑
v=1

h̃v(g(V ), n). (11)

4. EXPERIMENTS AND RESULTS

For the following experiments, we simulated RIRs and microphone
measurements by use of the image source method [18], considering
a room of size 5.8 m × 4.15 m × 2.55 m. The reverberation time
RT60 = 0.3 s was chosen. The cutoff frequency of the RIRs, lim-
ited to length L = 1000, was fc = 4 kHz. The position of the sound
source was set to [1.4, 1.6, 1.0]T in a world coordinate system with
unit 1 m. We used 1000 repetitions of an MLS with power σ2

s = 1
and period length of 1023 as excitation signal. The origin of the vir-
tual grids was set to r0 = [2.75, 1.4, 0.8]T . The volume of interest
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Fig. 2. Comparison of PAF quality between the single grid recovery
and the proposed multigrid schemes, using (a) the linear interpolator
and (b) the Lagrange interpolator for spatial interpolation.

was a plane of size 0.3 m × 0.3 m. For the dynamic measurement,
a microphone array with four microphones arranged on a quadratic
grid with spacing 0.15 m was applied. The array performed one pe-
riod of a Lissajous trajectory [19] covering the plane with frequency
ratio 16/17.

We considered the recovery of the PAF on a uniform grid in
space with size 33 × 33 and spacing ∆ = 0.0094 m which in-
volves a spatial oversampling by factor 4.56. Accordingly, the HBM
scheme performs 6 resolution levels and the CBM method processes
32 subband signals with bandwidth of 125 Hz. Hamming windowed
band-pass filters of order 1000 were used for the filtering of x(n).

As evaluation criterion for the quality of the recovered PAF, we
use the mean normalized system misalignment [cf. 3, 20]

MNSMN =
1

N

N∑
u=1

‖hu − ĥu‖2`2
‖hu‖2`2

, (12)

with hu ∈ RL containing the true RIR and ĥu ∈ RL being the
reconstructed RIR at grid index u. For the frequency analysis, we
define the mean energy spectral density of the error, denoted with
ME-ESD and calculated as

ME-ESD(f) =
1

N

N∑
u=1

|Hu(f)− Ĥu(f)|2, (13)

where Hu(f) and Ĥu(f) are the Fourier transforms of the true RIR
and the corresponding reconstructed RIR, respectively.

The quality of PAF reconstruction compared to the single grid
recovery (SG) is presented in Fig. 2 for various signal-to-noise ra-
tios SNR = σ2

s/σ
2
η , where σ2

η is the power of the measurement
noise η(n). For the interpolation of the dynamic measurements and
the spatial synthesis of the subbands, we first tested a simple lin-
ear interpolator (Fig. 2(a)). Here, the proposed HBM and CBM2
methods achieved an accuracy gain up to 3 dB and 10 dB, respec-
tively, compared to the broadband recovery on one single grid. The
CBM1 scheme failed due to poor interpolation quality successively
propagating through fractional delayed grids. Further, we tested the
Lagrange interpolator which is equivalent to a maximally flat frac-
tional delay filter with finite impulse response [21] and, thus, allows
for approximating the ideal interpolation at low frequencies. This
led to improvements for all of the proposed multigrid schemes.

There are frequency errors around ω(v)
c due to the non-perfect

subband decomposition performed by the chosen filters and errors
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Fig. 3. Frequency dependent error for SNR = 50 dB in compa-
rison between the single grid recovery and the proposed multigrid
schemes: On the left-hand side, the linear interpolation was used,
the right-hand side shows the results for the Lagrange interpolation.
Note in (c) the excessive gap between the error functions for mid
frequencies resulting in a very small scaling for the single grid case.

caused by insufficient spatial synthesis (cf. Fig. 3). However, ex-
cept for the special case CBM1 combined with the linear interpo-
lator (cf. Fig. 3(c)), both error types systematically induced by the
multiresolution schemes are clearly below the error level of the SG
recovery for SNR < 70 dB in our setup.

5. CONCLUSIONS

In this paper, we presented two general multiresolution strategies for
sound field reconstruction. Based on measurements of moving mi-
crophones being tracked, stage-wise recovery schemes for a uniform
grid in space were proposed. Considering distinct subbands of the
spectral cone of sound fields, multiple systems of linear equations
were solved for multiple spatial grids with different resolutions. We
experimentally showed that the multigrid methods improve the re-
covery quality under noisy conditions. The methods allow for the
spatial adaptation of sound field recovery, i.e. the recovery of locally
varying bandwidths depending on the trajectory. This motivates the
setup of one hand-held microphone with arbitrary trajectory. CS
based methods suited for the proposed multiresolution reconstruc-
tion are currently under investigation.
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