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Abstract—In this paper we present a modification of the
popular Black-Box Variational Inference (BBVI) approach
which significantly improves the computational efficiency of the
inference. We achieve this performance boost by replacing the
standard gradient in the stochastic gradient ascent framework of
BBVI with the natural gradient. Our experimental results (e.g.
training of neutral networks) show that the proposed method
outperforms the original BBVI algorithm on both synthetic and
real data.

I. INTRODUCTION

Solving a probabilistic regression problem of the form yout =
f(yin, x) is a challenging task, because the identification of
those latent parameters x which link the observable data yin
and yout best, generally requires the estimation of the extremal
point of the corresponding posterior p(x|y). This estimation
problem often cannot be solved with the help of differential
calculus due to its structure. In these cases, it is appropriate to
approximate the posterior by a traceable model q(x) in order
to perform the estimation indirectly. The achievable accuracy
of this solution is related to the accuracy of the approximation
model q(x). An established class of methods to approximate
the posterior density is Variational Inference proposed by
Jordan et al. [5]. Variational-Inference (VI) based methods
cast the approximation of p(x|y) as a variational problem
with the help of the so-called Evidence Lower Bound (ELBO).
Thereby, the ELBO corresponds to a scalar objective function
L which reflects the dissimilarity between the process’s joint
distribution p(x, y) and q(x). A very popular VI method is the
Black-Box Variational Inference (BBVI) algorithm proposed
by Ranganath et al. [10]. This method is characterized by its
simple implementation and its independence from differential
derivatives of the process model. This makes BBVI quite
generic and therefore usable in many applications. BBVI
solves a variational problem by using a parametric model
q(x|λ) in the framework of stochastic gradient ascent (SGA).
If the parameter manifold of a variational problem corresponds
to an Euclidean space, SGA evolves in the direction of largest
increase of the ELBO by following the gradient. However,
if the structure of the parameter manifold within a problem
differs from that, the gradient does not reflect the largest
increase of the ELBO and thereby misleads SGA. Therefore,
SGA needs to be adapted accordingly. In some cases, this

can be done with the help of the so-called natural gradient
proposed by Amari [1]. In this contribution, we propose a
modified version of the BBVI method that incorporates the
natural gradient and thereby enables a faster and computational
more efficient inference. We will analyze the effectiveness of
our method empirically with both real and synthetic data.
The remainder of the paper is structured as follows: In Sec. II
we briefly explain the basics of Black-Box Variational Infer-
ence algorithm. In Sec. III we outline our NG-BBVI algorithm.
Within Sec. IV we relate our proposed idea to the state-of-the-
art. Subsequently in Sec. V, we present experimental results
and based on that discuss the effectiveness of our algorithm in
comparison to the BBVI algorithm. In Sec. VI, we summarize
our approach and give an outlook on planned advancements.

II. SOLVING REGRESSION PROBLEMS WITH
BLACK-BOX VARIATIONAL INFERENCE

If the posterior p(x|y) of a regression problem is not differ-
entiable, then it is not possible to determine the maximum
of the density with the help of a gradient-based analysis. An
alternative for that is the following two step procedure:

1) Approximation of the posterior p(x|y) by a simple,
traceable density q(x)

p(x|y) ≈ q(x) (1)

2) Approximative estimate of the maximum of p(x|y) based
on the corresponding approximation q(x)

xopt = argmax
x

(p(x|y)) ≈ argmax
x

(q(x)) . (2)

The essential part of this procedure is an accurate approxi-
mation of the posterior p(x|y) by q(x). An efficient method
to compute such an approximation is the BBVI algorithm
proposed by Ranganath [10]. This method is based on the
principles of VI proposed by Jordan et al. [5], which for-
malizes the approximation of the posterior p(x|y) by q(x) as
a variational problem over the complementary dissimilarity
between the joint distribution p(x, y) and q(x). Therefore,
BBVI uses the ELBO objective which relies on the negative
Kullback-Leibler divergence. Beyond that, BBVI restricts q(x)
to a parametric model q(x|λ). This regularization significantly
reduces the complexity of the variational problem and thereby



simplifies the mathematical handling. Based on that, the opti-
mal parameter configuration λopt of q(x|λ) is:

λopt = argmin
λ

(KL (p(x|y)||q(x|λ))) (3)

= argmax
λ

(Eq(x|λ)

{
log
(
p(x, y)

q(x|λ)

)}
︸ ︷︷ ︸

ELBO

) .

Since in general, the maximum point of the ELBO cannot be
determined analytically, BBVI applies SGA. Therefore, BBVI
approximates the intractable gradient of the ELBO

dL

dλ
= Eq(x|λ)

{
d

dλ
log(q (x|λ)) (4)

· (log (p (x, y))− log (q (x|λ)))
}

with the help of the score function d
dλ log(q (x|λ)) as well as

Monte-Carlo integration. The variance caused by Monte-Carlo
integration is reduced with the help of a Rao-Blackwellization
[2] of the expression and the introduction of control variates.
Here, the Rao-Blackwellization corresponds to a decomposi-
tion of the global expectation into variable-wise expectations.
This decomposition, which is enabled by a mean-field struc-
tured model q(x|λ)

q(x|λ) =
N∏
n=1

qn(xn|λn) , (5)

reduces the variance of the ELBO gradient significantly and
thereby improves its usage within SGA. In doing so, BBVI
achieves, in contrast to the other popular VI method the Auto-
Encoding Variational-Bayes (AEVB) algorithm proposed by
Kingma et alt. [7], an approximation of the ELBO gradient
without relying on differential derivatives of the joint distri-
bution p(x, y). This makes BBVI quite generic.
Within its applied SGA framework, BBVI assumes that the
gradient of the ELBO points in the direction of the largest
increase of the ELBO and therefore represents the optimal
search direction. But this assumption only holds if the pa-
rameter space corresponds to an Euclidean space. Here, the
Euclidean space represents a space that is defined by an
orthonormal base system and therefore allows one to calculate
the distance between a point w and the origin 0 with the

help of the Euclidean metric ||w|| =
√∑N

i=1 w
2
i . However,

this characterization of the parameter space is not guaranteed
within an arbitrary variational problem. Thus, the usage of the
standard gradient in SGA can lead to a slow, a suboptimal or
even a failing inference. One solution to address this problem,
is the natural gradient proposed by Amari [1].

III. NATURAL-GRADIENT BASED
BLACK-BOX VARIATIONAL INFERENCE

Amari showed that for a general scalar function f(x) with an
arbitrarily characterized parameter space, the direction of the
largest increase of f(x) is described by:

p = G(x)
−1 · df

dx
. (6)

The author denotes this direction as the natural gradient. The
matrix G(x) in this expression corresponds to Riemannian
metric tensor (RMT), which encodes the structural shift of
parameter space of f(x) around x relative to an Euclidean
space. Hence, in the special case, if the local parameter space
of f(x) is equivalent to an Euclidean space, G(x) corresponds
to an identity matrix. As a side note, it can be mentioned
that the definition of p offers a structural analogy to the
search direction of f(x) in case of an Newton-method based
optimization scheme:

p = −H(x)
−1 · df

dx
. (7)

However, different from Eq. 6, H(x) does not correspond to
the RMT, but instead to the Hessian matrix of f(x). Similarly
to the RMT, the Hessian incorporates local curvature infor-
mation to define of a suitable search direction, but effectively
uses a different formalization.
Now, in order to transfer the idea of the natural gradient to
ELBO problem, a suitable RMT definition is needed which
corresponds to the ELBO objective. For this purpose, Honkela
et al. [4] propose the Fisher information matrix (FIM). The
FIM corresponds to the second derivative of the Kullback-
Leibler (KL) divergence of the approximation model q(x|λ)
within the following setup:

F (λ) =
d2KL(q(x|λ)||q(x|λ̂))

(dλ̂)2

∣∣∣∣∣
λ̂=λ

(8)

= Eq(x|λ)

{(
d

dλ
log(q(x|λ))

)(
d

dλ
log(q(x|λ)

)T}
.

According to this expression, the FIM can be characterized as
the expectation of the outer product of the score function with
itself. This equation encodes the local curvature information
of the parameter space for the model around the parameter
λ and thereby meets the idea of the RMT. Therefore, we
use the FIM to incorporate the natural gradient idea into the
SGA framework of the BBVI algorithm. For the practical
implementation, we first apply the mean-field restrictions of
the approximation model q(x|λ) to the computation of the
FIM. By doing so, the FIM simplifies to:

F̂ (λ) =


Eqi(xi|λi)

{(
d
dλi

log(qi(xi|λi))
)

(
d
dλi

log(qi(xi|λi))
)T} , i = j

0 , i 6= j

. (9)

This decomposition of the global expectation of Eq. 8
into variable-wise local expectations reduces the variance of
the FIM significantly and thereby corresponds to a Rao-
Blackwellization [2]. Aside of a few special approximation
models, like a Gaussian-distribution, it is generally hard to cal-
culate these local expectations analytically. Therefore, similar
to Ranganath’s considerations relating to the ELBO and the
ELBO gradient, we suggest to approximate these expectations



with the help of Monte Carlo integration. By applying this,
the FIM becomes:

F̂ (λ) ≈


1
S

∑S
s=1

(
d
dλi

log(qi(x
(s)
i |λi))

)
(

d
dλi

log(qi(x
(s)
i |λi))

)T , i = j

0 , i 6= j

(10)

with
x
(s)
i ∼ qi(xi|λi) . (11)

The approximation of the local expectations requires the
evaluation of the score function at the samples x(s)i . However,
these calculations are also required for the approximation of
the ELBO or the ELBO gradient. This implies that these cal-
culations can be reused in this context without any additional
numerical effort. The block-diagonal structure of the FIM
allows for an efficient variable-wise inversion of the matrix.
This enables a decomposition of the calculation of the search
direction p into variable-wise calculations. By embedding
these ideas in the framework of the original BBVI algorithm,
our proposed variant, NG-BBVI, is given by Alg. 1.
In our algorithm, we apply an Adam [6] scheme for scaling
and modifying the search directions and thereby replace the
AdaGrad [3] scheme, which is proposed in the original BBVI
algorithm [10]. We explain this decision in detail in Sec. V.

IV. RELATED WORK

Since the publication of the BBVI algorithm, there have
been various proposals for improving different aspects of the
approach. The focus of these follow-up publications varies.
Ruiz et al. [11] suggest the idea to adapt the formally fix
structure of q(x|λ) dynamically during the inference pro-
cedure. Titsias et alt. [12] propose an inference procedure
for approximation models with a quasi mean-field structure
based on local expectations and an efficient sampling scheme
within Monte-Carlo integration. However, similarly to original
BBVI algorithm, these proposals try to improve the algorithm
under the assumption that parameter manifold of a variational
problem is an Euclidean space and therefore the standard
gradient of the ELBO represents the best search direction
within a SGA framework. But such a manifold characterization
is not guaranteed within an arbitrary variational problem. This
aspect was first addressed by Honkela et al. [4], long before
the publication of the BBVI algorithm. As a solution, the
authors propose a SGA-based inference algorithm that uses the
natural gradient [1] to consider the metric characteristics of the
parameter manifold. They suggest the FIM as an appropriate
RMT equivalent. The authors present their idea in a very
general form. But unlike our algorithm, they do not offer an
integrated algorithmic concept.

V. EXPERIMENTS

In order to evaluate the performance of NG-BBVI with regard
to its computational efficiency, we examine three applications.
At the core of each application lies a probabilistic regression
problem. We assume that the probabilistic properties of these

Algorithm 1 Natural-Gradient based Black-Box Variational
Inference

1: Input : data y, joint distribution p (x, y), mean-field
structured model q (x|λ)

2: Initialization : λ, S, t, β1, β2, η, c
3: repeat
4: // Draw Samples
5: for s = 1 to S do
6: x[s] ∼ q(x|λ)
7: end for
8: X[1]← subset of x; X[2]← x // Group sets
9: // Estimation of ELBO Natural Gradient

10: for n = 1 to N do // Loop over latent variable
11: a = 0
12: for p = 1 to 2 do // Loop over sample sets
13: for all sample s of X[p] do
14: h[s] = d

dλn
log
(
qn
(
X [n][p][s], λn

))
15: f [s] = h[s] · (log (pn (X[p][s], y))−
16: log

(
qn
(
X [n][p][s], λn

))
− a)

17: end for
18: switch p do
19: case 1 // Control Variates
20: a = Cov(h,f)

V ar(h)
21: end case
22: case 2 // Natural Gradient
23: F ← 1

|X[p]|
∑|X[p]|
s=1 h[s](h[s])T

24: z[n]← F−1
(

1
|X[p]|

∑|X[p]|
s=1 f [s]

)
25: end case
26: end switch
27: end for
28: end for
29: // Update via Adam
30: m = β1 ·m+ (1− β1) · z
31: v = β2 · v + (1− β2) · ‖z‖2
32: m̂ = m

1−βt
1

; v̂ = v
1−βt

2

33: λ = λ+ η · m̂√
v̂+ε

34: until ||dλ|| < c // Convergence Criteria

problems are similar and accurately modeled by the generative
Bayesian network depicted in Fig. 1 (top). Furthermore, we
suppose, due to the natural characteristics of perception noise
and latent-parameter distributions, that within each application
the prior p(x) and the likelihood p(y|x) are most precisely
modeled as Gaussian distributions. In that context, our pro-
posed approach will be used to approximate the complex-
structured posterior p(x|y) by a simple, traceable model
q(x|λ). After that, the identified approximations will be used
to perform a MAP analysis and thereby estimate the optimal
latent parameters x of the regression models. Within each
application, we will analyze the performance of our NG-BBVI
algorithm based on its computational-convergence efficiency
(CCE). Here, the CCE describes the ratio of the approximation
quality of q(x|λ) relative to the corresponding computational
cost. We use the value of the ELBO as a representative



quality indicator. For practicability reasons, we measure the
computational cost indirectly by the corresponding calculation
time. In order to rank the CCE of our method, we will
compare it with the original BBVI algorithm. Within this
comparison, we will process both approaches with different
stochastic learning rates to separate the influence of the search
direction and the stochastic learning rate on the CCE. We
implemented the experiments completely in MATLAB. Hence,
we realized the Importance Sampling within the Monte-Carlo
integrations of both approaches with the help of MATLAB’s
standard sampling method the Ziggurat algorithm proposed by
Marsaglia and Tsang [9]. To increase the significance of our
results, we repeated all experiments several times and averaged
the single-run results.

A. Classify synthetic feature data

First, we want to train a neural network for the classification
of synthetic 2D feature vectors. The vectors are divided into
4 classes and thereby are distributed in the feature space
according to Fig. 1 (middle). For the supervised training we
use 70% of the total of 600 feature vectors. The remaining
30% define the test set. As a result of the low dimension of
feature vectors and their distribution within the feature space,
we rely on a small neural network with just one hidden layer of
10 neurons. As a consequence, the neural network has a 2-10-4
layer design and therefore offers 74 trainable latent parameters.
Besides that, the network uses hyperbolic tangent shaped
activation functions. At the beginning of the training, the latent
parameters are initialized randomly with the help of a normal
distribution N(0, 1). In order to estimate the parameters during
the training, we rely on the proposed NG-BBVI algorithm.
Within NG-BBVI, we use a Gaussian-distributed model q(x|λ)
with a diagonal covariance. We approximate the expectations
of the ELBO and the ELBO gradient by N = 20 samples
per iteration of SGA. The control variates aopt in the ELBO
gradient are estimated with half of the samples. We apply
the same sampling setup within the original BBVI algorithm.
The large amount of training data by only 4 classes with a
small inner class variance causes a significant informative
redundancy in the data. This allows us to use of a mini-
batch scheme to accelerate the inference. Hence, we only
use K = 20 training samples per SGA iteration within both
BBVI algorithms. The convergence dynamics of all variants
are presented in Fig. 2 (top). The Fig. also includes the true
positive rates (TPR) which describe the proportion of correct
classified test data relative to all test data.

B. Classify MNIST feature data

As a second example, we train a neural network that classifies
images of handwritten numbers. As database, we use the
MNIST data set [8]. The images of the MNIST data set
correspond to normalized grayscale images with a resolution
of 28x28 pixels. Each image contains one handwritten number
in the range of 0 to 9. In total, the data set consists of
60000 training examples and 10000 test examples. Within both
subsets, all 10 classes are distributed almost uniformly. We

traffic
vehicle

!

"

#

$(&)
road model

static landmarks
dynamic
landmarks

streetlam
p

m
onocular
cam

era

ego-vehicle
(w

ith
cam

era)

reflectors

guardrail

$ (

$)

*+,-- 3
*+,-- 4

*+,-- 2
*+,-- 1

+,2342
56-378,6+39

! "

Fig. 1: Probabilistic Model (top), Feature space of Exp. 1
(middle), Environment model of Exp. 3 (bottom)

do not preprocess the images. To adapt the structure of the
data to the architecture of the neural network, we transform
each image into a vector of dimension 1x784. In order to
keep the network complexity low, we rely on a simple design
with just an input layer and an output layer. As a result,
the neural network has 7850 latent parameters to be trained.
Besides that, the network uses hyperbolic tangent shaped
activation functions. At the beginning of the training, the latent
parameters are initialized randomly with the help of a normal
distribution N(0, 1). In order to estimate the parameters during
the training, we rely on the featured algorithms. Within each
approach, we use a Gaussian-distributed model q(x|λ) with
a diagonal covariance. We approximate the expectations of
the ELBO and ELBO gradient by N = 20 samples per
iteration of SGA. The control varieties aopt are estimated
with half of the samples. Similar to the synthetic-data example
above, the large amount of training samples by only 10 classes
causes an informative redundancy within the data. This again
allows the application of a mini-batch scheme to accelerate the
inference. Hence, we only use K = 200 training samples per
SGA iteration in both inference algorithms. The convergence
dynamics, as well as the test data set TPRs, of both variants



are presented in Fig. 2 (middle).

C. ADAS: Estimating the course of a road

The third highlighted regression problem originates from the
environment of automated driving and therefore has a direct
practical application [13]. In detail, the regression problem
formalizes the estimation of the 3D road course in front
of an automated vehicle on the basis of course-correlated
static and dynamic landmarks. The estimate therefore relies
on position and scene flow information from these landmarks
measured by a monocular camera system. In detail, this system
is installed behind the windscreen of the vehicle and looks
forward in the direction of travel. Fig. 1 (bottom) illustrates the
setup. Before the estimation of the road course, the acquired
camera measurements are preprocessed by means of image
processing, machine learning and structure-from-motion. After
that, the camera data is classified, structured and transformed
into the 3D space. The road course is modeled by a parametric
nonlinear model Ypre = f(R). The dimension of R varies
in practice between 6 to 14 and thereby characterizes the
application as a regression problem with a low-dimensional
parameter space. Based on that road model, the objective of
the regression problem is the estimation of the configuration
Ropt which optimally predicts the preprocessed measurements
Ymea. As a result of various influences, the measurement data
Ymea is considered as a noisy signal. Therefore, we model
the regression problem as a probabilistic process with the
graphical structure according to Fig. 1 (top). Again, we will
solve the regression problem with both previously discussed
inference algorithms. Since the road scene in front of the
vehicle is continuously changing, the estimation of the road
course has to be executed permanently. Within the environment
of driver assistance systems this is a very challenging task
due to the limited computational capabilities of these systems.
Therefore, it is necessary to implement the estimation as effi-
cient as possible or correspondingly apply a solver with a good
CCE. Within both algorithms we use a Gaussian-distributed
model q(x|λ) with a diagonal covariance. To simplify the com-
plexity of the experiment, we initialize λ randomly. In both
approaches, we approximate the expectations of the ELBO as
well as the ELBO gradient by N = 10 samples per iteration of
SGA. The control variates aopt are estimated with half of the
samples. Since the amount of acquired camera measurements
per estimation procedure is generally very limited, there is no
significant informative redundancy within that data. Hence, we
do not apply a mini-batch scheme within the inference. The
convergence dynamics of all discussed approaches are depicted
in Fig. 2 (bottom).

D. Discussion

We evaluate the computational convergence efficiency (CCE)
of the discussed approaches based on the depicted convergence
dynamics in Fig. 2. As mentioned above, the ELBO will be
used as a representative indicator for the accuracy of the ap-
proximative solution of the MAP analysis within the regression
problems. Here, the principle applies: The higher the value
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Fig. 2: Convergence dynamics of Exp. 1 (top), Exp. 2 (middle)
and Exp. 3 (bottom), Table of applied learning rates (bottom)

of the ELBO, the more accurate is the corresponding MAP
solution of the problem. As illustrated in the figures, within
each experiment we process both inference algorithms with
different stochastic learning rates in various configurations.
This procedure allows us to separate the influence of the search
direction and the stochastic learning rate on the inference. As
learning rates, we consider AdaGrad [3] and Adam [6] (see
table in Fig. 2). In order to keep the results focused, we only
vary those hyperparameters within each learning rate which
affect the convergence dynamic the most. For both AdaGrad
and Adam, this is the scaling parameter η. The remaining
parameters for both learning rates are defined according to
the usual recommendations. Thus, we set N = 10, β1 = 0.9,
β2 = 0.999 and ε = 10−8. To identify the best η for
each inference algorithm, we performed a grid-search based
hyperparameter optimization in advance. In order to compare
the algorithms, we apply the identified optimal learning rate
of one algorithm correspondingly on the other algorithm.
The results of Exp. 1 (see Fig. 2 (top)) show that NG-BBVI in
combination with Adam not only offers the best CCE, but also
achieves the highest ELBO value of all compared methods.



BBVI behaves noticeably worse with the same learning rate.
This is a clear indicator that the parameter space of the
problem does not correspond to an Euclidean space, because
otherwise both algorithms would show a similar performance.
BBVI only performs better when using AdaGrad. Here, the
AdaGrad scheme, which considers variations between succes-
sive gradients and thereby adapts implicitly to local metric
variations, generates more suitable search directions in SGA.
On the other hand, the same AdaGrad scheme works subop-
timal in conjunction with NG-BBVI. A combination of both
seems to neutralize the adaptiveness of the natural gradient
within NG-BBVI. Finally, these ELBO convergence dynamics
translate into classifiers with corresponding performances.
This is reflected by the TPR (see δTPR in legend in Fig.
2), which are achieved on the test data set. The results of
Exp. 2 (see Fig. 2 (middle)) reflect a pattern which is already
known from Exp. 1. NG-BBVI in combination with Adam
achieves the best CCE. BBVI combined with that learning
rate performs noticeably worse. This indicates, again, that the
parameter space of this problem does not correspond to an
Euclidean space. BBVI achieves the best CCE in combination
with AdaGrad. Similar to Exp. 1, NG-BBVI, combined with
that learning rate, shows a comparable convergence dynamic.
Once again, AdaGrad seems to compensate the influence of
the FIM in SGA. As in Exp. 1, the achieved convergence
levels correlate directly with the quality of the corresponding
classifiers. Here, it is worth to note that the best NG-BBVI
based classifier offers a TPR which is close to the absolute
best TPR rate of 88% for such a designed classifier (2-
layer) [8]. However, this reference classifier is trained within a
deterministic modeling and with the help of backpropagation.
In Exp. 3 (see Fig. 2 (bottom)) the patterns of Exp. 1 and Exp.
2 repeat. But this time the differences between the algorithms
are even more pronounced. This implies that the parameter
space of road-course estimation problem differs even more
from an Euclidean space than the parameter spaces of the
classification problems. In the best configuration BBVI not
only converges much slower than the best configuration of
NG-BBVI, but it also achieves a significantly lower con-
vergence level. Translating the estimated latent parameters
of this solution into a corresponding road-course estimation
(see the qualitative ratings within the legend) results in a
road model which adapts poorly to the measured landmarks.
The NG-BBVI based solution, on the other hand, adapts
realistically and therefore is useful in practice. In addition,
this experiment shows even more that NG-BBVI and AdaGrad
are not a good match to each other. The influence of the
FIM (see Eq. 6) on the gradient, here, seems completely
compensated by AdaGrad in SGA. In summary, it can be stated
that in all experiments NG-BBVI, in conjunction with Adam,
offers significant advantages over the combination of BBVI
and AdaGrad. We assume that this is caused by the explicit
consideration of the non-Euclidian character of the parameter
spaces of these problems in NG-BBVI. Within none of the
experiments, the additional computational cost to calculate
the FIM, has a detrimental effect on the CCE performance.

Therefore, from a practical point of view, the usage of NG-
BBVI, combined with Adam, has to be preferred in all our
experiments.

VI. CONCLUSION & FUTURE WORK

In this contribution we presented a modification of the BBVI
algorithm which incorporates the idea of the natural gradient in
its inference framework and uses Adam as an optimal compan-
ion. This effort was driven by the desire to realize a procedure
that approximates the posterior p(x|y) of non-differentiable
probabilistic regression problems by a mean-field structured
model q(x|λ) under minimal numerical costs. In an empirical
study, we were able to prove that our approach has advantages
over the original BBVI algorithm [10] within the considered
examples. Thereby, despite the additional effort to calculate
the Fisher information matrix, our proposed algorithm was
able to solve the inference problems more efficiently than
the original BBVI algorithm, thanks to more suitable search
directions within SGA.
In our algorithm, we see potential for further improvements.
Hence, in future work we would like to investigate in detail,
whether the applied SGA scheme and thereby the efficiency
of the inference can profit from a combination of search
directions generated by the natural gradient (see Eq. 6) as well
as a Quasi-Newton method (see Eq. 7). These expectations
derive from the fact that a Quasi-Newton method perhaps
delivers more suitable search directions close to the extremal
point than the natural gradient does.
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