
Learning Transformation Invariant Representations
with Weak Supervision

Benjamin Coors1,2, Alexandru Condurache2, Alfred Mertins3 and Andreas Geiger1,4

1Autonomous Vision Group, MPI for Intelligent Systems, Tübingen, Germany
2Robert Bosch GmbH, Leonberg, Germany

3Institute for Signal Processing, University of Lübeck, Germany
4Computer Vision and Geometry Group, ETH Zürich, Switzerland

{benjamin.coors,andreas.geiger}@tue.mpg.de, alexandrupaul.condurache@bosch.com, mertins@isip.uni-luebeck.de

Keywords: Deep Learning, Transformation Invariance, Weak Supervision, Object Recognition.

Abstract: Deep convolutional neural networks are the current state-of-the-art solution to many computer vision tasks.
However, their ability to handle large global and local image transformations is limited. Consequently, exten-
sive data augmentation is often utilized to incorporate prior knowledge about desired invariances to geometric
transformations such as rotations or scale changes. In this work, we combine data augmentation with an unsu-
pervised loss which enforces similarity between the predictions of augmented copies of an input sample. Our
loss acts as an effective regularizer which facilitates the learning of transformation invariant representations.
We investigate the effectiveness of the proposed similarity loss on rotated MNIST and the German Traffic
Sign Recognition Benchmark (GTSRB) in the context of different classification models including ladder net-
works. Our experiments demonstrate improvements with respect to the standard data augmentation approach
for supervised and semi-supervised learning tasks, in particular in the presence of little annotated data. In
addition, we analyze the performance of the proposed approach with respect to its hyperparameters, including
the strength of the regularization as well as the layer where representation similarity is enforced.

1 INTRODUCTION

A central problem in computer vision is to train
classifiers which are robust to geometric transforma-
tions of the input that are irrelevant to the problem
at hand. The most commonly used solution to ensure
robustness of a classifier to geometric transformations
is data augmentation (Simard et al., 2003; Krizhevsky
et al., 2012; Laptev et al., 2016). Data augmentation
artificially enlarges the training set and acts as a reg-
ularizer, which prevents a classifier from overfitting
to the training set. As an alternative to data augmen-
tation, transformation invariances can be directly en-
coded into the convolutional filters of convolutional
neural networks (CNNs) (Cohen and Welling, 2016;
Worrall et al., 2017; Zhou et al., 2017). However,
these approaches are currently limited to simple ge-
ometric transformations such as rotations.

In this work, we propose to leverage an unsuper-
vised similarity loss for training deep neural networks
invariant to arbitrary transformations. The similarity
loss is computed with respect to transformed copies
of an input and presents a very simple and effective

regularizer, enforcing the desired transformation in-
variances. In contrast to naı̈ve data augmentation, it
encourages smooth decision boundaries with respect
to transformations of the input and leads to higher per-
formance, in particular in the presence of little anno-
tated examples. Besides, our method allows for easy
incorporation of additional unlabeled examples, as the
similarity loss does not utilize label information and
is thus suitable for semi-supervised learning tasks. To
the best of our knowledge, this is the first work to
propose a similarity loss for training transformation
invariant CNNs with weak supervision. The contribu-
tions of this paper are:

• We propose a similarity loss which acts as an ad-
ditional regularizer and utilizes unlabeled training
data for learning transformation invariance.

• We present a detailed investigation on the weight-
ing and placement of the loss.

• We show improved performance in supervised
and semi-supervised learning on rotated MNIST
and GTSRB when little labeled data is available.



2 Related Work

As an alternative to data augmentation, knowledge
about geometric transformations can be directly en-
coded into the filters of a convolutional neural net-
work. Scattering convolution networks use prede-
fined wavelet filters to create networks that are in-
variant to translations, rotations, scaling and defor-
mations (Bruna and Mallat, 2013; Sifre and Mallat,
2013). While scattering networks guarantee stability
to geometric transformations, their parameters cannot
be trained and thus they are generally outperformed
by supervised deep convolutional networks (Oyallon
and Mallat, 2015).

Consequently, several recent works have sug-
gested to combine the encoding of invariances with
the learning of the convolutional filters (Kivinen and
Williams, 2011; Sohn and Lee, 2012; Cohen and
Welling, 2016; Worrall et al., 2017; Zhou et al.,
2017). Transformation invariant or equivariant re-
stricted Boltzmann machines infer the best match-
ing filters by transforming them using linear trans-
formations (Kivinen and Williams, 2011; Sohn and
Lee, 2012). Similarly, group equivariant CNNs ap-
ply learned base filters under different transforma-
tions and pool their responses to create invariant rep-
resentations (Cohen and Welling, 2016). Harmonic
networks exhibit global rotation equivariance (Wor-
rall et al., 2017). While these works have demon-
strated state-of-the-art results and shown promise in
improving the data-efficiency of deep convolutional
networks, they are, unlike our approach, typically re-
stricted to simple transformations (e.g, rotations).

Another approach to transformation invariance in
CNNs is to resample the input space. An exam-
ple for this approach are spatial transformer networks
(STNs) (Jaderberg et al., 2015), which use a separate
network to learn the parameters of a spatial transfor-
mation of an input. Based on the predicted trans-
formation parameters a sampling grid is created and
applied to the input. A more lightweight alternative
to STNs are deformable convolutional networks (Dai
et al., 2017), which do not learn transformation pa-
rameters or warp the feature map but instead directly
learn offsets to the regular sampling grid of standard
convolutions. While these approaches increase the
flexibility of neural networks in handling geometric
transformations, they assume that a canonical repre-
sentation can be easily deduced from the input.

Because of the shortcomings of the aforemen-
tioned techniques, data augmentation remains one
of the most commonly used solutions for making
deep networks invariant to complex input transfor-
mations (Simard et al., 2003; Krizhevsky et al.,

2012). A recently proposed variant of data aug-
mentation is transformation-invariant pooling (TI-
pooling) (Laptev et al., 2016), which feeds multiple
augmented copies of an input into the network and
pools their responses. While this simple idea works
well in practice, test time complexity grows exponen-
tially with the dimension of the transformation, ren-
dering this approach infeasible for real-time applica-
tions. In contrast, our loss encourages representation
similarity during training and does not affect test time
performance.

The proposed approach is also related to the topic
of self-supervised learning, where freely available
auxiliary labels are used to train algorithms with-
out human supervision. Recently proposed proxy
tasks for self-supervision include context predic-
tion (Doersch et al., 2015), solving jigsaw puz-
zles (Noroozi and Favaro, 2016) or predicting egomo-
tion signals (Agrawal et al., 2015). Compared to these
works on self-supervision, our work does not use an
auxiliary training loss but directly optimizes the de-
sired loss metric.

The idea of using an input sample more than once
in each training step has previously been proposed
in the context of protecting neural networks against
adversarial perturbations (Zheng et al., 2016; Miyato
et al., 2016). Similar to the idea of improving model
generalization by injecting adversarial examples dur-
ing training, we aim to improve model generalization
w.r.t. transformations by enforcing similarity between
feature representations of transformed input images.

Besides, state-of-the-art results in semi-
supervised learning have been recently presented
using a similarity loss in combination with a
mutual-exclusivity loss (Sajjadi et al., 2016) or via
an imaginary walker that is tasked with forming
”associations” between embeddings (Haeusser et al.,
2017). In contrast to these works, here we investigate
the utility of a similarity loss when learning repre-
sentations invariant to geometric transformations
and present a detailed analysis on the placement and
weighing of the loss. Our loss applies to the super-
vised and semi-supervised setting and is particularly
effective in the presence of little labeled data.

3 Method

While the proposed similarity loss is applicable to
a variety of tasks, we use image classification as a test
bench in this work. Let x ∈ Rw×h×c denote an im-
age of dimensions w× h with c channels and let f :
Rw×h×c → RC be a non-linear mapping represented
by a neural network which takes an input image x and



produces a score for each of the C classes. Let fur-
ther t0, t1 ∈ T denote two transformations from a set
of transformations T (e.g, rotation, affine, perspec-
tive) which take the input image x and produce trans-
formed versions t0(x) ∈ Rw×h×c and t1(x) ∈ Rw×h×c

of it. Finally, let fl(t(x)) denote the feature maps of
the neural network in layer l when passing t(x) as in-
put. For clarity, we will drop the dependency on the
input image x in the following.

In order to encourage a neural network to learn
transformation invariant representations, we propose
the use of a similarity loss Lsim which penalizes large
distances between the predictions or feature embed-
dings of transformed copies of the input. The similar-
ity loss is computed using a siamese network archi-
tecture, where the transformed copies of the input are
simultaneously fed into separate streams of the net-
work that share their weights. By transforming both
inputs, convergence of the model is accelerated and
overfitting to small label sets is avoided. An abstract
network architecture, where the similarity loss is ap-
plied at the final layer L, is illustrated in Figure 1(a).

At inference time only a single stream of the net-
work is used, keeping runtime constant with respect
to the size of the transformation space.

The similarity loss Lsim is added to the supervised
classification loss Lc, which is applied on the output
of both network streams, to form the total loss Ltotal
for a data point where a weight parameter λ controls
the influence of Lsim:

Ltotal = Lc +λLsim (1)
Here, Lc is the usual cross-entropy loss applied to the
softmax outputs σ( fL(t0)) and σ( fL(t1)) of the final
network layer L for the transformed input sample:

Lc =−
C

∑
i=1

yi logσi( fL(t0))−
C

∑
i=1

yi logσi( fL(t1)) (2)

where σi(x) = exp(xi)/∑
C
j=1 exp(x j) denotes the soft-

max function and yi = 1 if i is the ground truth class
and yi = 0 otherwise.

The similarity loss encourages the output of the
neural network at layer l, fl , to be similar for both
streams. It is defined as the distance between the out-
puts of the transformed input pair at layer l for an ap-
propriate distance metric D(·, ·):

Lsim = D( fl(t0), fl(t1)) (3)
We propose to use a distance metric which measures
the correspondence between the likelihood of the
transformed input copies. More specifically, D(·, ·)
is calculated by flattening the network output fl at a
given layer l and applying the softmax activation:

D( fl(t0), fl(t1)) =−
C

∑
i=1

σi( fl(t0)) logσi( fl(t1)) (4)

A similar distance metric has previously been pro-
posed by Zheng et al. (2016) in order to stabilize mod-
els against small input perturbations such as the ad-
dition of uncorrelated Gaussian noise. It is inspired
by the work of Miyato et al. (2016) on virtual ad-
versarial training, which showed that a distance func-
tion based on the Kullback-Leibler (KL) divergence
smoothens the model distribution with respect to the
input around each data point. Our work extends this
approach to training models for invariance to geomet-
ric transformations of the input and is the first to per-
form a detailed investigation on the optimal weighing
and placement of the loss.

Since the similarity loss Lsim does not require la-
bel information, it enables semi-supervised learning
with partially labeled data. Until recently, ladder net-
works were the state-of-the-art architecture for semi-
supervised learning (Rasmus et al., 2015). Ladder
networks are denoising autoencoders with lateral con-
nections, into which the similarity loss Lsim can be
easily integrated by duplicating the corrupted or un-
corrupted encoder path of the ladder network. The
duplicated encoder path again shares its weight with
the other encoder paths of the ladder network. A sim-
ple ladder network architecture where the corrupted
encoder path of the ladder network is duplicated and
Lsim is applied on the final output layer L is illustrated
in Figure 1(b).

As before, Lsim is added to the total loss Ltotal
where it serves as a second unsupervised loss next to
the denoising loss Ldenoise, which aims to minimize
the difference between a clean layer output fl and the
output of a denoising function f̂l given a corrupted
output f̃l on all L layers of the network. The classifi-
cation loss Lc is then computed on the outputs of the
noisy encoder paths f̃L where α is a weight parameter
of the denoising loss Ldenoise and f0(t0) = t0.

Ltotal = Lc +αLdenoise +λLsim (5)

Lc =−
C

∑
i=1

yi logσi( f̃L(t0))−
C

∑
i=1

yi logσi( f̃L(t1))

(6)

Ldenoise =
L

∑
l=0
|| fl(t0)− f̂l(t0)||2 (7)

In all models, the classification loss Lc is only ap-
plied on the labeled training samples. On the other
hand, the similarity loss Lsim and, in case of a lad-
der network, the denoising loss Ldenoise can be applied
on both labeled and unlabeled samples of the training
data.



Lsim

t1

σ( f2(t1))

Lc

t0

σ( f2(t0))

Lc

f2(t0)

f1(t0) f1(t1)

f2(t1)

(a) Siamese Network

N (0,σ2)

Lsim

t̃1

N (0,σ2)

N (0,σ2)

σ( f̃2(t1))σ( f2(t0))

t0

Lc

Ldenoise

Ldenoise

t̃0

σ( f̃2(t0))

Lc

Ldenoise

f1(t0)

f2(t0) f̂2(t0)

f̂1(t0)

t̂0

f̃2(t0)

f̃1(t0) f̃1(t1)

f̃2(t1)

(b) Ladder Network
Figure 1: Abstract network architectures considered in this work. A similarity loss Lsim is placed on the the final layer of the
network in order to enforce similarity between outputs of transformed copies of an input.

4 Experiments

We first validate our approach in terms of learning
rotation invariant representations on the classical ro-
tated MNIST task (Larochelle et al., 2007). Second,
we demonstrate the effectiveness of our technique on
the more challenging German Traffic Sign Recogni-
tion Benchmark (GTSRB) (Stallkamp et al., 2012).
Incorporating perspective invariances using the pro-
posed similarity loss, our method leads to significant
improvements over the baselines for this task.

4.1 Experimental Setup

Figure 2: Example images from rotated MNIST
(Larochelle et al., 2007)

Figure 3: Example images from GTSRB
(Stallkamp et al., 2012)

The rotated MNIST classification task (Larochelle
et al., 2007) is the standard benchmark for evaluating
transformation invariance in neural networks (Sohn
and Lee, 2012; Cohen and Welling, 2016; Laptev
et al., 2016; Worrall et al., 2017), despite possible
ambiguities between rotated digits such as a rotated
6 and 9. The rotated MNIST dataset (see Figure 2)
was created by rotating MNIST digits with uniformly
sampled angles between 0 and 2π radians and consists
of 12,000 training and 50,000 test samples. As in the
original MNIST dataset (Lecun et al., 1998), the im-
ages are greyscale and of size 28×28 pixels. We split
the dataset into 10,000 training and 2,000 validation
samples for determining the hyperparameter λ.

The German Traffic Sign Recognition Benchmark
(GTSRB) (Stallkamp et al., 2012) consists of 39,209
training and 12,630 test images with 43 classes in to-
tal. We rescale the original images (see Figure 3) of
varying size to 32×32 pixels and normalize them.

In order to perform a fair comparison between
data augmentation and the use of a similarity loss, we
make sure that every model is being shown the same
amount of data in each training epoch. As a similar-
ity loss model utilizes each input sample x twice in
every training step under the transformations t0 and
t1, we also present t0 and t1 to the data augmenta-
tion baseline in each training step. During training,
data augmentation is performed online in a random-
ized manner. For rotated MNIST, t0 and t1 rotate the
input x in every training step with an angle which is
uniformly sampled between 0 and 2π radians.

In the case of GTSRB, we train for invariance
to projective transformations, as traffic signs need to
be correctly classified from different angles and dis-
tances. The augmentation with a projective transfor-



mation is performed by estimating an essential matrix
using the eight-point algorithm from a set of point
correspondences between the image corners and a
randomized set of points. These points are randomly
sampled from a uniform distribution within a distance
of±6 pixels in both dimensions of the image corners.

For all experiments we use the same randomiza-
tion seeds for model comparisons but vary the seed
across runs and for all experiments report the average
numerical results over five independent runs.

4.2 Supervised Learning on Rotated
MNIST Subset

For supervised learning, we integrate the similarity
loss Lsim into an all convolutional network archi-
tecture (Springenberg et al., 2015) and use a subset
of Ns = 100 labeled samples of the rotated MNIST
dataset for training, where each class is represented
equally often (i.e., 10 times).

Our network closely resembles the CNN reference
architecture for the rotated MNIST task in (Cohen
and Welling, 2016). This network is constructed from
seven convolutional layers, where each but the last
layer uses filters of size 3×3 while the last layer uses
filters of size 4× 4. The convolutional filters are ap-
plied with a stride of 1× 1. A max-pooling layer of
stride and size 2×2 is inserted after the second convo-
lutional layer. All but the last layer use batch normal-
ization (Ioffe and Szegedy, 2015) before ReLU non-
linearities, followed by dropout with a keep probabil-
ity of p = 0.7. On the last layer the softmax activation
is applied. We use the Adam optimizer (Kingma and
Ba, 2015) with a base learning rate of 0.001 and train
with 100 samples per mini-batch.

In a first experiment, we evaluate the effect of ap-
plying the similarity loss on different layers l of the
network (see Figure 4). We find that applying the
similarity loss on the last layer results in the highest
validation accuracy. This result is in line with find-
ings by Cohen and Welling (2016), which showed that
enforcing premature invariance in early layers of the
network is undesirable. For all future experiments,
we therefore only apply the similarity loss on the fi-
nal output layer L of a network.

In addition, we perform a coarse hyperparameter
search with a selected set of weight parameters λ ∈
[1.0,2.0,3.0,5.0,7.5,10.0,15.0,20.0]. The results are
plotted in Figure 5 and show improved validation ac-
curacies for a wide range of λ values compared to us-
ing only data augmentation (λ = 0.0). While the per-
formance is very robust to the choice of the weight
parameter λ, we can observe a drop in validation ac-
curacy when λ is large (λ = 20.0).

1 2 3 4 5 6 7
l

0.75

0.80

0.85

va
lid

at
io

n
ac

cu
ra

cy

Figure 4: Hyperparameter study for the similarity loss layer
l on the supervised rotated MNIST task

0 5 10 15 20
λ

0.84

0.85

0.86

0.87

0.88

va
lid

at
io

n
ac

cu
ra

cy

Figure 5: Hyperparameter study for the weight parameter λ

on the supervised rotated MNIST task

Table 1 confirms performance improvements on
the test set for the proposed similarity loss with
λ = 5.0 when training for 100 epochs with Ns =
100 labeled samples. Compared to a test error of
14.8% when training with data augmentation, we ob-
tain an improved test error of 13.4% when train-
ing with an additional similarity loss. Additionally,
we also obtain a better test error than our reimple-
mentations of a harmonic network (Worrall et al.,
2017) and a group-equivariant P4CNN (Cohen and
Welling, 2016), which replace the regular convolu-
tions in the network architecture with harmonic or
group-equivariant convolutions, respectively.

Table 1: Results for the supervised rotated MNIST task with
Ns = 100.

Method Test error (%)
Worrall et al. (2017) 21.5
Data augmentation 14.8
Cohen and Welling (2016) 14.2
Similarity loss 13.4



As a baseline we also evaluate the performance on
the full dataset of 12,000 labeled examples. Here, no
significant improvement is obtained by the similarity
loss compared to a data augmentation model (see Ta-
ble 2). Both data-driven methods are outperformed by
harmonic networks (Worrall et al., 2017) and a group-
equivariant P4CNN (Cohen and Welling, 2016).

Table 2: Results for the supervised rotated MNIST task with
Ns = 12,000.

Method Test error (%)
Data augmentation 3.7
Similarity loss 3.6
Cohen and Welling (2016) 2.28
Worrall et al. (2017) 1.69

Our results suggest that applying a similarity loss
improves generalization and outperforms data aug-
mentation as well as encoded transformation invari-
ances when the number of labeled samples is small.

4.3 Semi-Supervised Learning

The unsupervised nature of the similarity loss Lsim
makes it suitable as an additional guidance for semi-
supervised learning problems in order to utilize unla-
beled data during training.

4.3.1 Rotated MNIST

As a first architecture for semi-supervised learning
on rotated MNIST, we use the convolutional archi-
tecture from Section 4.2 and a subset of Ns = 100
labeled samples. Additionally, we use the remain-
ing training samples as unlabeled data. Each mini-
batch is constructed from 100 labeled and 100 un-
labeled samples, where Lc is only applied on the
labeled samples while Lsim is applied on the full
minibatch. As before, we perform a hyperparame-
ter study of the λ weight parameter from a set λ ∈
[1.0,2.0,3.0,5.0,7.5,10.0,15.0,20.0] (see Figure 6).
When comparing to the λ-study for supervised learn-
ing (see Figure 5), we can now observe higher valida-
tion accuracies and again find the performance to be
very robust.

Additionally, we perform a data ablation study
where we vary the size of the labeled training set Ns.
The results of the data ablation study are visualized
in Figure 7. The figure demonstrates that the similar-
ity loss is especially helpful when only very little la-
beled data is available. The benefit of a similarity loss
(for a weight parameter of λ = 10.0 and 100 training
epochs) is confirmed on the test set where the final test

0 5 10 15 20
λ

0.84

0.85

0.86

0.87

0.88

va
lid

at
io

n
ac

cu
ra

cy

Figure 6: Hyperparameter study for λ on semi-supervised
rotated MNIST.

50 100 150 300
Ns

0.75

0.80

0.85

0.90

te
st

ac
cu

ra
cy

similarity loss

data augmentation

Figure 7: Accuracy vs. number of training samples on semi-
supervised rotated MNIST.

error is lowered by more than 2% compared to train-
ing only with data augmentation (see Table 3). Fur-
thermore, the final test error is more than 1% lower
compared to using the similarity loss on only the la-
beled images, which confirms the ability of the simi-
larity loss to exploit additional unlabeled data.

Table 3: Results for the semi-supervised rotated MNIST
task with Ns = 100.

Method Test error (%)
Data augmentation 14.8
Similarity loss 12.2

We also observe improved class separability when
visualizing the learned feature representations in the
last layer of the model (see Figure 8).

For a second set of semi-supervised learning ex-
periments, we incorporate the similarity loss into the
fully connected ladder network architecture proposed
by Rasmus et al. (2015) for the permutation invariant
MNIST task. It features layers of size 784-1000-500-
250-250-250-10 with respective denoising weight
parameters α = [1000.0,10.0,0.10,0.1,0.1,0.1,0.1].



6.0

0.0

6.0

2.0

6.0
7.0 6.0

2.0

1.0
1.0

4.0

0.0

7.0

7.0

3.0

8.0

5.0

6.0
9.01.0

6.0
9.0

8.0

9.0 9.0

1.0

4.0

8.0

5.0

6.0

5.0

1.0

0.0

5.0

4.0

8.0
8.0

3.0

2.0

0.0

9.0
9.0

0.0

5.0

6.0
1.0 3.01.0

1.0

0.0

7.0

8.0

5.0
3.0

5.0

4.0

8.0

4.0

0.0
2.02.0

5.0

1.0

0.0

9.0

4.0

7.0
6.07.0

9.0

0.0

3.0

5.0

7.0 3.0

9.06.0

3.0

6.0

2.0

1.0

8.0

1.0

2.0
2.0

4.0

9.0

9.0

7.0

7.0

7.0

0.0

9.0

3.0

0.0

7.0

5.0

7.0
1.0

8.0

1.0 7.0
1.0

0.0

3.0

4.0

4.0

0.0

3.01.0 1.0

5.0

0.0
2.0

9.0

2.0

4.0

8.0

6.0
6.0 6.07.0

4.0

9.0

7.0

7.0

5.0

3.0

3.0

1.0
6.0

2.0

3.0

2.0

4.0

7.0

4.0

1.0

9.0

7.0

7.0

0.0

7.04.0

5.0

1.0

1.0

1.0

9.0

7.0

8.0

9.0

8.0
0.0

3.0

8.0

6.0

2.0

3.0

2.0
0.0

6.0

2.0 0.0

4.0

6.0

6.0
0.00.0

0.0

9.0

9.0

7.0
6.0

5.0

0.0

1.0

5.0

8.0

3.0

1.0

9.0
9.0

4.0

6.0
8.0

5.0
5.0

4.0

1.0

2.0

6.05.0
7.0

7.0
6.07.0 8.0

3.0

2.0

2.0

5.0

5.0

2.02.0

6.0

2.0

2.0

4.0

9.0

7.0

1.0

8.0
8.0

0.0

2.0

5.0

3.0

7.0

6.0

0.0

4.0

5.0

5.0

3.0

8.0
8.0

7.0 0.00.0

4.0
1.0

2.0

3.0

8.0

2.0

4.0

9.0

9.0

0.0

0.0

4.0

8.05.0

8.0

7.0 8.07.0

7.0

0.0

9.0

6.0

7.0

1.0

6.0

9.0

1.0

5.0

0.0

8.0

2.0

3.0

4.0

1.0

8.0

8.0

8.0

4.0

7.0

5.0

0.0

3.0

3.0

7.0
9.06.0

4.0

2.0

6.0
0.0

9.0

9.0

7.0

8.0

4.0

1.0

6.0

3.0 9.0 9.0

1.0

0.02.0

7.0

5.0

7.07.0

9.0

4.0

3.0

7.0

0.0

9.09.01.0

2.0

1.0

3.0

6.0

8.0

5.0

0.0

9.0

2.0

8.0

9.07.0 6.0

4.0

0.0

2.0

8.0

3.0

2.0

5.0

4.0

7.0

8.0

3.0

0.0

2.0

2.0

4.0

3.0
1.0

3.0
4.0

2.0

4.0

7.0
1.0

1.0

4.0

4.0

8.0

7.0

5.0

4.0
8.0

8.0

0.0

1.0

5.0

4.0

4.0

7.0

6.0

4.0

4.0
4.0

1.0

7.0

4.0

4.0

9.0

4.0

4.0

7.0
6.0

2.0

8.0

7.0

8.0
8.0

5.0

5.0

3.0

7.0

7.0

0.0

2.0

3.0

2.0

1.0

4.0

2.0

4.0

7.0

2.0
0.0

1.0

4.0

5.0

1.0

9.0

5.0
5.0

1.0

7.0

8.0

9.0

1.0

7.0

6.0
6.0

8.0

0.0

8.0

8.0

6.0
1.0

8.0

0.0
0.0

9.0

6.0

8.0
8.0

1.0
8.0

1.0

0.0

4.0

6.0
1.0

2.0

7.0

3.0

6.0

2.0
2.0

7.0

4.0

3.0

9.0

4.0

8.0

4.0

3.04.0

4.0

3.0

2.0

5.0

0.0

7.0

4.0
7.0

0.0

4.0

8.0

6.0

3.0

1.0
6.0

6.0

6.01.0

5.0

7.0 3.0 1.0
7.0

3.0

3.0

1.01.0

9.0

8.0
6.0

0.0

4.0

8.0

4.0

5.0

1.0 6.0

4.0

9.0

9.0

3.0

5.0

2.0

1.0

5.0

1.0 9.0

7.0

6.07.0

3.0

7.07.0

9.0

3.0

7.0

8.0

3.0

5.0

0.0

(a) Data Augmentation

6.0

0.0

6.0

2.0

6.0

7.0

6.0

2.0

1.0
1.0

4.0

0.0

7.0

7.0

3.0

8.0
5.0

6.0

9.0

1.0

6.0

9.0

8.0

9.0
9.0

1.0

4.0

8.0

5.0

6.0

5.0

1.0

0.0

5.0

4.0

8.0
8.0

3.0
2.0

0.0

9.0
9.0

0.0

5.0

6.0

1.0

3.0

1.0

1.0

0.0

7.0
8.0

5.0

3.0

5.0

4.0

8.0

4.0

0.0

2.02.0

5.0

1.0

0.0

9.0

4.0

7.0
6.0

7.0
9.0

0.0

3.0

5.0

7.0

3.0

9.0

6.0 3.06.0
2.0

1.0
8.0

1.0

2.0
2.0

4.0 9.0

9.0 7.0 7.0
7.0

0.0

9.0

3.0

0.0

7.0

5.0

7.0

1.08.0 1.0

7.0

1.0

0.0

3.0

4.0

4.0

0.0

3.0

1.01.0

5.0

0.0

2.0

9.0

2.0

4.0

8.0

6.0

6.0

6.0

7.0

4.0

9.0

7.0
7.0

5.0

3.0
3.0

1.0

6.0
2.0

3.0

2.0

4.0

7.0

4.0

1.0

9.0
7.0

7.0

0.0

7.0

4.0

5.0 1.0
1.0

1.0
9.0

7.0

8.0

9.0

8.0

0.0

3.0

8.0

6.0 2.0

3.0

2.0

0.0

6.0

2.0

0.0

4.0

6.0 6.0

0.0

0.0

0.0

9.0
9.0

7.0
6.0

5.0

0.0

1.0

5.0

8.0

3.0

1.0

9.0

9.0

4.0

6.0

8.0

5.0

5.0

4.0
1.0

2.0

6.0

5.07.0

7.0

6.0
7.0

8.0

3.0

2.0

2.0

5.0

5.0

2.0
2.0

6.0

2.0
2.0

4.0

9.0 7.0

1.0
8.08.0

0.0

2.0

5.0

3.0
7.0

6.0

0.0

4.0
5.0

5.0

3.0

8.0
8.0

7.0

0.0

0.0

4.0

1.0

2.0

3.08.0

2.0

4.0

9.0

9.0

0.0

0.0

4.0

8.0

5.08.0

7.0

8.0

7.0

7.0

0.0

9.0
6.0 7.0

1.0

6.0

9.0

1.0

5.0

0.0

8.0

2.0

3.0

4.0

1.0
8.0

8.0

8.0

4.0

7.0

5.0

0.0

3.0
3.0

7.0

9.0
6.0

4.0

2.06.0

0.0

9.0
9.0

7.0

8.0

4.0
1.0

6.0 3.0

9.09.0

1.0

0.0

2.0

7.0

5.0

7.0

7.0
9.0

4.0

3.0
7.0

0.0

9.09.0

1.0

2.0

1.0

3.0

6.0

8.0

5.0

0.0

9.0

2.0

8.0

9.0 7.0

6.0

4.0

0.0

2.0

8.0

3.0

2.0

5.0

4.0

7.0

8.0

3.0

0.0

2.0
2.0

4.0

3.0

1.0

3.0

4.0

2.0

4.0

7.0

1.0

1.0

4.0
4.0

8.0

7.0

5.0

4.08.0

8.0

0.0

1.05.0

4.0
4.0

7.0
6.0

4.0

4.0

4.0

1.0

7.0

4.0
4.0

9.0

4.0

4.0

7.0

6.0

2.0

8.0

7.0

8.0
8.0 5.0

5.0

3.0 7.0
7.0

0.0

2.0

3.0

2.0

1.0

4.0

2.0

4.0
7.0

2.0

0.0

1.0

4.0

5.0 1.0
9.0

5.0
5.0

1.0

7.0

8.0

9.0

1.0

7.06.0
6.0

8.0

0.0

8.0
8.0

6.0

1.08.0

0.0
0.0

9.0

6.0

8.0
8.0

1.0

8.0

1.0

0.0

4.0

6.0

1.0

2.0

7.0

3.0
6.0

2.02.0

7.0

4.0

3.0

9.0

4.0

8.0

4.0

3.0

4.0

4.0

3.0

2.0

5.0

0.0

7.0
4.0

7.0

0.0

4.08.0

6.0

3.0

1.0

6.0

6.0
6.0

1.0
5.0

7.0

3.0

1.0

7.03.0

3.0

1.0
1.0

9.0

8.0

6.0

0.0

4.0

8.0
4.0

5.0 1.0

6.0

4.0

9.0

9.0

3.0

5.0

2.0

1.0

5.0

1.0

9.0
7.0

6.0

7.0

3.0 7.0
7.0

9.0

3.0
7.0

8.0

3.0

5.0

0.0

(b) Similarity Loss
Figure 8: t-SNE visualizations of the learned feature representations on the final network layer.

The noisy encoder path uses Gaussian corruption
noise with standard deviation 0.3. We train the net-
work with mini-batches of 100 labeled and 256 unla-
beled samples using the Adam optimizer and a base
learning rate of 0.02 for 300 training epochs.

Table 4: Ladder network results for semi-supervised rotated
MNIST task with Ns = 100.

Method Test error (%)
Data augmentation 8.0
Similarity loss (clean path) 7.6
Similarity loss (noisy path) 6.8

Table 4 displays the final test accuracies for uti-
lizing our similarity loss in a ladder network with a
weight parameter of λ = 20.0, which was determined
in a separate hyperparameter search. We again find
the addition of a similarity loss to be beneficial. In-
corporating it in the noisy encoder path results in a
better performance of 6.8% compared to a final test
error of 7.6% in the clean encoder path. This can be
explained by the Gaussian noise of the noisy encoder
path providing additional regularization. Our results
demonstrate that the use of a similarity loss also en-
ables improving the performance of a previous state-
of-the-art model architecture, specially designed for
the semi-supervised learning task.

4.3.2 German Traffic Sign Recognition
Benchmark

As a final experiment, we consider the German Traffic
Sign Recognition Benchmark (GTSRB) (Stallkamp
et al., 2012). The network architecture for this task is
an all-convolutional model, which resembles the All-
CNN-C architecture proposed by Springenberg et al.

(2015) for the CIFAR-10 task (Krizhevsky, 2009). It
consists of nine convolution layers. The first four lay-
ers have 96, the, following layers 192 filters, all of
size 3×3. They are applied with stride 1 except in the
third and sixth layer where a stride of 2 is used. After
the final convolutional layer average pooling is per-
formed. Dropout is applied on the input with a prob-
ability of 0.2 and on the convolutional feature maps
with 0.5. All layers use ReLU nonlinearities, batch
normalization and weight decay of 0.001. A softmax
activation is applied after the final layer. The net-
work is trained with stochastic gradient descent and
Momentum with mini-batches of 100 labeled and 100
unlabeled samples. A learning rate of 0.05 is decayed
over the course of 100 training epochs.

In contrast with previous experiments on rotated
MNIST, we now train for invariance to projective
transformations. Unlike rotations, these cannot be
easily encoded into the convolutional filters of a neu-
ral network. Here, the use of a similarity loss, which
relies on augmenting the training data (as described in
Section 4.1), offers a simple, yet effective solution to
train CNNs for invariance to more complex geometric
transformations.
Table 5: Results for the semi-supervised GTSRB task with
Ns = 2150.

Method Test error (%)
Data augmentation 14.8
Similarity loss 9.6

The test results for semi-supervised learning on
the GTSRB task for 50 samples per class (i.e., 2150
samples in total) and λ = 10.0 are displayed in Table
5. We observe a clear improvement in the final test
accuracy from 14.8% to 9.6% when utilizing the sim-



ilarity loss, despite the model already being heavily
regularized by dropout, weight decay and batch nor-
malization, which again indicates the effectiveness of
the similarity loss when little labeled data is available.

As for rotated MNIST, we again perform a data
ablation study (see Figure 9). The study shows that
the improvement when using an additional similarity
loss is largest when Ns is small, but that even for larger
sizes of the labeled training set the similarity loss out-
performs the data augmentation model.

2150 4300 6450 8600
Ns

0.80

0.85

0.90

0.95

1.00

te
st

ac
cu

ra
cy

similarity loss

data augmentation

Figure 9: Accuracy vs. number of training samples on semi-
supervised GTSRB.

5 Discussion

The experiments in Section 4 demonstrate the
benefits of using the proposed similarity loss in both
supervised and semi-supervised learning tasks. Data
augmentation works well in practice for fully super-
vised problems when big labeled training sets are
available. However, in this work, we show that an
additional similarity loss can act as an effective regu-
larizer, which improves upon data augmentation when
little annotated training data is available. The benefit
of the proposed similarity loss is not limited to the
“toy-like” rotated MNIST task but extends to more
complex geometric transformations of natural images
where even larger improvements can be obtained.

In addition, another contribution of our work con-
cerns the fact that the proposed similarity loss can
be utilized for semi-supervised learning, where it can
help to exploit additional unlabeled data. The inclu-
sion of the similarity loss in a semi-supervised ladder
network shows particular promise. With our proposed
modification, we further improve over an architecture
which until recently was the state-of-the-art approach
for semi-supervised learning. As the rotated MNIST
dataset has not been commonly used to evaluate semi-
supervised learning architectures we do not claim to

set a new state-of-the-art but consider the ladder net-
work using an additional similarity loss to have highly
competitive performance.

In general, the use of an unsupervised similarity
loss is a surprisingly simple idea which can easily be
integrated into any deep learning model. All it re-
quires is to duplicate the classification stream of the
network and tune the λ hyperparameter. In our ex-
periments, we found the performance to generally be
very robust to the choice of the weight parameter λ.
The similarity loss can be additionally combined with
methods which encode invariances directly into con-
volutional filters (Cohen and Welling, 2016; Worrall
et al., 2017; Zhou et al., 2017) and with architectures
which enable neural networks to handle geometric
transformations more easily (Jaderberg et al., 2015;
Dai et al., 2017).

6 Conclusions

This work proposes an unsupervised similarity
loss which penalizes differences between the predic-
tions for transformed copies of an input for improved
learning of transformation invariance in deep neural
networks on the rotated MNIST and German Traffic
Sign Recognition Benchmark classification tasks. We
show that our similarity loss acts as an effective regu-
larizer, which improves model performance when lit-
tle annotated data is available, in both supervised and
semi-supervised learning. Future work could investi-
gate the application of the proposed similarity loss on
a combination of network layers or an adjustment of
the weight parameter λ over the course of training.

While this work improves the use of data-driven
methods based on augmenting training data for learn-
ing transformation invariance, there still remains a
gap to techniques which encode invariances to trans-
formations directly into the filters of a convolutional
neural network when training on the full set of labels
on rotated MNIST (Cohen and Welling, 2016; Worrall
et al., 2017; Zhou et al., 2017). However, unlike the
proposed similarity loss, which can easily be applied
for a wide variety of transformations, these methods
are currently limited to simple geometric transforma-
tions such as rotations or mirror reflections.

A promising avenue for future research is there-
fore the development of approaches which encode in-
variances to more complex geometric transformations
directly into the architecture of deep neural networks
and combine them with soft constraints as presented
in this paper in order to further improve the data effi-
ciency of deep neural networks.



REFERENCES

Agrawal, P., Carreira, J., and Malik, J. (2015). Learning to
see by moving. In Proc. of the IEEE International Conf.
on Computer Vision (ICCV).

Bruna, J. and Mallat, S. (2013). Invariant scattering con-
volution networks. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), 35(8):1872–1886.

Cohen, T. S. and Welling, M. (2016). Group equivariant
convolutional networks. In Proc. of the International
Conf. on Machine learning (ICML).

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and
Wei, Y. (2017). Deformable convolutional networks.
Arxiv tech report.

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsuper-
vised visual representation learning by context predic-
tion. In Proc. of the IEEE International Conf. on Com-
puter Vision (ICCV).

Haeusser, P., Mordvintsev, A., and Cremers, D. (2017).
Learning by association - a versatile semi-supervised
training method for neural networks. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR).

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal co-
variate shift. In Proc. of the International Conf. on Ma-
chine learning (ICML).

Jaderberg, M., Simonyan, K., Zisserman, A., and
Kavukcuoglu, K. (2015). Spatial transformer networks.
In Advances in Neural Information Processing Systems
(NIPS).

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Proc. of the International
Conf. on Learning Representations (ICLR).

Kivinen, J. J. and Williams, C. K. I. (2011). Transformation
equivariant boltzmann machines. In Proc. of the Interna-
tional Conf. on Artificial Neural Networks (ICANN).

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Master’s thesis, Department of Com-
puter Science, University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing
Systems (NIPS).

Laptev, D., Savinov, N., Buhmann, J. M., and Pollefeys, M.
(2016). TI-POOLING: transformation-invariant pooling
for feature learning in convolutional neural networks.
In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and
Bengio, Y. (2007). An empirical evaluation of deep ar-
chitectures on problems with many factors of variation.
In Proc. of the International Conf. on Machine learning
(ICML).

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proc. of the IEEE, 86(11):2278–2324.

Miyato, T., Maeda, S., Koyama, M., Nakae, K., and Ishii, S.
(2016). Distributional smoothing by virtual adversarial
examples. In Proc. of the International Conf. on Learn-
ing Representations (ICLR).

Noroozi, M. and Favaro, P. (2016). Unsupervised learn-
ing of visual representations by solving jigsaw puzzles.
In Proc. of the European Conf. on Computer Vision
(ECCV).

Oyallon, E. and Mallat, S. (2015). Deep roto-translation
scattering for object classification. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR).

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and
Raiko, T. (2015). Semi-supervised learning with ladder
networks. In Advances in Neural Information Processing
Systems (NIPS).

Sajjadi, M., Javanmardi, M., and Tasdizen, T. (2016). Reg-
ularization with stochastic transformations and perturba-
tions for deep semi-supervised learning. In Advances in
Neural Information Processing Systems (NIPS).

Sifre, L. and Mallat, S. (2013). Rotation, scaling and de-
formation invariant scattering for texture discrimination.
In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best
practices for convolutional neural networks applied to vi-
sual document analysis.

Sohn, K. and Lee, H. (2012). Learning invariant represen-
tations with local transformations. In Proc. of the Inter-
national Conf. on Machine learning (ICML).

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. A. (2015). Striving for simplicity: The all
convolutional net. In International Conf. on Learning
Representations (ICLR) (workshop track).

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C.
(2012). Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neural
Networks, 32:323–332.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and
Brostow, G. J. (2017). Harmonic networks: Deep trans-
lation and rotation equivariance. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

Zheng, S., Song, Y., Leung, T., and Goodfellow, I. (2016).
Improving the robustness of deep neural networks via
stability training. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR).

Zhou, Y., Ye, Q., Qiu, Q., and Jiao, J. (2017). Oriented
response networks. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).


