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Abstract 

Under the assumption that the surrounding environment remains unchanged, multipath 

contamination of GPS measurements can be formulated as a function of the sidereal repeatable 

geometry of the satellite with respect to the fixed receiver. Hence, multipath error estimation 

amounts to a regression problem. We present a method for estimating code multipath error of GPS 

ground fixed stations. By formulating the multipath estimation as a regression problem, we 

construct a nonlinear continuous model for estimating multipath error based on well-known sparse 

kernel regression, e.g. Support Vector Regression (SVR). We will empirically show that the 

proposed method achieves state-of-the-art performance on code multipath mitigation with 79% 

reduction on average in terms of standard deviation of multipath error. Furthermore, by simulation, 

we will also show that the method is robust to other coexisting signals of phenomena, such as 

seismic signals. 

Keywords: GPS, multipath mitigation, nonlinear regression, support vector 

machine. 

Introduction 

Multipath is defined as one or more indirect replicas of the line-of-sight signal 

arriving at the receiver antenna after reflection on objects in the surroundings. It 

constitutes a major error source that contaminates receiver measurements, causing 

performance degradation of GPS positioning solutions. The errors induced by 

multipath are typically up to 15 meters for C/A code (Hoffmann-Wellenhof and 

Lichtenegger 2001) and up to a few centimeters for carrier phase measurements 

(Leick 2004). That is significant for precise applications requiring centimeter-
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level accuracy. Although many positioning algorithms rely on the carrier phase 

measurements, accurate code measurements (pseudoranges) are important to a 

variety of applications. 

It is still challenging to either rule out or accurately model multipath 

errors. Various approaches have been proposed to mitigate multipath in the GPS 

measurement domain. These approaches can be classified as either frequency-

domain or time-domain processing. The methods in the frequency-domain are 

based on spectral analysis of the multipath error. After converting multipath 

sequences into the frequency domain, the multipath error can be ruled out by 

nullifying the spectrum corresponding to its bounded frequency region (Zhang 

and Bartone 2004a). More recently, many attempts have been made to apply 

wavelet decomposition to de-noise high-frequency multipath or to extract low-

frequency multipath signatures from GPS measurements which are then applied to 

correct multipath errors in subsequent measurements (Zhang and Bartone 2004b; 

Elhabiby at el. 2008, Souza at el. 2008a; Souza at el. 2008b). However, a 

shortcoming of these methods is the tendency to rule out phenomena signals of 

interest, such as seismic signals, since their spectrum likely overlaps with the 

spectrum of multipath signals. Other approaches attempt to link signal-to-noise 

(SNR) measurements, which are independent of phenomena signals, to multipath 

to obtain a map of the multipath environment (Bilich at el. 2008; Rost and 

Wanninger 2009). Unfortunately, SNR measurements are not always available to 

use; furthermore, different GPS receiver types may report SNR ratios in 

inconsistent units and resolution, making it inapplicable in many situations.  

Pertaining to time-domain processing, the pioneering work is credited to 

the carrier smoothing filter (CSF) (Hwang at el. 1999; Misra and Enge 2006). 

This technique plays the role of a low-pass filter, using precise but ambiguous 

carrier phase measurements to smooth noisy code measurements. Nevertheless, it 

is effective at reducing receiver noise and very high-frequency multipath error but 

less effective for lower frequency multipath error. The filter-based techniques like 

band-pass finite impulse response (FIR) filter (Ge at el. 2000; Liu at el. 2009) 

have also been used but they are of limited value as they require impractical 

multipath-free reference stations. Furthermore, it also tends to filter out other 

signals of interest. Another major trend is the modeling approach, which takes 

advantage of repeatability of multipath sequences on a daily basis at a fixed 



station, to stack multiple multipath sequences of consecutive days in order to map 

the multipath environment (Axelrad at el. 2005; Larson at el. 2007; Zhong at el. 

2010). The stacked multipath sequences are then time-shifted with a repeatable 

period to calibrate multipath errors for subsequent measurements. However, it is 

not obvious which time shift to use when different satellites are visible at different 

times of the day. In addition, high-rate data is required to boost its performance 

(Axelrad at el. 2005).  

Our previous work (Phan and Tan 2011) suggests a non-parametric model 

by posing multipath error as a function of repeatable geometry of the satellite with 

respect to a fixed receiver, and the function is then determined by learning from 

historical multipath data. We extend the work with an in-depth analysis of 

geometrical models of code multipath error. We derive the geometrical model of 

GPS code multipath error, formulate code multipath error estimation as a 

nonlinear regression problem, and efficiently solve multipath error estimation by 

Support Vector Regression (Vapnik 1995; Smola and Schölkopf 2004) to achieve 

mitigation. 

Section II reviews the mathematical models of GPS measurements, 

followed by the derivation of the geometrical model of code multipath error. 

Section III presents the theory of Support Vector Regression and the formulation 

of code multipath estimation as a regression problem. Experimental results and 

discussions will be presented in Section IV and a conclusion will follow in 

Section V. 

GPS Measurements and Geometrical Model of Code 

Multipath Error 

The mathematical models of GPS measurements will be reviewed. In the sequel, 

the relationship between satellite-specific code multipath error and geometry of 

the satellite with respect to a receiver will be explored to derive geometrical 

model of code multipath error. As a result, the code multipath error can be viewed 

as a function of satellite geometry which is characterized by azimuth and 

elevation angles.  



GPS Measurements 

During visible period of a satellite, the GPS code measurements 
 
and carrier 

phase measurements 
 

are given respectively as (Misra and Enge 2006; 

Parkinson 1996): 

  1111 )(  MTIcr su   (1) 

  1111111 )(  MNTIcr su  (2) 

where r denotes the true range between a satellite and a receiver, c  speed of light, 

u  and 
s  the receiver and satellite clock biases respectively, T  the tropospheric 

delay, I  the ionospheric delay,   the wavelength, and  N  is the ambiguous 

integer. The symbols M  and   represent code multipath error and random 

receiver noise while M  and   have similar meanings for carrier phase 

measurements. The opposite signs of I  in (1) and (2) are due to the fact that the 

ionosphere affects code and carrier phase measurements equally but in opposite 

directions (Leick 2004). 

Geometrical Model of Code Multipath Error 

Ideally, in a multipath-free environment, only one direct signal is received by the 

antenna from each satellite. However, no environment is completely multipath-

free in practice. Receiver antenna receives one or more replicas of the direct 

signal reflected from objects near the line-of-sight path, particularly those in the 

vicinity of the receiver. As a result, the receiver will track the composite signal 

that is a combination of the direct signal and the multipath replicas. 

For clarity, let us consider the simplified case of one multipath signal. Let 

dA  and mA
 
denote the amplitudes of the direct signal and the multipath signal 

respectively,   the path delay,   the multipath relative phase in radians, and 

1/  dm AA  the ratio of the multipath and direct amplitudes, and   and   the 

azimuth and elevation angles respectively. The position of any reflecting object is 

described as a planar surface tilted relative to the local level with a tilt angle   at 

a distance h  from the antenna center. Let   denote the reflection angle relative to 

the reflecting surface, the induced code multipath error is given as (Axelrad at el. 

2005): 
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In order to obtain the geometric model, we need to relate multipath error 

with geometric parameters, i.e. azimuth and elevation angles. Assuming that the 

satellite, antenna, and normal vector to the reflecting surface are all in a same 

plane, multipath reflections fall into two categories: forward-scatter and 

backscatter (Bilich and Larson 2007) as illustrated in Fig. 1. 

 

Fig. 1 Multipath reflections: (a) Forward-scatter, (b) Backscatter 

In both forward-scatter and backscatter scenarios, it is easily to obtain:  
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Furthermore, using the convention of angles measured counter-clockwise over the 

interval ]180 0[  ,    as shown in Fig. 1a whereas    in Fig. 1b. 

To generalize: 

    (6) 

Substituting (4), (5), and (6) into (3), the code multipath equations corresponding 

to one reflecting signal can be re-written: 

))sin(
4

cos(1

)sin()
4

cos()sin(2




















h

h
h

M   (7) 



In the general case of m  reflecting signals, the total code multipath is the sum of 

the individual code multipath: 
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Under the assumption that the multipath environment is held fixed, the quantities 

i , ih , i  are constant. That is, code multipath M  is a complicated function of 

satellite relative elevation angle   and azimuth angle   in the general case which 

characterizes the geometry of the satellite with respect to the receiver. 

Code Multipath Estimation with Nonlinear Support 

Vector Regression 

The theory of Support Vector Regression (SVR) for function approximation will 

be briefly overviewed. Thereafter, given the derived geometric model, code 

multipath estimation is formulated as a nonlinear regression problem which is 

then solved by the SVR framework. 

Support Vector Regression 

Given a set of N training samples  Xyxyx NN )},(,),,{( 11  , for a regression 

problem, our goal is to learn a function Xf :  to map from an observation 

vector x  to an estimate of target ŷ . Due to noise in the training data, it is unlikely 

that )( ixf  will equal to iy  for all ix , so a loss function )),(( yxfL  must also be 

chosen to quantify the penalty for )( ixf  differing from iy . The estimator f  can 

be found by minimizing the total loss over the training data. 

 Among various kinds of regression models, SVR (Vapnik 1995; Smola 

and Schölkopf 2004) are well-known to be more robust and accurate than 

traditional models, such as neural networks (Bishop 1996). We employ ε-SVR 

(Smola and Schölkopf 2004) which is most commonly used. In ε-SVR, the 

estimate )( ixf  has at most ε deviation from the actually target iy  for all training 

data, meaning that one does not care about errors as long as they are less than ε, 

but will not accept any deviation larger than this.  



 We denote the regression function bxwxf  )( ,)(   where 

FX : is a possibly mapping function that maps a data point x  in the input 

space X  to a feature space F , w  is the weight vector in the feature space,  

b  is a bias term, and   ,    denotes the dot product. The ε-insensitive loss 

function is chosen so that the function )(xf  is found to have at most ε deviation 

from the targets iy  for all training samples: 
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)(xf  can be solved through the following optimization problem (Smola and 

Schölkopf 2004): 
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where 0  is the parameter in the ε-insensitive loss function that controls the 

accuracy of the regressor. The constant 0C  adjusts a trade-off between model 

complexity and training error.   N

N   ,,1   and   N

N  **

1

* ,,    

are slack variables allowing errors around the regression function for exceeding 

the target value by more than ε and for being below the target value by more than 

ε, respectively. Fig. 2 depicts equation (10) graphically.  

 

Fig. 2 The ε-insensitive loss function setting with soft margin corresponds for a linear support 

vector machine. Image from (Schölkopf and Smola 2002). 

By introducing Lagrange multipliers (Schölkopf and Smola 2002) to the 

optimization problem (10), the following dual form can be obtained: 
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where *, ii   are Lagrange multipliers and 0, C  are chosen a priori. ),( ji xx  

is a kernel function which represents the inner product )( ),( ji xx   in feature 

space. This leads to the regression solution, which is so-called support vector 

(SV) expansion, taking the form: 
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where SVN is the number of support vectors. Note that all training samples fall 

inside the ε-tube, i.e.  ii yxf )( , will have the Lagrange multipliers *, ii   

vanished. Only for samples with  ii yxf )( , which is so-called support 

vectors, the Lagrange multipliers may be non-zero (Schölkopf and Smola 2002). 

The w  is implicitly contained in (12) without the need to compute explicitly when 

evaluating the function. It can be completely described as a linear combination of 

the training patterns ix : 
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and b  can be computed as follows: 

),0(for    )(,

),0(for    )(,

* Cxwyb

Cxwyb

iii

iii








 (14) 

It can be seen that )( ixf  only depends support vectors through the representation 

of the kernel function  . Any function can be chosen as the kernel function 

providing that it satisfies Mercer’s theorem (Schölkopf and Smola 2002). 



Code Multipath Error Estimation 

From (8), estimating code multipath error is equivalent to the function 

approximation. Therefore, satellite-specific code multipath error estimation can be 

posed as a regression problem with geometric features: azimuth and elevation 

angles. Specifically, estimating code multipath error is a 2-dimensional regression 

setting: 

),(  fM    (15) 

We will cast this problem into ε-SVR framework with the input vector 

2),(  x and the target output  My . The radial basis function 

(RBF) kernel (Schölkopf and Smola 2002) is reasonably chosen due to its ability 

to handle nonlinearity: 

)exp(),(
2

jiji xxxx     (16) 

where   is the kernel bandwidth. Learning from training data, the multipath 

estimator will estimate code multipath error for each visible satellite at each 

epoch. The estimated code multipath error will be used to correct the code 

measurements to achieve multipath mitigation. 

 The rationale behind this method is the observation that a fixed receiver 

experiences highly sidereal day-to-day correlation of satellite-receiver geometry 

and multipath error. These observations have been used for multipath research, 

specifically the multipath stacking-based methods (Axelrad at el. 2005, Bock at el. 

2000; Zhong at el. 2010). In this work, our proposed method leverages this 

observation with a machine learning approach to approximate the function of the 

repeatable multipath error. We train the multipath estimators using historical data 

of a few days before using them to estimate multipath error and correct 

measurements of the successive day. 

Experiments 

We will describe experiments conducted to train multipath estimators using 

historical data and subsequently use them for multipath estimation. We 

demonstrate that our approach outperforms state-of-the-art results in multipath 



mitigation in term of standard deviation. The advantages of the exploited methods 

will be also discussed. 

Experimental Data Set 

The data set used for evaluation was recorded at 0.1 Hz at the station equipped 

with a dual-channel Trimble NetRS receiver on the rooftop of N2 building in 

Nanyang Technological University (NTU) campus during five consecutive days: 

from the day of year (DOY) 306 to 310 of 2010. The nominal position of the 

observation site is (-1507932.6167, 6195587.6757, 148897.9990) in the earth-

centered, earth-fixed (ECEF) Cartesian coordinate system. Rooftops are usually 

bad multipath environments since there are often many vents and other reflective 

objects within the GPS antenna field of view. In the photographs shown in Fig. 3, 

it can be seen that the observation site is surrounded by many buildings and 

reflectors which make multipath potentially more severe. During the evaluation 

period there were 31 visible satellites ranging from PRN 2 to PRN 32 observed at 

this site. 

 

Fig. 3 The observation site on the rooftop of N2 building (NTU campus) 

Extraction of Training Data  

Training data is the key ingredient for any learning algorithm. Fortunately, the 

target code multipath error can be extracted from code measurements by batch-

processing a sequence of contiguous data (i.e. 1-day data). By differencing (1) and 

(2), we obtain the code-minus-carrier (CmC) as follows: 

   MNI2   (17) 



Note that carrier phase multipath error and receiver noise are far smaller than 

those of code measurements, i.e. 0  MM  and 0   ; therefore, 

they can be ignored for simplicity. Since N  is a constant bias as long as no cycle 

slip occurs and (  M ) is zero-mean (Misra and Enge 2006), N  can be 

computed by averaging over a whole orbit arc and subtracted from   at each 

epoch. Pertaining to ionospheric delay I , it can be removed by fitting a low 

frequency polynomial to the CmC sequence in case of single-frequency receiver 

(Zhang and Bartone 2004a) or forming ionosphere-free combinations in case of 

dual-frequency receiver (Misra and Enge 2006). We used ionosphere-free 

combinations throughout this experiment. Eventually, only code multipath error 

and receiver noise remain in CmC  . 

In order to illustrate the day-to-day repeatability of code multipath error, 

Fig. 4a and Fig. 4b plots the PRN 12 code multipath sequences extracted from the 

recorded data set during four days from DOY 306 to DOY 309. The correlation is 

more clearly revealed after we smoothed the sequences with a 50-second CSF to 

largely remove high-frequency noise. The CSF is implemented in recursive form 

as follow (Zhang and Bartone 2004b; Misra and Enge 2006): 
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
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where  ,  ,  and t  represent smoothing window, CmC, smoothed CmC and 

epoch index respectively. The original multipath sequences are plotted in blue and 

CSF-smoothed multipath sequences are in red. Day-to-day correlation of the two 

multipath sequences is numerically evaluated by their pair-wise normalized cross-

correlation values which are tabulated in Table 1. The blue and red values 

correspond to the original and smoothed multipath sequences respectively. The 

cross-correlation is around 89% between two consecutive days and slowly 

degrades with time. This is understandable since cumulative environmental 

changes become noticeable as the time span increases. 



 

(a) Original 

 

(b) 50-second CSF-smoothed 

Fig. 4 PRN 12 multipath sequences in four sidereal days from DOY306 to DOY 309 of 2010 

Table 1 Normalized cross-correlation of PRN 12 multipath sequences 

 DOY 306 DOY 307 DOY 308 DOY 309 

DOY 306 N/A 0.6668 0.5215 0.5215 

DOY 307 0.9055 N/A 0.6513 0.5254 

DOY 308 0.8775 0.8988 N/A 0.6260 

DOY 309 0.8649 0.8630 0.8851 N/A 

Training Code Multipath Estimators 

For each satellite, the training data is prepared using 4-day data from DOY 306 to 

DOY 309 extracted from the experimental data set, which we have found to be 

redundant enough to capture distribution of multipath sequences. Azimuth and 

elevation angles of the satellites with respect to the receiver, which are inputs for 

training, are computed from the broadcast navigation data. For the desired 

multipath outputs, after being detached from observation data, the CmC sequences 

containing multipath errors are filtered with CSF as equation to remove high-

frequency noise. The effect of this smoothing on the multipath error is negligible 



as long as the smoothing window is shorter than the highest rate multipath. The 

smoothing window is set to 50 seconds (equivalent to 5 epochs) which is only a 

fraction of the shortest anticipated multipath fading period of 200 seconds 

(Dickman at el. 2003; Zhang and Bartone 2004b). Thus, the receiver noise was 

significantly reduced without removing the multipath which was to be quantified. 

This smoothing operation helps to clearly expose multipath patterns; as a result, to 

enhance the estimators’ generalization. 

Scaling is applied to the training data before feeding them for training. 

Azimuth angles, elevation angles, and code multipath values are scaled to the 

range  1;1 . The main advantage of scaling is not only to avoid numerical 

difficulties during the calculation but also to prevent domination of values in 

greater numeric ranges over those in smaller numeric ranges. 

The libSVM package (available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm) which implements ε-SVR, was used to 

find the support vectors and coefficients of each satellite-specific code multipath 

estimator.  , the kernel parameter   and the penalty parameter of the error term 

C  must be chosen a priori. Since it is not known beforehand which parameter 

values are best for a given problem; some kind of model selection (parameter 

search) must be done. For   and C , grid search and cross-validation were 

applied. First, the coarse grid-search was performed on exponentially growing 

sequences of   and C  followed by cross-validation for each pair of  C,  with a 

fixed  . The result with the best 6-fold cross-validation accuracy was picked. 

With this strategy, better regions on the grid can be identified and finer grid-

search on that region is then conducted.   was searched separately in the range 

 1.0;005.0  with step size of 0.005 after the best pair  C,  has been chosen. 

Learning from the training data set, the support vectors and coefficients in 

(12) are found for multipath estimation function f  of each satellite. Each trained 

estimator f  should estimate multipath error when presented with a new 

observation of azimuth /elevation angles thereafter. 

Experimental Results 

In order to evaluate the performance of code multipath estimators, the proper 

multipath correction is directly applied to code measurements of DOY 310. Note 

http://www.csie.ntu.edu.tw/~cjlin/libsvm


that the inputs must be scaled as they were during the training phase and the 

estimated multipath errors need to be de-scaled.  

For the sake of demonstration, Fig. 5 presents pseudorange multipath 

errors of DOY 310 of 2010 and responses of the multipath estimator 

corresponding to PRN 12. As observed, the errors are significantly reduced after 

being corrected with the responses of the SVR estimators. 

 

Fig. 5 Original pseudorange multipath, CSF-smoothed pseudorange multipath, SVR-estimator 

response, and SVR-corrected pseudorange multipath of PRN 12 in DOY 310 of 2010 

Performance of all SVR multipath estimators corresponding to the visible 

satellites is presented in Fig. 6 where multipath mitigation is measured in term of 

standard deviation of multipath errors. With correction by SVR estimation, the 

percentages of multipath error reduction range from 67.8% with PRN 13 to 91% 

with PRN 30. On average, calibrating the data with CSF followed by the SVR 

estimator gains an improvement from 36.7% to 79.0%. Performance of the 

multipath estimators likely depends upon how fast the reflecting surfaces along 

the propagation direction change. Since the environmental changes are expected 

to be different for different propagation directions of the GPS satellites, the 

variation in performance of the SVR estimators as seen in Fig. 6 is 

understandable. 

The goodness of the corrections is additionally illustrated in the position 

domain. Fig. 7 shows the variation of the solved positions from the nominal 

position of the receiver. Weighted Least Mean Square single-point positioning 

(Misra and Enge 2006) with broadcast navigation data was applied to the data of 



DOY 310. The measurements were only corrected with multipath estimation. The 

plot reveals noticeably higher centralization of the solution on the data corrected 

with SVR estimators over those obtained from the original data and the 50-second 

CSF-smoothed data. The reduction of standard deviation of coordinate time series 

North, East and Up is tabulated separately in Table 2. 

 

Fig. 6 Code multipath standard deviation of original, CSF-corrected, and SVR-corrected data sets 

 

Fig. 7 Positioning solutions on original, CSF-smoothed and SVR-corrected data sets of DOY 310 

of 2010 

Table 2 Standard deviation (m) of coordinate time series. The values in brackets are the 

percentages of standard deviation reduction. 

 Original CSF-corrected SVR-corrected 

North 0.9136 0.7223 (20.9) 0.5902 (35.4) 

East 1.2180 0.9997 (17.9) 0.9033 (25.9) 

Up 2.6069 2.1715 (16.7) 1.9496 (25.2) 



Discussions 

For comparison, Table 3 tabulates the numerical performance of different 

methods in term of percentage of reduced multipath error. The performance of 

CSF is reported with a 100-second smoothing window (Misra and Enge 2006). 

The performance range of the frequency analysis method using Fast Fourier 

Transform (FFT) (Zhang and Bartone 2004a) is reported with block sizes of 256 

and 512 respectively whilst the block size of the wavelet analysis method (Zhang 

and Bartone 2004b) is 100 seconds. In particular, the performance of the FIR filter 

method (Ge at el. 2000) is unreliable as only one satellite (PRN 9) was used for 

analysis. It is shown that SVR estimators significantly outperform other reported 

methods with a large margin. The state-of-the-art performance of SVR estimators 

on pseudorange multipath reduction emphasizes the efficiency of the proposed 

method. However, as the accumulative environmental changes get more and more 

severe over time, performance of the estimators would temporally degrade. 

Therefore, the multipath estimators need to be equipped with adaptability, which 

has not been addressed so far. 

Table 3 Performance comparison in percentages of multipath error reduction of different code 

multipath mitigation methods. 

CSF (Misra and Enge 2006) 58 

FIR Filter (Ge at el. 2000) 75 

FFT (Zhang and Bartone 2004a) 50 – 70 

Wavelet (Zhang and Bartone 2004b) 55 - 65 

SVR estimator 68 - 91 

 

Our method modeling multipath errors as functions of continuous 

variables in azimuth and elevation angles does not need to determine the time-

shifting period as in multipath stacking-based methods (Axelrad at el. 2005; Choi 

at el. 2004; Larson at el. 2007). In addition, the interpolation ability of the trained 

estimators makes them applicable for different data-rates provided that training 

data is adequate to capture the underlying distribution of multipath errors. 

Furthermore, with the sparsity of the support vector solution (Smola and 

Schölkopf 2004), the multipath estimators just use a subset of training data for 

computation, being simpler while requiring less storage. All of these imply better 

scalability. 



One distinct advantage of the proposed approach is that it is able to 

preserve other signals of interest such as deformation caused by earthquakes. This 

is achieved by training the models with data on normal days without displacement 

before using them to correct data on the subsequent day when a phenomenon 

occurs. For the purpose of demonstration, we simulated an event to add to the 

PRN 12 pseudorange measurements of DOY 310. The event signal is given as: 

)
15

cos()
10

cos(2)( ttte





   (19) 

Since signals interest are usually of low frequency (Bock at el. 2000; Ge at el. 

2000), the frequencies of the simulated event were chosen to exhibit diminishing 

effects of CSF, which is a low-pass filter (Hwang at el. 1999; Zhang and Bartone 

2004b). The PRN 12 pseudorange multipath sequence was smoothed by 50-

second CSF and then corrected by the trained PRN 12 SVR estimator. As shown 

in Fig. 8, the corrected multipath sequence aligns very well with the event signal; 

that is, the event signal is not affected significantly. 

Although carrier phase multipath error is more sensitive to environmental 

variation, it also saw correlation on a sidereal daily basis (Choi at el. 2004; Liu at 

el. 2009). Therefore, the proposed method could be extended to apply to carrier 

phase multipath mitigation. 

Conclusion 

A nonlinear regression approach has been proposed to address the GPS 

pseudorange multipath mitigation problem for fixed stations. Based on analysis of 

geometry of multipath signal reflections, the geometrical model of code multipath 

error is developed. More specifically, code multipath errors corresponding to a 

satellite are mathematically formulated as a function of the satellite geometry with 

respect to a receiver which is parameterized by azimuth and elevation angles. As a 

result, the problem of code multipath error estimation amounts to regression 

problem where the multipath functions are approximated using 4-day training data 

using ε-SVM algorithm. Finally, the trained multipath estimators are employed to 

correct measurements of successive day. The proposed method demonstrates good 

performance and is scalable to data rate. Furthermore, the multipath estimators do 

not affect the simulated signal of phenomena. 



 

Fig. 8 Simulation of event signal added to pseudorange measurements of PRN 12. It can be seen 

that the event signal is indeed left intact from correction of the PRN 12 SVR estimator 
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