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Abstract

For a proper diagnosis and post treatment evaluation of
acute myocardial infarction, angiographic measures of the
myocardial perfusion such as the myocardial blush grade
are pivotal. The presence of blood with contrast agent in
heart tissue can be observed as a darkening of the target re-
gion. Currently, the myocardial blush grade is established
by a visual analysis of this darkening. We present meth-
ods which allow the automatization this important proce-
dure thereby improving from a what in clinical routine is
termed a “semi-quantitative” analysis to a “quantitative”
analysis with less inter- and intra- observer variability.

1. Introduction

Myocardial infarction (MI) is the most common cause
of morbidity and mortality in the industrialized world. In
most cases, an abrupt occlusion of a coronary artery leads
to MI. Diagnosis and treatment usually takes place under
X-ray supervision. To make the arteries visible under X-
ray a contrast dye is injected through a catheter placed at
the ostium (entrance) of the coronary arteries. Treatment is
usually performed by Percutaneous Transluminal Coronary
Angioplasty (PTCA) and aims at reopening the artery to
reestablish both coronary blood flow and myocardial micro-
circulation. However, reopening of the artery does not
necessarily imply integrity of myocardial micro-circulation.
The presence of blood with contrast agent in heart tissue
can be observed as a darkening of the target region – i.e.
myocardial blush (MB). Both for precise diagnostics and to
assess the success of such intervention it has been proposed
to investigate the MB by means of a dedicated measure: the
myocardial blush grade (MBG) [6].

Presently the MBG is assessed “semi-quantitatively”
(grades 0-3) by the angiographer and thus the procedure is
afflicted by inter- and intra- observer variability [12]. In this

contribution we therefore describe methods which permit a
“quantitative” assessment of the MBG mainly by tracking a
predefined region of interest (ROI) of the moving heart over
a sequence of X-ray projections. The MBG is then obtained
by analyzing the gray-level variations within this ROI dur-
ing the investigated sequence. Tracking is needed to allow
the observation of the same region during the entire ana-
lyzed sequence despite the heart motion. A subsequent ro-
bust analysis of the gray-level variations within the tracked
region shall then yield the sought “quantitative” grades.

2. Methods

We analyze sequences of X-ray projection images
recorded over several heart cycles from the moment the con-
trast agent is injected into the coronary vessel tree. Such
a sequence shows three phases: inflow, when the contrast
agent enters the coronary vessel tree, complete state, when
the entire vessel tree is visible, and washout, when the con-
trast agent leaves the coronary arteries.

Typically the ROI has no dominant cues to support the
tracking. As the vessels exhibit bendings and bifurcations
(i.e. corners) while other structures do not, and the vessel
motion is directly linked to the heart motion, we estimate
the latter by tracking corners between consecutive images.
Thus the ROI can only be tracked in images acquired dur-
ing the complete state (Figure 1a), which are selected as
described in [1]. The myocardial blush appears when the
blood reaches the myocardium. This moment varies from
sequence to sequence, depending on the way the contrast
agent is injected. In some sequences it may appear as early
as in the middle of the complete state, and continue until
close to the end of the washout. For images acquired during
the washout, the vessels are poorly or not at all visible, thus
the ROI can not be tracked there. To analyze the myocardial
blush during its entire duration, the images showing insuf-
ficient contrast are matched with respect to heart phase and
breathing status of the patient as described in Refs. [4], [5]
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Figure 1. Detection and tracking of corners.

and [8] to the contrasted images which are acquired during
the complete state. The ROI is then projected from the con-
trasted to the non-contrasted images.

The border of the ROI is modeled as a closed elastic
string, which is deformed under the action of certain ex-
ternal forces, defined in relation to the tracked corners by
attaching virtual springs between each corner and each bor-
der point. The corners are detected by a tensor approach
[2]. The behavior of the strings is regularized by internal
forces [7].

2.1. Detection and tracking of corners

Corner detection. Corners are points in whose vicin-
ity at least two prominent local orientations can be found,
where by local orientation we understand the direction
along which the gray-level profile shows the least variations
in a certain neighborhood. Corners are characterized by rel-
atively large values of the smallest eigenvalue(λ2) of a2×2
tensor used to fully describe a single orientation [2].

To detect corners, we set a threshold over theλ2-image
[9]. Thresholding returns corner surfaces and background.
The corner surfaces consist of several points likely to be
corners. We consider as true corners that points exhibiting
the largestλ2 value in a neighborhood (Figure 1c).

The assumption on which the ROI tracking is based
is that in a coronary angiogram vessels and only vessels
do show corners. With the purpose of eliminating poten-
tially spurious corners, the background of the coronary an-
giogram is equalized – while preserving the grey level dif-
ference between background and vessels – by applying a
tophat-operator [1] (Figure 1b). On the result obtained after
applying the tophat-operator we compute then the second
eigenvalue of the structure tensor.

Corner tracking. Once the corners have been detected
in two consecutive angiograms, they are tracked with the
help of a similarity function consisting of three terms: the
first term is based on the Euclidian distance between cor-
ners, the second term uses the correlation coefficient, and
the third term is based on a mixed orientation vector [2].

A corner travels from a past frame to a current frame
over a certain distance which – considering the speed at
which a heart moves during a beat, together with the frame
rate at which the images are acquired (12 fps) – is usually
far smaller than the distance between two neighboring cor-

ners in the angiogram. Thus, to find the same corner again
in the current frame one should take the closest one. The
similarity between two corners can be expressed using the
Euclidian distance between their position vectors as:

sp =
1√

2πσ2
e−

d2

2σ2 (1)

whereσ weights the relevance of the distanced. In our
experimentsσ = 1. Clearly, the smaller the distance, the

larger the position-similarity term andsp ∈
(
0, 1√

2π

]
However, there are cases when distance alone is not

enough e.g. for images acquired during a ventricular sys-
tole, when the distance the vessels travel between consecu-
tive frames is large. For a successful tracking we need also
corner-specific information which we extract in two ways:
by investigating the correlation between corner neighbor-
hoods and by the mixed orientation vector. The correlation
between corner neighborhoods is given by the correlation
coefficient:

r =
K(Xp, Xc)
σ(Xp)σ(Xc)

(2)

with K the covariance andσ the standard deviation for the
neighborhoodsXp andXc for the past and current frames
respectively. Theoreticallyr ∈ [−1, 1], but in our case
r ∈ [0, 1]. To fully describe two orientations, an extended
3× 3 tensor is needed which involves second order deriva-
tives. This tensor’s eigenvector corresponding to the small-
est eigenvalue is calledthe mixed orientation vectorand can
be used as a corner descriptor, as it contains a full but im-
plicit description of the sought orientations [2]. We pro-
pose to use the Euclidian distance between the correspond-
ing mixed orientation vectorsdo to build the orientation-
similarity term:

so =
1√

2πσ2
e−

d2
o

2σ2 (3)

again withσ = 1.
The similarity function used to track corners between

consecutive frames will then be:

s = w1sp + w2r + w3so (4)

The weightswi, i = 1, 2, 3 can be used to force the tracking
to rely more heavily on a certain term. In our experiments
however, they were all set to one.

Outlier detection. The tracking may fail e.g. when false
corner correspondences are used. Such outliers are detected
end eliminated by comparing their similarity against a cer-
tain threshold. This threshold is set using a significance
test. For the first two frames at the beginning of the ana-
lyzed sequence, the similarities of all possible corner pairs
are computed. For each past corner, the pair made with a



current corner for which the similarity is maximal, is con-
sidered as a true pair only if it is also the pair with the largest
similarity from among all pairs formed between the corre-
sponding current corner and past corners. The similarities
of such pairs are eliminated from the set. What remains are
only similarities between outliers which are used to esti-
mate the corner pairs’ similarity distribution under the out-
lier assumption – i.e.H0. The outlier-detection threshold
is then computed such that it corresponds to a significance
level α = 10−4. Corner pairs with a similarity below the
threshold are eliminated (Figure 1d).

2.2. Modeling the ROI

The tracked corners can be used as landmarks to com-
pute the parameters of an elastic transform [3] which mod-
els the heart motion. The ROI image – as observed in
the past frame – should then be modified according to
this model and applied to the current frame to achieve the
heart-motion-compensated ROI-tracking. Such a strategy is
highly sensitive to the number of landmarks and the pres-
ence of outliers and thus an outlier robust implementation
of the elastic transform [11] is needed. The results obtained
with an elastic transform are usually negatively influenced
by the fact that the landmarks are not dense around the ROI
due to its typical positioning (Figure 3). Such difficulties
can be partially solved if the solution is further constrained
e.g. by introducing artificial landmarks.

In a more robust approach to tracking, one could use a
physically motivated ROI model which is deformed under
the action of forces generated by the corners’ displacements
between consecutive frames. Such a model can be con-
structed by sampling the ROI’s surface – or only its border
– by control points whose displacements are internally con-
strained by mass, damping, elastic and stiffness terms de-
fined in agreement with the ROI’s physical properties – i.e.
the corresponding properties of the heart-tissue. Such mod-
els can be generated e.g. based on the finite element method
(FEM) [10], or on energy minimization methods [7].

We propose here a physically based ROI model whose
border is properly sampled by control points. The displace-
ment of these control points is constrained by imposing an
energy minimization condition. As there are typically less
tracked corners than control points, the corners are used to
build an external attraction energy field where the model
evolves to a minimum energy position, under the additional
influence of internal energy terms, much in the way active
contours are defined. The total energy to be minimized for
a modelm is:

E(m) = Eext + Eint = Eext + Eel + Es (5)

whereEext is the external attraction energy, andEint is the
internal energy consisting of two terms which control the

elasticityEel and the stiffnessEs of the model.
External attraction energy. Provided the number of

tracked corners equals the number of control points and the
same set of corners is tracked over the entire analzed se-
quence, to find the position of the ROI in a current frame
one could establish corner-control point pairs and link them
by a virtual string so that the motion of the corners is trans-
mitted to the control points. The potential elastic energy
which appears when a string anchored at a certain point is
stretched over a distancex is: Ep = 1

2kx2 wherek is a
constant describing the elastic properties of the string. The
internal energy defined between control points would then
condition the behavior of the ROI as it travels to a new po-
sition seeking to reach a minimum energy state.

However, the number of corners is typically less than the
number of control points and the set of tracked corners can
vary from frame to frame. This is because it is practically
impossible to track the same corners over an entire heart
beat as their appearance varies significantly. Thus, to track
the ROI between two consecutive frames, we attach a string
between each control point and each tracked corner. The en-
ergy of this entire system – which is zero in the past frame
– increases in the current frame due to the tensing of the
strings as one of their anchor points (i.e. the corners) move
over a certain distance. For all possible positions in a cer-
tain vicinity of a control point – as it is positioned in the past
frame – the elastic energy obtained by spanning the strings
between each corner in the current frame and each position
are computed. The external energy which would influence
that particular control point is then determined by consider-
ing at each position the mean contribution over all corners.
The external attraction energy will then be:

Eext(m,n) = γ
1
N

N∑
i=1

Ei
p(m,n) (6)

whereγ is a weight factor,N is the total number of tracked
corners and(m,n) are the Cartesian coordinates of a point
in the vicinity. An example is shown in Figure 2. Clearly
the vicinity should be large enough to include all possible
end-positions of the control point.

Figure 2. External energy field.

Internal energy. To define the internal energy we place
rods between each pair of control points. The elasticity



c std Av Pv
Results 94.19 3.02 7.87 4.06

Reference 0 5.56 7.23 3.28

Table 1. The results obtained on the test data.

and stiffness of these rods are controlled by special energy
terms. The elasticity is modelled by:

Eel = α

[
M∑
i=1

‖~pi − ~pi−1‖ − L0

]2

(7)

with α a weight factor,~pi = [xi, yi] the vector contain-
ing the Cartesian coordinates for each of theM + 1 control
points andL0 the average distance betwee them. This en-
ergy term increases if the model is stretched or compressed.
The stiffness is modelled as:

Es = β
M−1∑
i=1

‖~pi−1 − 2~pi + ~pi+1‖2 (8)

with β a weight factor. This energy term increases if the
model is bended. As we model a closed curve,~p−1 = ~pM

and~pM+1 = ~p0, thus the sum in equations (7) and (8) runs
from 0 to M . Adjusting the parametersα, β andγ con-
trols the relative importance of the respective energy terms
inducing thus a specific model behavior.

3. Results

We have tested our algorithms on a number of seven se-
quences of 15 to 28 images each, showing only the complete
state. The angiograms had a resolution of512× 512 pixels
and were acquired at a framerate of 15 fps. To increase the
processing speed during experiments, the resolution was re-
duced to256×256. The size of the tophat-window was cho-
sen to be nine pixels. The size of the derivative kernels used
to compute the orientation tensor was chosen to be seven
pixels and that of the pixel-neighborhood where the orien-
tation tensor is computed was again nine pixels. The energy
weights were chosen:α = 15, β = 3, γ = 5. The se-
quences had neither table nor patient movement and were
acquired in clinical routine with different projection angles.
We have computed several measures to show that the result
is conform with an expert’s opinion, and that it follows the
variation of the heart surface. As reference we have arti-
ficially built a failed tracking result for each sequence by
defining a static rectangular ROI in the lower left corner of
each image. We have then computed all measures again for
this tracking result. The results are given in Table 1 and an
example is shown in Figure 3. To verify if a tracking result
is in agreement with an expert’s opinion, we have defined

a) b)

Figure 3. First (a) and last (b) image of an an-
alyzed sequence with markers and ROI.

by hand the ROI in each frame of the analyzed sequences
and defined correct and incorrect tracking results in relation
to this ground truth. A result was considered correct if the
overlap between the tracked ROI and the manual ground-
truth was larger than 50%. We have computed the mean
percentage of correct classifications over all sequences (c).

To verify whether the tracked ROI keeps its position rel-
ative to the projected heart surface, we have marked three
vessel-points distributed over the entire vessel tree such that
they are situated around the tracked ROI. We have typically
chosen bifurcations and bendings of the main vessels (Fig-
ure 3). Then we have determined the center of mass of these
three points and the center of mass of the ROI and computed
the Euclidian distance between them in each frame of the
sequence. We have then computed the standard deviation in
each sequence and the mean over all sequences (std).

To verify whether the tracked ROI changes its surface in
agreement with the changes of surface of the heart, we have
computed the area and perimeter of the triangle defined by
the three marked points and then we have computed their
variation in percents between consecutive frames. We have
compared this with the same variation computed for the
ROI’s area and perimeter by taking the difference between
the ROI and the triangle variation and then computing the
mean of absolute differences over the entire sequence. We
have then taken the mean over all sequences: Av and Pv for
area and perimeter respectively.

4. Discussion, conclusions and outlook

The results show that the proposed ROI tracking method
is able to follow the movement of the heart and that the
tracking results are in agreement with human intuition.
However, although the ROI as a whole follows the heart,
it seems that its area and perimeter do not follow the local
variations of the heart tissue but they remain approxima-
tively constant. One possible reason is that a majority of
the tracked corners are typically situated on the same vessel
or on vessels that were very close and thus they are repre-
sentative for the motion of the heart, but they are not rep-



resentative for the local variations of the heart tissue in and
around the ROI. We believe that a 50% overlap between the
tracked ROI and the real MB region suffices for an auto-
matic estimation of the MBG by a robust feature. Experi-
ence shows that it is practically impossible to define the ROI
to include all and only the blush region. Thus the ROI will
normally include also regions where no blush has been ob-
served. To measure the blush in each frame, we propose to
use a low-percentile of the histogram of the gray levels from
within the ROI. At the same time, vessels entering the ROI
should be detected and eliminated. The MBG can then be
computed by comparing the curve of percentile-feature over
frame index for an ill coronary artery with that obtained for
a healthy coronary artery of the same patient. Special care
has to be taken to handle the effects of the automatic gain
control (AGC) – which keeps the overall-brightness in the
analyzed images constant.

The surface of the heart which is observable in an an-
giogram varies as a consequence of the heart changing its
volume. The coronary vessels follow this variation by bend-
ing and stretching, thus many of the corners change their ap-
pearance sometimes drastically over a heart beat. Instead of
tracking a set of particular corners over an entire sequence,
we track different sets of corners only between consecutive
images, as only in such a case the change in appearance of
most corners is small enough – considering the speed of the
heart beat in relation with the frame rate – to permit track-
ing. It is very important for the tracking that the corners
do not change their appearance drastically between consec-
utive frames. This may happen e.g. during the ventricular
systole when the speed at which the heart moves reaches a
maximum. Thus it is expected that the tracking improves
with the frame rate.

By its energetic formulation and by its adaptive approach
to corner tracking, the ROI-tracking is also marginally ro-
bust against slow, small-amplitude table and patient move-
ment. However, to analyze the MB in those cases when it
extents over the washout, and generally for a precise track-
ing, motion-compensation clearly is needed. Ideally the ta-
ble should not be moved during image acquisition and the
patient should remain still. Depending on the angle under
which the the X-ray imaging system looks at the patient, the
coronary vessels can be imaged under different projections.
Only those projections where the vessels show a minimal
overlap are suited for processing. Otherwise e.g as the heart
has also a rotation motion this may result in some vessels
traveling upwards and some downwards in the projection
images, then in a worst case scenario, the algorithm will
track alternatively corners on vessels traveling in opposite
directions, resulting in a stationary ROI.

We have presented a new method for the tracking of a
heart-motion-compensated ROI which is defined by hand
in X-ray projection images of the heart. This should then

allow an observer-independent measurement of the MBG.
The behavior of the ROI model is controlled by the en-
ergy weights which gives our approach adaptability and
robustness. Heart-motion-information is extracted from
complete-state-images by tracking the vessel-corners be-
tween consecutive images. Corner tracking is done using
a similarity function which takes into account: the distance
between corners, correlation between their neighborhoods
and similarities in their orientations. Falsely tracked cor-
ners are detected by comparing the corresponding values of
the similarity function with a threshold and accepting only
those above it. The tracked corners are then used to fit a
physically-motivated ROI model which evolves under in-
ternal and external constrains – expressed as energy terms –
to a position with minimal energy. Currently we model only
the border of the ROI. In a similar manner it is possible to
model the whole ROI surface by sampling it with control
points and linking the them by elastic rods. Also an addi-
tional energy term can be introduced to model the mass of
the ROI. A more adaptable model can be obtained like this.
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