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Abstract Less well understood is the problem of dealing with mul-

tiple motions that can occur in computer-vision applica-
We briefly review a recent development in the area of tions, e.g., in case of semi-transparencies and occlusions,
computer vision and multidimensional signal processing. and also in medical imaging, when different layers of tissue
Image sequences are regarded as hypersurfaces and usefuhove differently. An overview of the problem of multiple
properties are derived from the geometry of that hypersur- motions has been given in [7]. To our knowledge, the prob-
face. Besides demonstrating the uniqueness of curvaturelem of two motions has been first solved in [14] by the use
new methods for the analysis of single and multiple motionsof spatio-temporal Gabor filters and fourth-order moments
are presented including the case of occluded motions. derived from these filters. The main differences to our ap-
proach are that we do not need to solve a six-dimensional
eigensystems, that we can extend our approach to more than
two motions, and that we obtain a higher resolution with
less regularization. A recent analysis of the spectral proper-
ties of multiple motions can be found in [17]. Others have
Light intensity f as a function of space and time defines introduced the useful and intuitive notions of 'nulling fil-
a hypersurface ters’ and ’layers’ [15, 16]. Their approach is more general
in that it treats the separation of motions into layers, but is
S = (z,y,t, f(z,y,t)) 1) also limited to the use of a discrete set of possible motions
and a probabilistic procedure for finding the most likely mo-
that has the form of a three-dimensional Monge patch. tions out of the set.
From a geometric point of view the curvature is the most
important property of the surface in that it determines the
intrinsic structure of the manifold [13]. Geometric meth-
ods in computer vision most often deal with the extrinsic
geometry of objects in 3D space and how these objects and In case of image sequences, curvature is measured by the
their motions project on the image plane. However, the ge- Riemann curvature tensor that has six independent compo-
ometry of the hypersurfacg has been used for motion de- nents in 3D. For a surface of type (1) the components are
tection [10] with an algorithm based on the gradienf oft

1. Introduction

2. Curvature of image sequences

has also been shown how the Gaussian curvatufe ezn Ro121 (fyyfoe — fmyQ)/(l + ﬁfz)
be used to detect motion discontinuities [18]. Rs131 = (Fitfoe — fo2) /(1 +Vf2)

We will consider the curvature tensor and the structure Ry, = (fufyy = fo")/ 1+ Vf?)
tensor ofS and relate them to motion parameters. Various  p. = (fytfoo — fotfoy)/(L+ V f?)
methods for motion estimation are known and comprehen- _ = 09
sive reviews can be found, e.g., in[2, 9] Haom = Unfey = fuufed) /(14 V)

T T R3231 . = (fufoy — futfyr)/(L+ V [?)
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A surface is said to be curved at a point if the Riemann

where (z,,ys) are the sampling points for the image se-

tensor does not vanish or, equivalently, if it has a hon-zeroquencef. The measure&’, S and H are metric invariants

component. The componeRt 515 is the 2D Gaussian cur-
vature of the sectioh = t,, except for a slightly different
denominator, i.e.R1212 is the curvature of single images.

of this immersion and are related to the Gaussian, scalar,
and mean curvatures of the manifdidrespectively. Fur-
thermore, the minors af are related to the components of

Since it has been shown that curved image regions uniqueljthe Riemann curvature tensor. The precise nature of these
specify a surface [4, 11], flat image regions (that are not relations is beyond the scope of this paper.
curved, e.g. straight edges) are redundant. The components

Ri313(y = yo) andRa303(x = x) are also sectional curva-
tures in(z,t) and(y, t) respectively. Therefore, the whole
surface is curved at any place where the sectient is,

3. Curvature and motion

i.e., the region of non-zero curvature of the whole hypersur- Translation with constant velocity If the image se-
face contains the set of non-zero curvatures of the sectiongjuencef(z, y, t) results from a spatial pattern moving with
t = to. From this last fact, one can derive the redundancy constant velocity = (v, v, ), f is assumed to satisfy the
of flat regions in three-dimensional hypersurface from the constraint [1]

two dimensional case [11]. These results are important in
the context of image compression and feature extraction for

computer-vision systems.

f(z,y,t) = f(x + dx,y + dy,t + dt), (7)

The curvature as defined above is built on second-orderthat leads to [1]

derivatives. We now construct similar measures based on

first-order derivatives off. We first define the following
matrix:

. . fmz f:cfy f:c.ft
D(x,y,t) = (Vf)T(Vf) = fatfy fy2 fyff
foft fofe 12

Since this matrix does not contain more information than
the gradientf,, f,, f:) itself, a different matrix, obtained
from D by convolution with a smoothing kern&(z, y) (or
h(z,y,t)), 1.e.

J(x,y,t) = h(x,y) * D(.Z‘,y,t), (4)

can be used to characterize the structuré¢ @f, vy, t). Ac-
cordingly, J has been called “structure tensor” - see [8, 9]
for a review.

We now consider the minors df, i.e. the matrix

M = Minors(J). 5)

The elements\/;;, (4,5 = 1,2,3) of M are the determi-
nants of the matrices obtained frainby eliminating the
row 4 — i and the column — j, e.9.,M;; = (h * f,%)(h *
f,2) = (hx(fufy))?. Jis a symmetric, positive semidefinite
matrix and the following numbers are invariantslof

K =detJ= /\1)\2)\3

S = (M1 + Mo + Mss)/3 (6)
= (A A2 + A Az + A2)3)/3

H :(tracel)/m:()\1+)\2+)\3)/3

with \; being the eigenvalues &. The structure tensor
J (4) is the metric of the immersion

F(Ivyvt) = (f(m_xl’y_ylyt)v"'>f(x_xs>y_ysvt))'

a(v)f=0 (8)
wherea(v) = v, 2 + vya% + 2 is the derivative operator
alongV = (v, vy, 1). The solution of (8) is

f(xvyvt) :f(vartayfvyt)' (9)

Between the components of the curvature tensor (2), eval-
uated for the specific functiofi in Eqg. (9), the following
results hold [6]:

v =vy = (Rs221, —R3121)/R2121
v = vy = (R3231, —R3131)/R3121 (10)
v = v3 = (R332, —R3231)/R3201-

Indices simply denote the fact that we obtain different ex-
pressions fox.

In analogy, we obtain the following relations for the mi-
nors ofJ [3]:

V=V; = (M37;7—M2i)/M1i,’L': 1,2,3. (11)

To better understand these results, we recall that motion es-
timation is often treated as an optimization problem, e.g.
by using least-squares methods. The optimization prob-
lem then leads to an eigenvalue problem, for example in
the case of the tensor-based methods where the motion vec-
tor is computed as the eigenvector to the zero eigenvalue -
see [8, 9] for a review. Since it is known that if a matrix
has a single zero eigenvalue, the corresponding eigenvector
can be evaluated in terms of the minors of that matrix [12],
we can easily relate the result in Eqg. (11) to the methods
that use the eigenvectors &f However, the method based
on the minors has been shown to be faster and more accu-
rate [3].



Translation with time-dependent velocity We now con- Occluded motions The occlusion of animagg , moving
sider the more general case where the image shift containsvith velocity vy, by an imagej,, moving with velocityv,
higher-order terms, i.e., the motion can be accelerated, i.e.,and occlusion windowy (with values0 or 1) is modeled as

fley.t) = flo = dalt)y — dy(B). (12) Joet) =0 =xx = tv2))ir (x =)t o)
+x(x = tv2)g2(x — tva)
With the constraint in Eq. 12, we still obtain for the curva-

ture tensor (note thdtl/,, ;) = v)

Eq. (20) is a particular case of Eq. (14) sirnoe) = 1 —
X(x), g1(x) = g1(x), andgz(x) = x(x)gz2(x). The motion
(Rsaon, —Rsto1)/ Rorat — (d;(t),d;(t)), (13) equation (15) simplifies to:

a(vy)a(ve) f = £6(B)a(vs) f, 21
but the expressions (R3231, 7R3131)/R3121, ( 1) ( 2)f ( ) ( 2)f ( )
(R3232, —R3231)/R3201 do not simplify to yield the where B is the occluding boundary. The above result
velocity components (due to non-vanishing second-ordercan be derived by noting that sinegvs)f = h(x —
derivatives) - see [5] for a more comprehensive analysis. tvs))a(vsa)g:(x — tvy), we have

The minors of] do not involve second-order derivatives,

therefore under the constraint (12) we obtain the same re- a(vi)a(va)f
sults as in Eq. (11) with; = (d.,(¢),d,(t)),i = 1,2,3.

a(vy)h(x — tva)a(ve)gi(x — tvy)

1
§(B)a(va)gi(x —tvy)

d(B)h(x — tva)a(va)gi(x — tvy)
d(B)a(va)f.

4. General model for multiple-motions

Thus, motion estimation fails at occlusions because Eq. (17)
We will first consider the case of only two motions. In s not valid at points on the occluding boundary and should
this case, transparent, translucent, and occluded motionge replaced by Eq. (21). Therefore, to estimate two motions
can be modeled by the equation at occlusions, we either (i) use Eq. (17) but do not integrate
at occlusion points where we have motion discontinuities,

f(x,t) = h(x —tva)gi(x — tvi) + g2(x —tva) (14)  or (i) solve equation (21) to perform the estimation.

wherex = (z,y). This implies thatf (x, t) is a solution of 5. Solutions forn transparent motions

a(vi)a(ve)logla(va)f]. (15) Now suppose thaf is the additive superposition of

Eq. (15) can be derived in analogy to (8) and explains why motions with velocityv; = (via, viy), I.€.,

traditional motion algorithms fail at occlusions - see below. Fla,t) = fi(x —vit) + - + fu(x — vat). (22)

) ) In this case, Eq. (17) becomes
Transparent motions In case of transparent motions

Eq. (14) reduces to a(vy)-a(vy)f=0. (23)
f(x,t) = g1(x — tvy) + ga(x — tvy) (16) We will now show how to estimate the multiple-motion pa-
rameters. First, we expand Eq. (23) to
and Eq. (15) becomes
> erfr=0 (24)
a(vi)a(ve)f = 0. 17) !
wherel = (iy,1io,...,1,) are ordered sequences with ele-

mentsi; € (z,y,t) and f; are the partial derivatives gf
with respect to the elements ih The mixed motion pa-
rametersc; are the coordinates af(vy) - - - «a(v,,) in the
canonical basis for differential operators (they are homoge-
neous symmetric functions of the coordinates of the motion
vectors). With this notation, Eq. (24) can be rewritten as

Translucent motions In this case Eq. (14) reduces to
fx,t) = g1(x — tvy)ga(x — tva) (18)
and Eq. (15) becomes

a(vi)a(ve)log|f| = 0. (19) LV=0 (25)



whereL = (f7) andV = (c;)T. After multiplying Eqg. (25) (three significant eigenvalues). Withmotions the confi-
by L7 to obtain an x m system of equations, we perform dence is still high if the ranld,,) = m — 1. Since with our
a weighted integration along a small neighborhood of the new method we do not compute the eigenvalues, we need

point in question, i.e. a convolution with a kernglx), confidence measures that do not involve the eigenvalues.
The measureX&’, S, H defined forJ in (6) can be defined
/L(a:)TL(x)V(x)w(a:) dr=0 (26) for J,, in analogy [12]. With these measures, the confidence
criterion translates td¢ = 0 andS # 0. To comparek

apvith S, we found that'/™ < §/m=1 < H. This means
that the confidence criterior{ = 0 and.S # 0) becomes
K'Y/m « §1/m=1 or, equivalently K''/™ < e§1/m=1,

to make the system well posed. Since we are supposing th
the motion vectors are locally constant, we can t&keut
of the integral and obtain

J. V=0 (27)

where

Algorithm 1 Hierarchical motion estimation
1: computeJ,, according to Eq. (28)
2. if KY/™ < SY/™=1 (high confidence)hen
. compute Vy,...,V,, from the minors ofJ,

J, = / L(z)"L(z)w(z) dz (28)

We callJ,, the generalized structure tensor far motions.
Eq. (27) shows that the mixed motion parameter¥ iwill
form an eigenvector related to the zero eigenvalud of (Ea. (29)) . .

and therefore can be computed in analogy to (11). More 4 compute the mixed motion parameters
precisely, we have up tov = ord(J,,) different estimates V=aVit-tanVnm

! . ! 5. if n=1then
for the mixed motion parameters given b
P gventy & v=(V.V,)
V,; x (Mmm —Mim—1,..., (*1)mMi1); (29) £ else .
8: vi,..., Vv, are the roots of),,(z) in Eq. 30
whereM;;,i = 1,...,m are the minors of ,, [12]. 9 endif
10: append treated pixel, to list L
11: end if

Separation of the motion vectors Now, we show how
to recover the motion vectonsy, . ..., v,, from their mixed
coefficientsc; in V. Remember that; are homogeneous

12: forall ¢ ¢ L do
13:  repeatstepsto 1l with w(z —zp) =0, Vo ¢ L

symmetric functions of degree less thaof the coordinates 14: end for

of the motion vectors . We interpref as complex numbers,

thatisv; = vi, + jui,, wherej> = —1. In this case, the  Low-complexity algorithms for multiple motions  Our
motion vectors will be the roots of a complex polynomial hijerarchical algorithm first evaluates the confidence in one
Qn(2) whose coefficients are functions of: motion and estimates that one motion in case of high confi-

N o N dence. Otherwise, the confidence for two motions is evalu-
Qn(2) = 2" = Ap 12" 4+ (=1)" 4o, (30) ated and two motions are estimated. This procedure can be
iterated for up ta» motions. Moreover, motion at locations
with low confidence is recomputed with a convolution ker-
nel that integrates only locations with high confidence. This
leads to correct solutions at occlusions, where confidence is
low - see Fig. 1.

To compute the coefficients, we just note thatare homo-
geneous symmetric functions of degree- i of vy, ..., v,,.
For example, the coefficients @},,(z) for three motions
are [12]A2 = Cgtt T jcyttr Al = Cgat — Cyyt + jczyt and
A = Cpaz — Cayy + J(Cazy — Cyyy). FOr more motions, the
coefficients of@,,(z) can be evaluated in analogy.

6 Results
Confidence measures We have shown how to estimate

multiple additive motions and now we consider the problem

of detecting multiple motions, i.e., we want to quantify the In [12] we have presented results for up to three transpar-

confidence in the assumptions that we made. ent motions of overlaid noise patterns. The results demon-
In the case of one motion, the confidence is high if one strated high precision and a high spatial resolution of the

eigenvalue of] is small and the other two are significant, estimated motion fields. Here we briefly illustrate the po-

i.e., ranKJ) = 2 [9]. This case excludes regions with aper- tential of our theoretical results for occluded motions - see

ture problems (two small eigenvalues) and occlusions etc.Fig. 1.



> estimation of motions at occlusions and a hierarchical al-
—>=>—> gorithm that can deal with both transparent and occluded
——— motions.

>
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