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Abstract

We briefly review a recent development in the area of
computer vision and multidimensional signal processing.
Image sequences are regarded as hypersurfaces and useful
properties are derived from the geometry of that hypersur-
face. Besides demonstrating the uniqueness of curvature,
new methods for the analysis of single and multiple motions
are presented including the case of occluded motions.

1. Introduction

Light intensityf as a function of space and time defines
a hypersurface

S = (x, y, t, f(x, y, t)) (1)

that has the form of a three-dimensional Monge patch.
From a geometric point of view the curvature is the most
important property of the surface in that it determines the
intrinsic structure of the manifold [13]. Geometric meth-
ods in computer vision most often deal with the extrinsic
geometry of objects in 3D space and how these objects and
their motions project on the image plane. However, the ge-
ometry of the hypersurfaceS has been used for motion de-
tection [10] with an algorithm based on the gradient off . It
has also been shown how the Gaussian curvature ofS can
be used to detect motion discontinuities [18].

We will consider the curvature tensor and the structure
tensor ofS and relate them to motion parameters. Various
methods for motion estimation are known and comprehen-
sive reviews can be found, e.g., in [2, 9].
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Less well understood is the problem of dealing with mul-
tiple motions that can occur in computer-vision applica-
tions, e.g., in case of semi-transparencies and occlusions,
and also in medical imaging, when different layers of tissue
move differently. An overview of the problem of multiple
motions has been given in [7]. To our knowledge, the prob-
lem of two motions has been first solved in [14] by the use
of spatio-temporal Gabor filters and fourth-order moments
derived from these filters. The main differences to our ap-
proach are that we do not need to solve a six-dimensional
eigensystems, that we can extend our approach to more than
two motions, and that we obtain a higher resolution with
less regularization. A recent analysis of the spectral proper-
ties of multiple motions can be found in [17]. Others have
introduced the useful and intuitive notions of ’nulling fil-
ters’ and ’layers’ [15, 16]. Their approach is more general
in that it treats the separation of motions into layers, but is
also limited to the use of a discrete set of possible motions
and a probabilistic procedure for finding the most likely mo-
tions out of the set.

2. Curvature of image sequences

In case of image sequences, curvature is measured by the
Riemann curvature tensor that has six independent compo-
nents in 3D. For a surface of type (1) the components are

R2121 = (fyyfxx − fxy
2)/(1 + ~∇f

2
)

R3131 = (fttfxx − fxt
2)/(1 + ~∇f2)

R3232 = (fttfyy − fyt
2)/(1 + ~∇f2)

R3121 = (fytfxx − fxtfxy)/(1 + ~∇f2)
R3221 = (fytfxy − fyyfxt)/(1 + ~∇f2)
R3231 = (fttfxy − fxtfyt)/(1 + ~∇f2)
with:1 + ~∇f2 = 1 + fx

2 + fy
2 + ft

2

(2)
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A surface is said to be curved at a point if the Riemann
tensor does not vanish or, equivalently, if it has a non-zero
component. The componentR1212 is the 2D Gaussian cur-
vature of the sectiont = t0, except for a slightly different
denominator, i.e.,R1212 is the curvature of single images.
Since it has been shown that curved image regions uniquely
specify a surface [4, 11], flat image regions (that are not
curved, e.g. straight edges) are redundant. The components
R1313(y = y0) andR2323(x = x0) are also sectional curva-
tures in(x, t) and(y, t) respectively. Therefore, the whole
surface is curved at any place where the sectiont = t0 is,
i.e., the region of non-zero curvature of the whole hypersur-
face contains the set of non-zero curvatures of the sections
t = t0. From this last fact, one can derive the redundancy
of flat regions in three-dimensional hypersurface from the
two dimensional case [11]. These results are important in
the context of image compression and feature extraction for
computer-vision systems.

The curvature as defined above is built on second-order
derivatives. We now construct similar measures based on
first-order derivatives off . We first define the following
matrix:

D(x, y, t) = (~∇f)T (~∇f) =

 fx
2 fxfy fxft

fxfy fy
2 fyft

fxft fyft ft
2

 .

(3)
Since this matrix does not contain more information than
the gradient(fx, fy, ft) itself, a different matrix, obtained
from D by convolution with a smoothing kernelh(x, y) (or
h(x, y, t)), i.e.

J(x, y, t) = h(x, y) ∗D(x, y, t), (4)

can be used to characterize the structure off(x, y, t). Ac-
cordingly,J has been called “structure tensor” - see [8, 9]
for a review.

We now consider the minors ofJ, i.e. the matrix

M = Minors(J). (5)

The elementsMij , (i, j = 1, 2, 3) of M are the determi-
nants of the matrices obtained fromJ by eliminating the
row 4− i and the column4− j, e.g.,M11 = (h ∗ fx

2)(h ∗
fy

2)−(h∗(fxfy))2. J is a symmetric, positive semidefinite
matrix and the following numbers are invariants ofJ:

K = detJ = λ1λ2λ3

S = (M11 + M22 + M33)/3
= (λ1λ2 + λ1λ3 + λ2λ3)/3

H = (traceJ)/m = (λ1 + λ2 + λ3)/3

(6)

with λi being the eigenvalues ofJ. The structure tensor
J (4) is the metric of the immersion
F (x, y, t) = (f(x−x1, y−y1, t), . . . , f(x−xs, y−ys, t)),

where (xs, ys) are the sampling points for the image se-
quencef . The measuresK, S andH are metric invariants
of this immersion and are related to the Gaussian, scalar,
and mean curvatures of the manifoldF respectively. Fur-
thermore, the minors ofJ are related to the components of
the Riemann curvature tensor. The precise nature of these
relations is beyond the scope of this paper.

3. Curvature and motion

Translation with constant velocity If the image se-
quencef(x, y, t) results from a spatial pattern moving with
constant velocityv = (vx, vy), f is assumed to satisfy the
constraint [1]

f(x, y, t) = f(x + dx, y + dy, t + dt), (7)

that leads to [1]

α(v)f = 0 (8)

whereα(v) = vx
∂
∂x + vy

∂
∂y + ∂

∂t is the derivative operator
alongV = (vx, vy, 1). The solution of (8) is

f(x, y, t) = f(x− vxt, y − vyt). (9)

Between the components of the curvature tensor (2), eval-
uated for the specific functionf in Eq. (9), the following
results hold [6]:

v = v1 = (R3221,−R3121)/R2121

v = v2 = (R3231,−R3131)/R3121

v = v3 = (R3232,−R3231)/R3221.
(10)

Indices simply denote the fact that we obtain different ex-
pressions forv.

In analogy, we obtain the following relations for the mi-
nors ofJ [3]:

v = vi = (M3i,−M2i)/M1i, i = 1, 2, 3. (11)

To better understand these results, we recall that motion es-
timation is often treated as an optimization problem, e.g.
by using least-squares methods. The optimization prob-
lem then leads to an eigenvalue problem, for example in
the case of the tensor-based methods where the motion vec-
tor is computed as the eigenvector to the zero eigenvalue -
see [8, 9] for a review. Since it is known that if a matrix
has a single zero eigenvalue, the corresponding eigenvector
can be evaluated in terms of the minors of that matrix [12],
we can easily relate the result in Eq. (11) to the methods
that use the eigenvectors ofJ. However, the method based
on the minors has been shown to be faster and more accu-
rate [3].



Translation with time-dependent velocity We now con-
sider the more general case where the image shift contains
higher-order terms, i.e., the motion can be accelerated, i.e.,

f(x, y, t) = f(x− dx(t), y − dy(t)). (12)

With the constraint in Eq. 12, we still obtain for the curva-
ture tensor (note that(d′x, d′y) = v)

(R3221,−R3121)/R2121 = (d′x(t), d′y(t)), (13)

but the expressions (R3231,−R3131)/R3121,
(R3232,−R3231)/R3221 do not simplify to yield the
velocity components (due to non-vanishing second-order
derivatives) - see [5] for a more comprehensive analysis.

The minors ofJ do not involve second-order derivatives,
therefore under the constraint (12) we obtain the same re-
sults as in Eq. (11) withvi = (d′x(t), d′y(t)), i = 1, 2, 3.

4. General model for multiple-motions

We will first consider the case of only two motions. In
this case, transparent, translucent, and occluded motions
can be modeled by the equation

f(x, t) = h(x− tv2)g1(x− tv1) + g2(x− tv2) (14)

wherex = (x, y). This implies thatf(x, t) is a solution of

α(v1)α(v2) log |α(v2)f |. (15)

Eq. (15) can be derived in analogy to (8) and explains why
traditional motion algorithms fail at occlusions - see below.

Transparent motions In case of transparent motions
Eq. (14) reduces to

f(x, t) = g1(x− tv1) + g2(x− tv2) (16)

and Eq. (15) becomes

α(v1)α(v2)f = 0. (17)

Translucent motions In this case Eq. (14) reduces to

f(x, t) = g1(x− tv1)g2(x− tv2) (18)

and Eq. (15) becomes

α(v1)α(v2) log |f | = 0. (19)

Occluded motions The occlusion of an imagẽg1, moving
with velocityv1, by an imagẽg2, moving with velocityv2

and occlusion windowχ (with values0 or 1) is modeled as

f(x, t) = (1− χ(x− tv2))g̃1(x− tv1)+
+χ(x− tv2)g̃2(x− tv2)

(20)

Eq. (20) is a particular case of Eq. (14) sinceh(x) = 1 −
χ(x), g1(x) = g̃1(x), andg2(x) = χ(x)g̃2(x). The motion
equation (15) simplifies to:

α(v1)α(v2)f = ±δ(B)α(v2)f, (21)

where B is the occluding boundary. The above result
can be derived by noting that sinceα(v2)f = h(x −
tv2))α(v2)g̃1(x− tv1), we have

α(v1)α(v2)f = α(v1)h(x− tv2)α(v2)g̃1(x− tv1)
= δ(B)α(v2)g̃1(x− tv1)
= δ(B)h(x− tv2)α(v2)g̃1(x− tv1)
= δ(B)α(v2)f.

Thus, motion estimation fails at occlusions because Eq. (17)
is not valid at points on the occluding boundary and should
be replaced by Eq. (21). Therefore, to estimate two motions
at occlusions, we either (i) use Eq. (17) but do not integrate
at occlusion points where we have motion discontinuities,
or (ii) solve equation (21) to perform the estimation.

5. Solutions forn transparent motions

Now suppose thatf is the additive superposition ofn
motions with velocityvi = (vix, viy), i.e.,

f(x, t) = f1(x− v1t) + · · ·+ fn(x− vnt). (22)

In this case, Eq. (17) becomes

α(v1) · · ·α(vn)f = 0. (23)

We will now show how to estimate the multiple-motion pa-
rameters. First, we expand Eq. (23) to∑

I

cIfI = 0 (24)

whereI = (i1, i2, . . . , in) are ordered sequences with ele-
mentsij ∈ (x, y, t) andfI are the partial derivatives off
with respect to the elements inI. The mixed motion pa-
rameterscI are the coordinates ofα(v1) · · ·α(vn) in the
canonical basis for differential operators (they are homoge-
neous symmetric functions of the coordinates of the motion
vectors). With this notation, Eq. (24) can be rewritten as

LV = 0 (25)



whereL = (fI) andV = (cI)T . After multiplying Eq. (25)
by LT to obtain am×m system of equations, we perform
a weighted integration along a small neighborhood of the
point in question, i.e. a convolution with a kernelω(x),∫

L(x)T L(x)V(x)ω(x) dx = 0 (26)

to make the system well posed. Since we are supposing that
the motion vectors are locally constant, we can takeV out
of the integral and obtain

JnV = 0 (27)

where

Jn =
∫

L(x)T L(x)ω(x) dx (28)

We callJn thegeneralized structure tensor forn motions.
Eq. (27) shows that the mixed motion parameters inV will
form an eigenvector related to the zero eigenvalue ofJn

and therefore can be computed in analogy to (11). More
precisely, we have up tom = ord(Jn) different estimates
for the mixed motion parameters given by

Vi ∝ (Mim,−Mim−1, . . . , (−1)mMi1), (29)

whereMij , i = 1, . . . ,m are the minors ofJn [12].

Separation of the motion vectors Now, we show how
to recover the motion vectorsv1, . . . ,vn from their mixed
coefficientscI in V. Remember thatcI are homogeneous
symmetric functions of degree less thann of the coordinates
of the motion vectors . We interpretvi as complex numbers,
that isvi = vix + jviy, wherej2 = −1. In this case, the
motion vectors will be the roots of a complex polynomial
Qn(z) whose coefficients are functions ofcI :

Qn(z) = zn −An−1z
n−1 + · · ·+ (−1)nA0. (30)

To compute the coefficients, we just note thatAi are homo-
geneous symmetric functions of degreen− i of v1, ...,vn.
For example, the coefficients ofQn(z) for three motions
are [12]A2 = cxtt + jcytt, A1 = cxxt − cyyt + jcxyt and
A0 = cxxx− cxyy + j(cxxy − cyyy). For more motions, the
coefficients ofQn(z) can be evaluated in analogy.

Confidence measures We have shown how to estimate
multiple additive motions and now we consider the problem
of detecting multiple motions, i.e., we want to quantify the
confidence in the assumptions that we made.

In the case of one motion, the confidence is high if one
eigenvalue ofJ is small and the other two are significant,
i.e., rank(J) = 2 [9]. This case excludes regions with aper-
ture problems (two small eigenvalues) and occlusions etc.

(three significant eigenvalues). Withn motions the confi-
dence is still high if the rank(Jn) = m− 1. Since with our
new method we do not compute the eigenvalues, we need
confidence measures that do not involve the eigenvalues.

The measuresK, S,H defined forJ in (6) can be defined
for Jn in analogy [12]. With these measures, the confidence
criterion translates toK = 0 andS 6= 0. To compareK
with S, we found thatK1/m ≤ S1/m−1 ≤ H. This means
that the confidence criterion (K = 0 andS 6= 0) becomes
K1/m � S1/m−1 or, equivalently,K1/m < εS1/m−1.

Algorithm 1 Hierarchical motion estimation
1: computeJn according to Eq. (28)
2: if K1/m < εS1/m−1 (high confidence)then
3: compute V1, . . . ,Vm from the minors of Jn

(Eq. (29))
4: compute the mixed motion parameters

V = α1V1 + · · ·+ αmVm

5: if n = 1 then
6: v = (Vx, Vy)
7: else
8: v1, . . . ,vn are the roots ofQn(z) in Eq. 30
9: end if

10: append treated pixelx0 to list L
11: end if
12: for all x0 /∈ L do
13: repeat steps1 to 11 with ω(x− x0) = 0, ∀x /∈ L
14: end for

Low-complexity algorithms for multiple motions Our
hierarchical algorithm first evaluates the confidence in one
motion and estimates that one motion in case of high confi-
dence. Otherwise, the confidence for two motions is evalu-
ated and two motions are estimated. This procedure can be
iterated for up ton motions. Moreover, motion at locations
with low confidence is recomputed with a convolution ker-
nel that integrates only locations with high confidence. This
leads to correct solutions at occlusions, where confidence is
low - see Fig. 1.

6 Results

In [12] we have presented results for up to three transpar-
ent motions of overlaid noise patterns. The results demon-
strated high precision and a high spatial resolution of the
estimated motion fields. Here we briefly illustrate the po-
tential of our theoretical results for occluded motions - see
Fig. 1.
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Figure 1. Simulation results obtained for two occlud-
ing layers of noise patterns with configuration shown
top left. Result of using Eq. (17) with confidence
measures according to Alg. 1 are shown top right:
note that the occluding boundary has no confidence.
Result of using the same Eq. (17) but ignoring the
confidence measures are shown bottom left: in this
case we solve for the wrong equation at the occluding
boundary. The final result (bottom right) is obtained
according to the first strategy described at the end of
Sec. 4 with the boundary being defined as region of
low confidence - see Alg. 1.

7. Summary and conclusions

We have argued that the intrinsic geometry of spatio-
temporal patterns provides useful features that are unique
in case of curvature. In addition, the curvature of image se-
quences can be used to estimate the parameters of motion.

Moreover, we have presented a general framework for
estimation of single and multiple motions. The methods
rely on derivatives, with an order that increases with the
number of motions, but can be generalized to the use of
more general linear filters [12]. In addition, we have shown
how to detect multiple motions, i.e., we have derived con-
fidence measures for the presence of multiple motions. We
have obtained closed-form solutions for up to four trans-
parent motions. For more than four motions, standard nu-
merical methods for finding the roots of a polynomial can
be used within our framework. Previous methods, however,
relied on iterative solutions of high complexity that lacked a
proof of convergence. For the case of single motions it had
been shown before that the method for motion estimation
based on the minors of the structure tensorJ yields results
that are better than those obtained by computing the eigen-
values and eigenvectors ofJ (and better than those based on
the relations in Eq. 10). Traditional first- and second-order
differential methods were also outperformed [3].

Finally, we have presented promising new results for the

estimation of motions at occlusions and a hierarchical al-
gorithm that can deal with both transparent and occluded
motions.
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