
AN EFFICIENT FINE-GRAIN SCALABLE COMPRESSION SCHEME FOR SPARSE DATA

Stefan Strahl∗ and Alfred Mertins

Signal Processing Group
Department of Physics, University of Oldenburg

26111 Oldenburg, Germany

alfred.mertins@uni-oldenburg.de

stefan.strahl@mail.uni-oldenburg.de

ABSTRACT

A fine-grain scalable and efficient compression scheme for sparse
data based on adaptive significance-trees is presented. Com-
mon approaches for 2-D image compression like EZW (embed-
ded wavelet zero tree) and SPIHT (set partitioning in hierarchi-
cal trees) use a fixed significance-tree that captures well the inter-
and intraband correlations of wavelet coefficients. For most 1-
D signals like audio, such rigid coefficient correlations are not
present. We address this problem by dynamically selecting an op-
timal significance-tree for the actual data frame from a given set of
possible trees. Experimental results on sparse representations of
audio signals are given, showing that this coding scheme outper-
forms single-type tree coding schemes and performs comparable
to the MPEG AAC coder while additionally achieving fine-grain
scalability.

1. INTRODUCTION

Recent advances in sparse signal representation ([1, 2, 3]) have in-
creased the interest to apply these methods on audio data ([4, 5])
and led to the demand for an efficient compression scheme of
sparse audio representations. Moreover, the increase of heteroge-
neous networks like the Internet introduced problems such as bi-
trate fluctuation, different target channel capacities or storage costs
for multi-bitrate files. Storing the data in an embedded manner us-
ing significance-trees can address this issues in a generic manner.

Bitplane coding and significance-trees have been successfully
applied to image coding ([6],[7]). Such coding schemes success-
fully capture the structure of the wavelet-based image represen-
tation, making very efficient sorting passes and a low number of
sorting bits possible. Such natural rigid correlations cannot be
found in audio signal representations like e.g. the MDCT trans-
form, necessitating the derivation of optimal significance-trees in
a data dependent manner.

How to generate these significance trees capturing the variant
spectral distribution of audio data and the principle of our progres-
sive compression scheme using these significance-trees, referred
to as significance tree coding (STC), are discussed in Section 2. In
Section 3, we present experimental results on sparse audio repre-
sentations including subjective listening tests.

∗This work was partly funded by the DFG through the International
Graduate School for Neurosensory Science and Systems at the University
of Oldenburg

2. BASIC CONCEPTS

2.1. Significance Trees

Significance-tree coding algorithms like EZW [6] or SPIHT [7]
exploit the fact that it can be beneficial, especially for sparse data,
to describe significant coefficients of a bitplane via their position
and value information instead of transmitting all values one by
one. These spatial orientation trees can be mathematically repre-
sented using parent-children coefficient coordinate relationships.
Fig. 1a shows the case of image compression, were the offspring
O(i, j) of the wavelet parent coefficients at position(i, j), except
for the highest and lowest pyramid level, have been defined as
O(i, j) = {(2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j + 1)}.
Due to the fact that the 2-dimensional wavelet transformation has
a typical coefficient inter- and intra-band correlation [8], this rigid
tree structure can capture the correlation with a reasonable com-
putational complexity, giving an efficient compression scheme.

*

coefficient
index i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(a) (b)

Figure 1: Parent-offspring dependencies in SPIHT with different
styles. (a) 2-D tree. (b) 1-D tree following the offspring rule
O(i) = iN + {0, N − 1}.

For 1-dimensional signals like audio data, the problem of se-
lecting the optimal tree structures remains unsolved despite con-
siderable efforts. Most existing algorithms use a single type of
tree as shown in Fig. 1b with the fixed parent-children relationship
O(i) = iN +{0, 1, · · · , N −1} for different positive integersN .
For the MDCT transform,N = 4 was adopted in [9, 10, 11, 12]
and the wavelet packet transform was encoded usingN = 2 in
[13, 14]. This type of tree will be referenced in the following as
SPIHT-style significance trees.

2.2. Bitplane coding using Significance-Trees

The set ofM transform coefficients to be encoded for an audio
frame is denoted by the vectorX = (X1, X2, . . . , XM), and the

according coordinates set is denoted byM = (1, 2, · · · , M). The
algorithm starts with the most significant bitplanenmax, which
can be easily computed withnmax = blog

2
(max

i∈M
{| Xi |})c. A

coefficientXi can then be expressed as

Xi = s

nmax�

k=nmin

bi,k2k

with bi,k ∈ {0, 1} and s ∈ {±1} being the sign. IfXi is an
integer value, thennmin = 0. To encode real-valued coefficients,
nmin can be negative.

During the bitplane-coding process, all bitplanesn ≤ nmax

are processed iteratively (i.e., the bitsbi,n, i = 1, 2, . . . , M are
transmitted) in so-called sorting and refinement passes [7]. In a
sorting pass, all coefficients that become significant with respect
to the actual bitplanen are found by employing tests on the coeffi-
cient absolute values, and these test results are written to the output
bitstream. For coefficients that are found to be significant, also a
sign bit is transmitted. During the refinement passes, the lower bit-
planes of already identified significant coefficients are transmitted.

The sequence of the coefficient sorting is defined by the
significance-tree so that all elements in the coefficient setX are
uniquely mapped into nodes in the trees. Each significance tree
T is composed of several nodes that link coefficient coordinates
i (position information) of scalarsXi in a hierarchical manner.
A tree T is said to be significant with respect to bitplanen if
any scalar inside the tree is significant, that is, if the magnitude
of at least one coefficient in the set is larger or equal to2n. The
pseudocode of the sorting pass is as follows:

TreeSignificance (current treeT , current threshold2n)

• If T is insignificant with respect to2n, emit ‘0’ and return;

• If T is significant with respect to2n, emit ‘1’;

• If root nodeN(T) is significant with respect to2n, emit
‘1’, otherwise emit ‘0’;

• Call TreeSignificance() for each subtree with root node as
offspring ofN(T) with threshold2n;

• Return;

2.3. Proposed Adaptive Significance-Tree Selection

The SPIHT-style significance trees proposed for one-dimensional
data so far are rather arbitrary. They are simply derived by project-
ing the known 2-D trees into the vector notation of 1-D structures.
To establish better tree structures and in the case of audio data to
capture the dynamically variant spectral behavior, we predefine a
set of significance-trees and dynamically select the locally optimal
ones for each data frame.

For tree construction, in general, it is important to recall that
trees should be built in such a way that the coefficients that are
most likely to be large in magnitude are located close to the roots
of the trees, whereas the small coefficients should be located at
the outer leaves. The larger the (sub)-trees that contain small co-
efficients are, the more efficient the coding will be. In contrast to
[15] we used non-complete significance trees by placing remaining
nodes at the last treelevel.

In this paper we design the set ofµ possible significance-trees
by constructing these trees out ofm subtrees with different roots
and different sorting orders. The coding cost to encode the tree

selection information islog2(µ) bits per frame. We considered
m = 8 with equally sized subtrees andm = 10 with logarithmi-
cally sized subtrees. See Fig. 2 for an illustration of the trees. Each
subtree was selected from four different types of trees (ascending,
descending, concave oder convex) yieldingµ = 65.536 possible
trees (tree selection needs 16bit per frame) for the equally sized
andµ = 1.048.576 (bit cost of 20bit per frame) for the logarith-
mically sized subtrees.

x0

x1
x17

x33
x49

x2
x3

x4
x18

x19
x20

x34
x35

x36
x50

x51
x52

x5
x6

x7
x8

x10
x11

x12
x13

x14
x15

x16

x21
x22

x23
x24

x25
x26

x27
x28

x29
x30

x31
x32

x37
x38

x39
x40

x41
x42

x43
x44

x45
x46

x47
x48

x53
x54

x55
x56

x57
x58

x59
x60

x61
x62

x63
x64

x9

x0

x63x62x61x60x59x58x57x56x55x54x53x52x51x50x49x48

x47x46x45x44x43x42x41x40

x39x38x37x36

x31x30x29x28x27x26x25x24

x23x22x21x20x15x14x13x12

x35x34x33x19x18x17x11x10x9x7x6x5x3

x32x16x8x4x2x1

(a) (b)

Figure 2: Examples of possible significance-trees with treeorder
N = 2 and framelengthM = 64 (a)m = 4 (equally sized trees).
(b) m = 6 (log-sized trees).

For a given data frame to be encoded, we select the tree that
allows us to encode the largest number of high-magnitude coeffi-
cients within the firstν tree levels. In the experiments,ν was set
to 3.

2.4. STC Algorithm

Let us assume that a set of optimal local significance
trees for transmitting a coefficient setX has been found,
for example, through testing the efficiencies of various
possible trees as mentioned above. The compression
scheme then operates as follows: Iteratively, all bitplanes
n = nmax, nmax − 1, nmax − 2, . . . , nmin are processed in
sorting and refinement passes. In a sorting pass, all coefficients
that become for the first time significant (i.e., their magnitude
exceeds the current threshold2n) are logged to a list of significant
coefficients (LSC) and their signs are encoded. This means, at any
point in the encoding process, the LSC contains the coordinates
of all coefficients that have been found to exceed the current test
threshold of2n. When all significant coefficients with respect to
the current threshold2n have been identified and their coordinates
have been moved to the LSC, the refinement pass stores the
bitplane information for the significant coefficients by processing
the LSC, except for the coefficients that were included in the last
sorting pass. The overall algorithm is as follows.

STC Algorithm:

1. Tree Generation:select one of theµ possible significance-
trees, containingm local subtrees;

2. Initialization: output n = blog
2
(max

i∈M
{| Xi |})c; output

selected significance-tree; sequentially do: set LSC (list of
significant coefficients) as an empty list.

3. Sorting Pass:sequentially callTreeSignificance, move all
significant coefficients into the according LSC, output their
signs.

4. Refinement Pass:sequentially, for each coefficient in ac-
cording LSCs, except those included in the last sorting pass,
output thenth most significant bit ofXi.

5. Quantization-Step Update:decrementn by 1 and go to
Step 3.

The process is repeated until the desired bit budget is achieved,
or, in case of lossless compression, all bits in all coefficients have
been encoded.

3. EXPERIMENTAL RESULTS

3.1. Comparison of compression schemes on sparse audio
data

In this section, we compare the performance of run-length cod-
ing, Huffman coding, arithmetic coding and adaptively selected
and fixed significance trees on sparse audio representations. The
parameters for the Huffman coding were set to 8 levels of allowed
splitting. For our STC algorithm the number of possible trees was
set toµ = 65.536 (equally sized) andµ = 1.048.576 (logarith-
mically sized), respectively, as described in Section 2.3.

The audio signal was selected as thecha2.wav file [16]
(mono, 16 bits, 48 kHz) and the bitrate was set toR = 96 kbps. To
obtain a sparse signal representation of the audio signal a MDCT
transform with a framesizeM = 1024 was used. The MDCT
of audio signals already results in a sparse signal representation
([17]) but to increase the sparseness we also used the Basis Pur-
suit algorithm ([1]) with an overcomplete MDCT-Basis, where the
subband signals were oversampled by a factor of two. The frame
bit budgetRf was computed asRf = bR · M/Fsc whereFs is
the sampling rate in Hz, yieldingRf = 2048 bits per frame for 96
kbps. For the compression schemes to achieve the desired bitrate,
a linear quantization of the MDCT coefficients has been applied.
The treeorder of the significance trees has been set toN = 4. As a
performance measure, the frame-wise signal-to-noise ratio (SNR)
was used, which was computed as the ratio of a frame’s energy,
divided by the energy of the reconstruction error in the frame. For
the two scenarios, we obtained the results listed in Table 1.

Table 1: Average frame-wise SNRs in dB for thecha2.wav sig-
nal coded at 96 kbps, using different algorithms.

scenario MDCT Basis Pursuit
(segSNR) overMDCT
RLE 4.94 13.74
Huffman 27.01 25.12
Arith 28.91 26.34
SPIHT 32.99 30.19
STC-lin 34.27 31.47
STC-log 34.56 31.51

From Table 1 it can be seen that an adaptive significance-tree
selection benefits from the variant spectral distribution of audio
data compared to a fixed significance tree. The representation us-
ing critical sampling achieves better results compared to the over-

sampled case as here the double amount of coefficients needs to be
encoded.

3.2. Combination with the MPEG AAC Standard

In this experiment, we use the state-of-the-art MPEG AAC com-
pression scheme and combine it with our STC algorithm in order
to achieve progressive coding. For this, we keep the AAC scheme
unchanged up to the point where Huffman coding is employed,
then apply the STC algorithm to carry out the compression of the
quantizer indices. The quantizer indices form a sparse representa-
tion of the audio signal. In the experiment, the reference software
of [18] was used.

The compression of quantizer indices can either be lossless or
lossy, depending on the number of bits transmitted. On the decoder
side, the received quantizer indices (either exact values or approx-
imations, depending on the bitrate) are injected into the standard
AAC decoder. All other side information is transmitted as pro-
duced by the AAC coder.

Note that the results for the AAC coder were produced by en-
coding the signal individually for each bitrate. For STC, the encod-
ing was done once at 64 kbps, and then lower rates were realized
by truncating the frame-wise embedded bitstream produced by the
STC algorithm.

To measure the subjective quality, we carried out listening tests
comparing the STC-scheme with the MPEG2-AAC standard and
the MPEG-4-AAC-BSAC standard, which is currently the only
standardized fine-grain progressive audio compression scheme.
Twenty test persons for the scenario with eight equally sized sub-
trees per frame using signals from the sound quality access mate-
rial (SQAM) [19] and from the 1990 MPEG evaluation [16] have
been used.

The measurement procedure was set up according to the ITU
recommendation BS.1116-1 [20]. The quality ratings between one
(very annoying) and five (indistinguishable from the original) were
translated into the subjective difference grade, which is the differ-
ence between the rating for the encoded test item and the hidden
reference and ranges from zero (equal quality) down to -4 (the
lowest grade). The results for three different test signals are de-
picted in Fig. 3. As one can see, the performance of STC is almost
equal to the AAC performance, and it is significantly better than
the BSAC one.

4. CONCLUSIONS

The fine-grain scalable sparse audio representation compression
problem has been addressed in this study. While in almost all exist-
ing algorithms, a single type of significance-tree has been adopted
for sorting significant coefficients and transmitting position infor-
mation, we have proposed a novel adaptive significance-tree tech-
nique. Such a tree is generated dynamically to suit variant spec-
tral behavior from frame to frame. Based on the dynamic tree
selection, a compression scheme has been proposed which pro-
vides both high compression quality and fine-grain bitrate scalabil-
ity. Experimental results clearly demonstrate the following prop-
erties: the method outperforms the existing SPIHT-like algorithms
and yields competitive quality as the nonscalable AAC audio com-
pression scheme, yet with fine scalability of one-bit granularity per
frame.

-4

-3

-2

-1

0

1

16 kbps 32 kbps 48 kbps 64 kbps

A
A

C

S
T

C

B
S

A
C

A
A

C

S
T

C

B
S

A
C

A
A

C

S
T

C

B
S

A
C

A
A

C

S
T

C

B
S

A
C

Bitrate

D
if

fg
ra

d
e

Figure 3: Subjective difference grades for different codecs at bi-
trates between 16 and 64 kbps for one mono channel.

5. REFERENCES

[1] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,”SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 33–61, 1999. [Online].
Available: citeseer.ist.psu.edu/chen98atomic.html

[2] M. S. Lewicki and T. J. Sejnowski, “Learning over-
complete representations,”Neural Computation, vol. 12,
no. 2, pp. 337–365, 2000. [Online]. Available: cite-
seer.ist.psu.edu/lewicki98learning.html

[3] J. Fuchs, “Sparsity and uniqueness for some specific under-
determined linear systems,” inProc. IEEE ICASSP 2005,
Philadelphia, USA, March 2005.

[4] M. Davies and L. Daudet, “Sparse audio representations us-
ing the mclt,”in press, 2005.

[5] R. Gribonval, “Sparse decomposition of stereo signals with
matching pursuit and application to blind separation of more
than two sources from a stereo mixture,” inICASSP02, Or-
lando, Florida, USA, May 2002.

[6] J. M. Shapiro, “Embedded image coding using zerotrees
of wavelet coefficients,”IEEE Trans. on Signal Processing,
vol. 41, no. 12, pp. 3445–3462, 1993.

[7] A. Said and W. A. Pearlman, “A new, fast and efficient image
codec based on set partitioning in hierarchical trees,”IEEE
Trans. on Circuits and Systems for Video Technology, vol. 6,
no. 3, pp. 243–250, 1996.

[8] Z. Liu and L. J. Karam, “Quantifying the intra and inter
subband correlations in the zerotree-based wavelet image
coders,” inConf. Record of the 36th Asilomar Conf. on Sig-
nals, Systems and Computers, Sep. 2002, pp. 1730–1734.

[9] C. Dunn, “Efficient audio coding with fine-grain scalability,”
in AES 111th Convention. NY, USA: preprint 5492, Sep.
2001.

[10] M. Raad, A. Mertins, and R. Burnett, “Audio coding based
on the modulated lapped transform (MLT) and set partition-
ing in hierarchical trees,” inProf. 6th World Multiconference

on Systemics, Cybernetics and Informatics, Orlando, USA,
Jul. 2002, pp. 303–306.

[11] M. Raad and A. Mertins, “From lossy to lossless audio cod-
ing using SPIHT,” inProc. of the 5th Int. Conf. on Digital
Audio Effects, Hamburg, Germany, Sep. 2002, pp. 245–250.

[12] M. Raad, A. Mertins, and R. Burnett, “Scalable to lossless
audio compression based on perceptual set partitioning in hi-
erarchical trees (PSPIHT),” inProc. Int. Conf. on Acoustics,
Speech, and Signal Processing, Apr. 2003, pp. V624–627.

[13] Z. Lu and W. A. Pearlman, “An efficient, low-complexity au-
dio coder delivering multiple levels of quality for interactive
applications,” inProc. IEEE Signal Processing Society Work-
shop on Multimedia Signal Processing, Dec. 1998, pp. 529–
534.

[14] ——, “High quality scalable stereo audio coding,”
1999. [Online]. Available: http://www.cipr.rpi.edu/ pearl-
man/papers/scalaudio.ps.gz

[15] S. S. H. Zhou, A. Mertins, “An efficient, fine-grain scalable
audio compression scheme,” inProc. AES 118th Convention,
Barcelona, Spain, May 2005.

[16] ISO/MPEG, “Audio test report. ISO/IEC/JTC 1/SC 2/WG
11 MPEG MPEG90/N0030,”International Organization for
Standardization, 1990.

[17] M. Davies and N. Mitianoudis, “Simple mixture model for
sparse overcomplete ica,” inIEE Proc.-Vis. Image Signal
Process., Vol. 151, No. 1, February 2004.

[18] “Mpeg-4 audio reference software.” [Online]. Available:
http://www.iso.ch/iso/en/ittf/PubliclyAvailableStandards/
ISO IEC 14496-52001SoftwareReference/

[19] “Sound quality assessment material.” [Online]. Available:
http://sound.media.mit.edu/mpeg4/audio/sqam/

[20] ITU-R Recommendation BS.1116-1, “Methods for the sub-
jective assessment of small impairments in audio sys-
tems including multichannel sound systems,”International
Telecommunication Union, Geneva, Dec. 1997.

