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Abstract
Speaker-normalization and -adaptation methods are essen-
tial components of state-of-the-art speech recognition systems
nowadays. Recently, so-called invariant integration features
were presented which are motivated by the theory of invari-
ants. While it was shown that the integration features out-
perform MFCCs when used with a basic monophone recog-
nition system, it was left open, if their benefits still can be
observed when a more sophisticated recognition system with
speaker-normalization and/or speaker-adaptation components is
used. This work investigates the combination of the integration
features with standard speaker-normalization and -adaptation
methods. We show that the integration features benefit from
adaptation methods and significantly outperform MFCCs in
matching, as well as in mismatching training-test conditions.
Index Terms: Speaker independency, invariant integration,
speaker normalization, speaker adaptation

1. Introduction
An essential component of state-of-the-art automatic speech
recognition (ASR) systems is the adaptation of the system to
the characteristics of the speech signals of each speaker. The
adaptation methods work at different stages of an ASR sys-
tem. With respect to the feature extraction, a common approach
is the normalization of the mean and variance of the speech
signal’s parametric representation [1]. The vocal-tract length
(VTL) as an inter-speaker variability [2] causes the formant fre-
quencies approximately to be linearly scaled. Either scaling
the filter-bank frequency centers, or scaling the time-frequency
(TF) representation along the frequency axis, respectively, can
be done in a maximum-likelihood (ML) fashion [3, 4]. This
widely used procedure is known as vocal-tract length normal-
ization (VTLN). With respect to the acoustic models, different
adaptation methods have become standard components in com-
mercial ASR systems. The general idea is to adapt the model
set such that it matches more closely the features of the current
speaker. Constrained and unconstrained maximum-likelihood
linear regression ((C)MLLR) [5, 6] are most-widely used ap-
proaches. Though it was shown in [7] that VTLN can be seen
as a special case of CMLLR, in practice the combination of both
methods within one system often increases its accuracy further.

Besides the mean and variance normalization (MVN) as
mentioned above, a third group of methods tries to extract fea-
tures that are independent of the speaker’s variabilities while
keeping the important linguistic information. The different ap-
proaches usually rely on an invariance property of a certain
type of transformation. Because the spectral effects of differ-
ent VTLs can approximately be described by a scaling along a
linear frequency axis, the scale transformation [8] was investi-
gated for its applicability in speech recognition [9, 10]. Refine-

ments towards real-time applicability of this type of transforma-
tion have been presented in [11].

The application of auditory scales like the mel [12] or
the ERB [13] scale approximately maps the scaling to trans-
lation along the frequency axis of TF representations. This
effect was used for translation-based VTLN [14], as well as
for Gaussian-mixture-model (GMM) based features [15]. Re-
cently, different types of translation-invariant transformations
were investigated for their applicability in the field of speech
recognition. Correlation-based features were proposed in [16].
Methods based on invariant cyclic transformations were consid-
ered in [17, 18]. So-called invariant integration features (IIFs)
were introduced in [19]. The transformations that are used
within these feature extraction methods are mathematically well
founded and were successfully used in the field of image analy-
sis.

Using a basic monophone recognition system without adap-
tation, the work in [19] primarily introduced the IIFs and
showed that the IIFs can outperform the mel frequency cep-
stral coefficients (MFCCs). The present paper uses a contex-
tually enhanced definition of the IIFs and examines their per-
formance in a more sophisticated ASR system that makes use
of speaker-normalization and -adaptation methods. The num-
ber of subbands of the filterbanks that are used for the com-
putation of features like the MFCCs is usually between 24 and
30 bands. In contrast, the experiments in [19] used a filterbank
with 90 subbands. This was done to allow for a sufficiently
high spectral resolution. However, the computational complex-
ity also increases with increasing number of filters. To reduce
costs, part of this work investigates IIFs based on a TF repre-
sentation with 24 subbands.

The next section briefly describes the IIFs and their contex-
tual expansion. Since IIFs were introduced to provide a tech-
nique for speaker-independent feature extraction the question
may arise, why speaker-normalization techniques should im-
prove the performance of the IIFs. This is also discussed in
Section 2. The experimental setup and the results are described
in Section 3. The paper is concluded in Section 4.

2. Invariant Integration Features

The basic motivation for the IIFs is the observation that spectral
effects due to different VTLs are mapped to translations along
the subbands-index space within the TF representation when an
auditory scale is used. The IIFs were presented in [19]. A more
detailed study was done in [20], in which the definition of the
IIFs was contextually enhanced. In the following, a brief de-
scription of the IIFs is given.
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2.1. Definition and Feature Selection

The first step in the feature-generation process is a filterbank
analysis of the speech signal, using, for example, a gammatone
filterbank. Let yk(n) denote the magnitudes of the obtained
subband coefficients at the final frame rate, where n is the time
and k the subband index, with 1 ≤ n ≤ N and 1 ≤ k ≤ K.
Given the indices vector k = (k1, k2, . . . , kM ), k ∈ NM , an
integer exponent vector l = (l1, l2, . . . , lM ), l ∈ NM0 , and a
temporal offset vector m ∈ NM , a (contextual) monomial m̂
with M components is defined as

m̂(n;w,k, l,m) :=

[
M∏
i=1

yliki+w(n+mi)

]1/γ(m̂)

, (1)

where w ∈ N0 is a spectral offset parameter that is used for the
ease of notation in the following, and γ(m̂) is the order of a
monomial m̂ defined as

γ(m̂) :=

M∑
i=1

li . (2)

The term (2), which occurs in the exponent in (1), operates as
a normalizing term with respect to the order of the monomials.
Now, an IIF Am̂(n) is defined as

Am̂ :=
1

2W + 1

W∑
w=−W

m̂(n;w,k, l,m). (3)

In case of order one, the computation of an IIF is equivalent to
the computation of an average of spectral values within a certain
frequency range.

Apparently, the parameter space of the IIFs is quite large
and choosing an appropriate set of features is non-trivial. In this
work, the same feature-selection approach as in [19] is used.
It is an iterative filter method that is based on a linear classi-
fier [21].

2.2. Decreasing the Number of Filters

Apart from context the definition of an IIF as given in Equa-
tion (3) is equal to the one given in [19]. The motivation for
using integer window sizes W originates from the theory of in-
variants for finite groups [22] and computational efficiency. In
the context of speaker-independent speech recognition, a finite
set of translations along the frequency axis is assumed when us-
ing an appropriate filterbank. To have a sufficiently high spec-
tral resolution, an appropriate number of filters has to be used.
Previous works used 60 to 90 filters in this context [14, 16, 19].
However, to keep the computational complexity low, a small
number of filters for the spectral analysis is desirable. By inter-
polating the spectral values of a TF representation with a small
number of subbands, the same IIF definition as given in Equa-
tion (3) can be used. The experimental part in Section 3 inves-
tigates the impact of different numbers of subbands in the TF
representations and the use of interpolation in more detail.

2.3. Combining IIFs with Speaker-Adaptation Methods

The windows sizes W , i.e., the spectral integration ranges of
the used IIFs, are in general chosen in such a way, that the in-
tegration does not take place over the full bandwidth of the TF
representation. Thus, the IIFs are only invariant within a certain
subband range, and applying a VTLN before computing IIFs
could also improve the accuracy of the IIFs. In this context, we
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Figure 1: Combining VTLN with IIFs. Before computing the
IIFs, a translational VTLN is applied to ML-estimate a transla-
tion factor for each speaker.

propose to apply a VTLN that shifts the spectral values (similar
to [14]). Due to the local invariance property, however, the in-
crease in accuracy is expected to be lower compared to MFCCs.

Figure 1 summarizes how VTLN is combined with IIFs in
this work. At first, a TF analysis of the speech signal is com-
puted. Here, an ERB scale is used in order to map the spectral
scaling to translations along the subband index space. Follow-
ing the general approach of VTLN as described in [4], a warping
factor is estimated in a ML fashion with a grid search. During
the VTLN, warped versions of the same TF representation are
computed by shifting the spectral values along the frequency
axis, and cepstral coefficients are computed subsequently. Fi-
nally, the IIFs are computed on basis of the ML-warped TF rep-
resentations. When combined with VTLN, the feature selection
for IIFs may also be conducted on the normalized TF represen-
tations.

In contrast to IIFs and VTLN, which are generally work-
ing on the feature-extraction stage, MLLR seeks to adapt the
acoustic models in a ML fashion to the characteristics of each
speaker. The combination of VTLN and MLLR has proven to
be beneficial, e.g., [23], and both techniques are usually com-
bined within state-of-the-art ASR systems. Because one may
suspect that the use of normalization and adaptation methods
may lead to a disappearing of the observed performance gains
of the IIFs, the experimental part of this work investigates the
effects of adaptation on the IIF performance.

3. Experiments
3.1. Data and Setup

Phone recognition experiments have been conducted on the
TIMIT corpus [24] with a sampling rate of 16 kHz. It con-
tains 6300 utterances read by 630 female and male adult speak-
ers. By omitting the SA-sentences the training set consists of
3696 sentences and the test set consists of 1344 utterances.
Following the standard approach for this corpus [25], the orig-
inal 61 phonetic labels were collapsed to a set of 48 labels.
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Two different training-testing scenarios were considered in the
experiments; the matching scenario consisted of the standard
training and test set. The mismatching scenario, however,
used only the male utterances from the training set and only
the female utterance from the test set. Thus, a mismatch be-
tween training and test conditions with respect to the mean
VTL was simulated. Triphone context-dependent HMMs were
trained as acoustic models. The number of Gaussian-mixture
model (GMM) components of the output distributions was 16
for MFCC features. In contrast, it was found beneficial to use
eight components in case of IIFs. All output distributions were
modeled with diagonal covariance matrices. Decision-tree clus-
tering was applied for tying triphone states. A bigram language
model was used in all experiments.

For testing, the phonetic labels were further collapsed to
39 labels [25]. Standard MFCCs with 12 coefficients plus log-
energy and first and second order derivatives were used for the
acquisition of baseline accuracies. The filterbank used for the
computation of the MFCCs had 24 filters. MVN was applied on
all features.

For the TF representation for computing the IIFs, a gamma-
tone filterbank based on an FFT-approach [26] was used. The
filter’s center frequencies were equally spaced along the ERB
scale with a minimum frequency of 40 Hz and a maximum fre-
quency of 8 kHz. A power-law compression with an exponent
of 0.1 was applied on the spectral values of the TF representa-
tions. Experiments were conducted to compare the performance
of IIFs for different numbers of subbands:

1. TF analysis with 24 filters,

2. TF analysis with 24 filters, afterwards interpolated to
110 spectral values, and

3. TF analysis with 110 filters.

Moreover, the performance of the considered feature types was
investigated when combined with VTLN solely, with MLLR
solely, and with both VTLN and MLLR. In case of MFCCs,
scaling factors from 0.88 to 1.12 with a step size of 0.02 were
used for the ML grid-search within the VTLN stage. In case
of the IIFs, shifting factors from −1.5 to 1.5 with a step size
of 0.25 were used for the 24-band TF analysis, and shifting
factors from −8 to 8 with a step size of 1 were used for the
110-band TF analysis. When MLLR was applied, speaker-
adaptive training (SAT) with CMLLR and speaker-adaptation
with a combination of CMLLR and MLLR was used. A regres-
sion class tree with eight terminal nodes was employed.

3.2. Feature Selection

All experiments use 30 IIFs of order one. The choice of this
order has been acquired in [20] and has proven to yield IIFs
that outperform MFCCs in matching, as well as in mismatching
scenarios. The contextual offsets in m are constrained to the
interval [−3, . . . , 3], which corresponds to a maximum contex-
tual interval of 80 ms. The maximum window size W is set
to the number of subbands within the individual experiments.
With these constraints, the feature selection as described in [19]
was performed for 1500 iterations. The data used within the
feature selection represented a matching scenario. Similar to
the MFCCs, the log-energy together with first and second or-
der derivatives were appended to the IIFs for the experiments.
A linear discriminant analysis (LDA) followed by a maximum-
likelihood linear transform (MLLT) [27] was applied to allow
for diagonal covariance modeling of the IIFs.

Table 1: Results of the experiments. MFCC- and IIF-based ASR
systems with and without VTLN and/or MLLR are compared.

#S
ub

ba
nd

s Accuracy [%]

Features Adaptation Scenario
matching mismatching

2
4 MFCC

- 72.16 54.42
MLLR 75.18 66.98
VTLN 73.27 69.75
VTLN+MLLR 75.36 71.84

2
4 IIF

- 75.20 60.06
MLLR 75.59 68.57
VTLN 76.85 69.63
VTLN+MLLR 77.16 74.32

2
4
→

1
1
0

IIF

- 75.24 61.51
MLLR 75.97 69.38
VTLN 77.12 70.79
VTLN+MLLR 77.39 73.03

1
1
0

IIF

- 75.23 60.60
MLLR 76.20 68.79
VTLN 77.22 70.92
VTLN+MLLR 77.45 72.71

3.3. Baseline Accuracies

As described above, baseline accuracies were computed with
MFCCs combined with VTLN and/or MLLR. The results are
shown in the upper part of Table 1. Within the table, the highest
accuracies in each scenario are shown in bold.

As expected, it can be observed that the accuracy increases,
when VTLN or MLLR is used, and the largest gain in accu-
racy is achieved when VTLN and MLLR are combined within
the same system. In comparison, the benefits of normalization
and/or adaptation are larger in the mismatching scenario than in
the matching one.

3.4. Results for Invariant Features

The results for the IIFs are shown below the MFCC results in
Table 1. The number of subbands used within the TF represen-
tation (c.f. Section 3.1) is indicated in the left column. Gener-
ally, it can be stated that the IIFs clearly benefit from additional
speaker-normalization and -adaptation methods. While enhanc-
ing the MFCC-based ASR system with VTLN and MLLR in-
creases the accuracy for the matching scenario by about three
percentage points, the increase of accuracy of the IIF-based sys-
tems is about two percentage points for the matching scenario.
For the mismatching scenario, the accuracy of the MFCC-based
system is increased by about 17 percentage points. In contrast,
the IIFs perform about twelve percentage points better when
VTLN and MLLR is used. It can be observed that, in the match-
ing scenario, all IIF accuracies are higher than the correspond-
ing MFCC accuracies. In the mismatching scenario, the IIF
combinations with VTLN and with VTLN plus MLLR yield in
all cases higher accuracies than the corresponding results for
the MFCCs. Remarkably, the IIFs without adaptation already
perform as good as MFCCs together with VTLN+MLLR in the
common matching scenario.

While using 110 subbands yields the highest accuracies
within these experiments, the corresponding accuracies based
on the TF representation with 24 subbands are only slightly
lower. Comparing the results that are based on 24 subbands
without interpolation with the results based on the interpolated
TF representation, it can be observed that the latter leads to
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higher accuracies in the matching case. However, the highest
accuracy for the mismatching case was achieved with a 24-band
TF representation without interpolation.

4. Discussion and Conclusion
In this work, we have shown that the recently presented in-
variant integration features (IIFs) can be combined with VTLN
and/or MLLR without significantly increasing the complexity
of the ASR system. Phone recognition experiments on TIMIT
have shown that IIFs perform superior compared to MFCCs in
both matching and mismatching scenarios. The superiority in
the matching case is different to the observations in [19]. How-
ever, only IIFs of order one have been used in this work and
the feature selection was conducted on data of a matching sce-
nario. When using a small number of subbands for a TF repre-
sentation (here 24 subbands) the accuracy of IIF-based systems
decreases only slightly. We have shown that IIFs benefit from
additional speaker-normalization and -adaptation methods like
VTLN and/or MLLR. The benefits of the IIFs, that can be ob-
served when used with a basic recognition system without any
normalization/adaptation methods are still observable in com-
bination with VTLN and/or MLLR.

Future work will be directed toward a more sophisticated
feature selection algorithm and the use of physiologically mo-
tivated principles, which might lead to even more robust fea-
tures. A software for computing the IIFs used in this work can
be downloaded from www.isip.uni-luebeck.de under
“Downloads”.
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