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Abstract

This paper deals with the problem of estimating multiple
motions at points where these motions are overlaid. We
present a new approach that is based on block-matching and
can deal with both transparent motions and occlusions. We
derive a block-matching constraint for an arbitrary number of
moving layers. We use this constraint to design a hierarchical
algorithm that can distinguish between the occurrence of
single, transparent, and occluded motions and can thus select
the appropriate local motion model. The algorithm adapts
to the amount of noise in the image sequence by use of a
statistical confidence test. Robustness is further increased
with a regularization scheme based on Markov Random
Fields. Performance is demonstrated on image sequences
synthesized from natural textures with high levels of additive
dynamic noise and on real video sequences.
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1. Introduction

Motion estimation is essential in a variety of image pro-
cessing and computer vision tasks, like video coding, track-
ing, directional filtering and denoising, scene analysis, etc.
Standard motion models, however, fail in case of transparent
and occluded motions. In case of transparent motions, two
or more motion vectors are observable at the same image lo-
cation and time. As with a single motion, the estimation of
multiple motions implies a one-to-many correspondence and
is thus an ill-posed problem [8]. In consequence, algorithms
for motion estimation have to incorporate some form of lo-
cal regularization and to estimate the local motion parameters
based on a local neighborhood. For a single motion, the al-
gorithms can be classified in three main classes: differential,
transform-based, and block-matching based methods.

A differential algorithm for two transparent motions was
first proposed by Shizawa and Mase [17] and was later gen-
eralized for the case ofN motions in [15] where an ana-
lytic solution based on so-called mixed motion parameters
was presented. The introduction of the mixed motion pa-
rameters allows to linearize the transparent motion equation
of Shizawa and Mase. They encode the motions unambigu-
ously, but not explicitly. The motion vectors are obtained by

solving for the roots of a complex polynomial, whose coeffi-
cients can be expressed in terms of the mixed-motion param-
eters. A similar approach was used by Langley [14] for the
case of two-motions and in the context of vision modeling.
A phase-based solution for the estimation of two transparent
overlaid motions was proposed by Vernon [23]. This method
has been generalized for an arbitrary number ofN motions
in [21]. This generalization led to solutions for extracting the
N motions at a given location and for separating the moving
image layers. Szeliski et al. [22] proposed a layer extrac-
tion algorithm for transparency and reflections together with a
multiple-motions technique that recovers the layers and their
motions from the input images in the spatial domain.

Pingault et al. [16] used Vernon’s solution in the spa-
tial domain to derive a flow constraint for two transparent
motions based on a Taylor-series expansion. Additionally,
they regularized the motion vector fields using a B-Spline ap-
proach.

It is well known that the Fourier transform spectrum of
an image undergoing rigid translations lies in a plane in the
spatio-temporal frequency domain [25]. In case of transpar-
ent motions, each moving layer lies in such a plane and sev-
eral filter-based methods that parameterize these planes have
been developed [26, 18].

Bergen et al. [7] propose an area-regression approach for
estimating two motions from only three frames. The ap-
proach uses an iterative algorithm to estimate one motion,
performs a nulling operation to remove the intensity pattern
giving rise to this first motion, an then solves for the sec-
ond motion. Other approaches based on nulling filters and
velocity-tuned mechanisms have been proposed in [10, 11].

Wang and Adelson [24] model an image region by a set
of overlapping opaque layers. They initially compute sin-
gle motions by using a least-square approach within local
image patches. They then use K-means clustering to group
motion estimates into regions of consistent affine motions,
which then define the layers. This is different from our way
of dealing with occluding motions since we assume that a
transparent-layer model is valid in the vicinity of the occlud-
ing boundary, but not at the boundary.

Although both differential and transform-based methods
are fast and perform well for small displacements, block-
matching is known to perform better for large displacements
and with higher levels of noise. It is thus a widely used
method in various technical applications. To our knowledge,
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the first block-matching algorithm for multiple-motion esti-
mation was proposed in [20] based on some related results
obtained in [7, 16, 23]. In this paper we first extend the al-
gorithm in [20] within a stochastic framework such as to in-
clude a confidence test. A second extension proposed here
is based on Markov random fields and greatly enhances ro-
bustness. The algorithm is derived from the phase-based so-
lution for the Fourier-domain equations for transparent mo-
tions [23, 21]. The distortion caused by occluding regions
is also analyzed and we show how to apply our algorithm to
estimate motions at occlusions.

2. The block-matching constraint

The block-matching constraint will be derived from the
phased-based method for multiple motion estimation [23, 21].
The image sequence is therefore modeled as an additive su-
perposition ofN independent moving layers. This model is
transformed to the Fourier domain and the motion layers are
successively eliminated by analytical methods. The remain-
ing equations describe a non-linear coupling between the de-
sired motion vectors and the observed image sequence. These
equations are then transformed back to the spatial domain,
where they define a multiple-motions block-matching con-
straint. This constraint actually describes how a particular
image in the sequence results fromN previous images that
are individually warped according to the motion parameters
and then superimposed.

2.1 The block-matching equation forN motions

In the spatial domain, we modelN transparent motions as

fk(x) = f(x, k) = g1(x− kv1) + g2(x− kv2) + · · ·
+ gN (x− kvN ), k = 0, 1, . . .

(1)

The above system of equations involves the observed images
fk for each time stepk and spatial positionx, the unknown
layersgn and the motion vectorsvn for n = 1, . . . , N, that
we wish to determine, see [17].

In the Fourier domain, Equation (1) becomes

Fk(ω) = φk
1G1(ω) + φk

2G2(ω) + · · ·+ φk
NGN (ω), (2)

whereφn = e−jω·vn , n = 1, . . . , N are the phase shifts and
ω = (ωx, ωy) are the frequency variables. Uppercase letters
denote the Fourier transforms of the corresponding functions
denoted with lower-case letters, e.g.,Fk is the Fourier trans-
form of fk.

We simplify notation by settingΦk = (φk
1 , . . . , φk

N )T and
G = (G1, . . . , GN )T and obtain the following expression for
the above system of equations:

Fk = Φk ·G. (3)

The goal now is the elimination of the unknown vectorG
that contains the Fourier-transforms of the motion layers.
The remaining equation then relates only to the observable

Fourier transform of the single images and the phase shifts,
i.e., F0, . . . , FN andφ1, . . . , φN . Note that we need to use
at leastN past frames in which the motion vectorsvn are
assumed to be constant. The polynomial

p(z) = (z−φ1) · · · (z−φN ) = a0z
N + a1z

N−1 + · · ·+ aN

(4)
with unknown coefficientsa1, . . . , aN anda0 = 1 allows for
an analytical elimination of the unknown layersgn. Since
the roots of the polynomial are the phase terms inΦ1 =
(φ1, . . . , φN ), we have:

a0ΦN + a1ΦN−1 + · · ·+ aNΦ0 =
(p(φ1), . . . , p(φN )) = 0. (5)

Therefore by inserting (3) in (5) we obtain

a0FN + a1FN−1 + · · ·+ aNF0 =
(ΦN + a1ΦN−1 + · · ·+ aNΦ0) ·G = 0 ·G = 0. (6)

The coefficients ofp(z) are symmetric polynomials in terms
of the rootsφ1, . . . , φN :

a0 = 1

a1 = −
N∑

i=1

φi

a2 =
∑
i<l

φiφl

a3 = −
∑

i<l<k

φiφlφk

...

aN = (−1)Nφ1φ2 · · ·φN .

By transforming Equation (6) back into the spatial domain we
obtain

e(f,x,v1, . . . ,vN ) =

(−1)Nf0(x− v1 − · · · − vN ) + · · ·

−
∑
i<l

fN−2(x− vi − vl)

+
∑

i

fN−1(x− vi)− fN (x) = 0,

(7)

because the products of the phase terms lead to concatenated
shifts in the spatial domain. Since eachan is a sum of

(
N
n

)
terms, the central part of Equation (7) has

∑N
n=0

(
N
n

)
= 2N

terms.
Equation (7) describes how theN -th image can be con-

structed form theN previous images by using the motion
vectors. Therefore, this equation can be used as the basis for
block-matching methods for an arbitrary number of motions
that is theoretically unlimited. For a single motion, Equa-
tion (7) reduces to the classical block-matching constraint

e(f,x,v) = f0(x− v)− f1(x) = 0 (8)
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while for two transparent motions, it becomes

e(f,x,v1,v2) = f0(x− v1 − v2)− f1(x− v1)
− f1(x− v2) + f2(x) = 0.

(9)

2.2 Causality and refinement

The motions estimated according to Equation (7) are as-
signed to framefN . This implies that the estimated mo-
tion vectors correspond to that frame, whose argument in
the block-matching constraint does not depend on the mo-
tion vectors. In other words, the above block-matching con-
straint usesN previous frames in order to estimate the mo-
tions for the imagefN and is thus a causal method. How-
ever, at any given time indexk we could, in addition, refine
older measurements by using the same constraint in a differ-
ent way. As we shall see, simple substitutions allow to esti-
mate the motions of any other frame of the remaining frames
f0, . . . , fN−1. Of course, this procedure has to be performed
in a causal way. In order to estimate the motion vectors for
f0 we use the substitutiony = x − v1 − · · · − vN and thus
Equation (7) becomes

e(f,y,v1, . . . ,vN ) =

(−1)Nf0(y)+

(−1)N−1
∑
i<l

f1(y + vi)

(−1)N−2
∑

i

f2(y + vi + vj) + · · ·

− fN (y + v1 + · · ·+ vN ) = 0.

(10)

Additional equations are obtained by using one of the follow-
ing substitutions:

y = x− vi, i = 1, . . . , N
y = x− vi − vj , i < j
y = x− vi − vj − vk, i < j < k
...
y = x− v1 − · · · − vN

(11)

Table 1 depicts all possible block-matching constraints
that can be obtained for two motions by the above sub-
stitutions. Since Equation (7) has2N possible shifts we
have 2N − 1 possible substitutions and thus2N differ-
ent block-matching constraints. Note that Equation (7) de-
fines

(
N
k

)
occurrences of every image framefk. There-

fore we have
(
N
k

)
different possibilities to estimate the mo-

tions for fk. These additional constraints can be used
to improve the final block-matching result. For instance,
let {e1(f,y,v1, . . . ,vN ), . . . , el(f,y,v1, . . . ,vN )} denote
a set ofl selected block-matching constraints. In this case,
one example constraint that considers all the above equations
is of the form

e(f,y,v1, . . . ,vN ) =
l∑

i=1

ei(f,y,v1, . . . ,vN ) = 0. (12)

An additional benefit is that the constraints can be used to es-
timate the motions for the first and last frames in a sequence.
The results in this paper are all computed by using only the
initial constraint in (7).

3. Hierarchical algorithm for transparency and occlusion

By using the block-matching constraints above, a num-
ber of different algorithms for the estimation of multiple mo-
tions can be derived. We here present a hierarchical algo-
rithm based on a combination of statistical model discrimina-
tion and hierarchical decision making. First, a single-motion
model is fitted to the sequence by exhaustive search. If the
fit is poor, the single-motion hypothesis is rejected and the
algorithm tries to fit two transparent motions. Otherwise, the
single motion is estimated and used. If the assumption of two
transparent motions must also be rejected, the algorithm tries
to fit an occlusion model, which will be developed later in this
section, and estimates the occluded motions. The method can
be extended to deal with an arbitrary number of transparent
motions. The image noise is modeled as additive white Gaus-
sian noise, thus leading to a significance test that evaluatesχ2

test statistics.

3.1 The stochastic image-sequence model

Apart from distortions and occlusions the block-matching
constraint may be violated due to noise. Additional informa-
tion about the distribution of the noise would help to deter-
mine whether or not the error signals observed after block-
matching can be explained by the noise model. Different mo-
tion types lead to different noise distributions of the error sig-
nals. This can be helpful for selecting the most likely motion
model.

We model the observed image intensity at each spatial lo-
cation and time step as

fk(x) = f̄k(x) + εk(x) , εk(x) ∼ N (0, σ2) (13)

for k = 0, 1, . . ..
Therefore, from Equation (7) and the above noise model,

we have

e(f,x,v1, . . . ,vN ) = e(f̄ , x,v1, . . . ,vN ) + εN (x), (14)

where

εN (x) =

(−1)N ε0(x− v1 − · · · − vN ) + · · ·

−
∑
i<l

εN−2(x− vi − vl)

+
∑

i

εN−1(x− vi)− εN (x).

(15)

There are2N terms in the right-hand side of the above equa-
tion. By assuming these terms to be statistically independent,
we obtain

εN (x) ∼ N (0, 2Nσ2). (16)
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Block-matching constraint Substitution
f0(x− v1 − v2)− f1(x− v1)− f1(x− v2) + f2(x) = 0
f0(y − v2)− f1(y)− f1(y + v1 − v2) + f2(y + v1) = 0 y = x− v1

f0(y − v1)− f1(y − v1 + v2)− f1(y) + f2(y + v2) = 0 y = x− v2

f0(y)− f1(y + v2)− f1(y + v1) + f2(x + v1 + v2) = 0 y = x− v1 − v2

Table 1. Further block-matching constraints for two motions obtained by substitutions in the original
constraint.

The hypothesis of noise independence fails when the argu-
ments of the terms that involve the same imagefn in Equa-
tion (7) are equal. However, this cannot happen for less than
three transparent motions. For four or more motions it may
occur, e.g., thatv1 +v2 = v3 +v4. This case can be detected
during the search process and the variance can be adjusted
accordingly. Hence, for a perfect match of the transparent
motion model, the motion-compensated residual can be mod-
eled as

e(f,x,v1, . . . ,vN ) = εN (x) ∼ N (0, 2Nσ2). (17)

Consequently, the sumBMN of squared differences over the
block obeys theχ2 distribution with|B| degrees of freedom,
i.e.,

BMN (x,v1, . . . ,vN ) =
1

2Nσ2

∑
y∈B

eN (f,y,v1, . . . ,vN )2 ∼ χ2(|B|),

(18)

whereB is the set of pixels in the block under consideration
and|B| is the number of elements inB.

A block-matching algorithm can be designed such as to
minimize the above expression. Other positive and strictly
monotonic functions of the motion compensated residual
could also be used as a criterion.

3.2 Single motion and two transparent motions

In the case of single motion the corresponding block-
matching constraint is defined as the difference between the
motion compensated image and the next image. Hence the
function to be minimized is

BM1(x,v) =
1

2σ2

∑
y∈B

(
f0(y − v)− f1(y)

)2
. (19)

Similarly, for two motions the expression

BM2(x,v1,v2) =
1

4σ2

∑
y∈B

e(f,y,v1,v2)2 (20)

needs to be minimized with respect tov1 andv2. If there
is only one motion insideB, i.e. f1(x) = f0(x − v), the
valueBM1(x,v) will even in the ideal noise-free case, be
small for the correct motion vectorv. But if B includes

two motions, the valueBM1 will be different from zero for
any vectorv, because one vector cannot compensate for two
motions. Accordingly, in case of two transparent motions,
BM2(x,v1,v2) will be small if we insert the two correct
motion vectorsv1 andv2. Such a Gaussian model has been
previously used in e.g. [2, 4], but may alternatively be re-
placed by Generalized Gaussian models [1, 19].

3.3 Occluded motions

In case of occluded motions, Equations (8) and (9) are no
longer valid because Equation (1) defines an additive super-
position that does not hold at occlusions. We model the oc-
clusion of the layerg2 by the occluding layerg1 by

fk(x) = γ(x− kv1)g1(x− kv1)
+ (1− γ(x− kv1))g2(x− kv2),

(21)

with γ = 1 at positions whereg1 occludesg2 andγ = 0
otherwise, see [12]. By evaluating the error criterion (9) for
two transparent motions in combination with the above model
for occlusions we obtain

e(f,x,v1,v2) =
(
γ(x− 2v1)− γ(x− v1 − v2)

)(
g2(x− v1 − v2)− g2(x− 2v1)

)
.

(22)

Depending on the motion vectors, the difference between the
γ-function terms on the right hand-side of the above equation
may be different from zero. This will be the case in the vicin-
ity of an occluding boundary. Therefore, if we intend to apply
the block-matching error criterion for transparent motions to
estimate two motions at the occluding boundary, the value of
BM2(x,v1,v2) will be high althoughv1 andv2 are the cor-
rect motion vectors. The size of the region around the occlud-
ing boundary where this happens depends on the difference
between the velocities. In fact, by replacingy = x − 2v1 in
the right-hand side of the above equation, we find

e(f,x,v1,v2) =
(
γ(y)− γ(y + v1 − v2)

)(
g2(y + v1 − v2)− g2(y)

)
,

(23)

which means that the distortion is restricted to a strip with
a maximum width of|v1 − v2|. For the simplest case of a
straight-line border, the strip is|N · (v1 − v2)| wide, where
N is the unit vector normal to the border. Due to this distor-
tion, it is not guaranteed that the minimum ofBM2 yields the
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correct motion vectors. The problem of estimating two mo-
tions at the occluding boundary can be reduced to the problem
of transparent motions if we exclude the region of distortion
from the calculation of the residual error. Therefore, how-
ever, we need to find the location of the occluding boundary.
A more formal treatment of motions at the occluding bound-
ary is given in [6, 5].

3.4 Selection of the adequate transparent-motion model

An obvious possibility to find the most adequate local mo-
tion model would be to use a discriminant functions or, for
the simple cases of one or two motions, a likelihood ratio
test. To this end, one would have to find the minimum block-
matching values for all motion models before the test can be
carried out.

Instead, we opt for a computationally more efficient signif-
icance test, which allows for a hierarchical estimation of the
motion vectors. From the discussion in the previous section,
BMN (x,v1, . . . ,vN ) is χ2-distributed with|B| degrees of
freedom. If we allow a percentageα of misclassification, we
can derive a thresholdTN for BMN as follows: let the null-
hypothesisH0 mean that the model ofN transparent motion
is correct.TN is then determined by

Prob(BMN > TN |H0) = α. (24)

Thus,H0 is rejected ifBMN > TN . The correct threshold
can be obtained by using tables of theχ2 distribution.

3.5 The hierarchical algorithm

We will now show how to integrate the above considera-
tions into a hierarchical algorithm that can deal with the above
mentioned cases of single, transparent and occluded motions.
The rationale is that we estimate the confidence for local mo-
tion models of increasing complexity and then estimate the
motion parameters according to the adequate model. The hi-
erarchical algorithm is described below and summarized in
Algorithm 1. An extension to more than two motions is con-
ceptually straightforward.

The algorithm first finds by full search the motion vec-
tor v that minimizesBM1. It then tests whether or not
this value is explainable by the underlying noise model: if
BM1(x,v) < T1 one motion is assigned to the current loca-
tion. Otherwise, it proceeds to find the motion vectorsv1,v2

that minimizeBM2 and then tests forBM2(x,v1,v2) < T2.
If both motion models are rejected, the location is marked as
belonging to an occlusion boundary. In the second iteration
we determine motion vectors for the above marked locations
only. The algorithm is then iterated at the marked locations
and the size of the block is increased at each iteration to en-
sure that there are sufficient non-marked pixels in the block.
The estimation of the motion vectors for the marked pixels
is based on non-marked pixels only, because the marked pix-
els violate the assumption of one or two additive motions and

Algorithm 1 Hierarchical algorithm
1: Compute thresholdsT1 andT2

2: for all pixelsdo
3: Compute minimum value ofBM1 and the correspond-

ing motion vector.
4: if BM1 < T1 then
5: Choose single-motion model
6: else
7: Compute the minimum value ofBM2 and the two

motion vectors
8: if BM2 < T2 then
9: Choose model for two transparent motions

10: else
11: Mark pixel
12: end if
13: end if
14: end for
15: Increase block size and repeat lines 3 to 14 for all marked

pixels. Ignore marked pixels inside the current block and
recomputeT1 andT2 according to the number of non-
marked pixels in the block.

thus the minimization of eitherBM1 or BM2 would not ren-
der the correct motions. The iteration is repeated until motion
vectors are found for all marked pixels or a maximum number
of iterations is reached. For each marked pixel the thresholds
have to be adapted according to the number of non-marked
pixels in the block (degrees of freedom). This two-phase ap-
proach enables us to compute two motions at the occluding
boundary by avoiding the non-zero terms on the right side of
Equation (23).

4. Motion estimation using Markov random fields

The algorithms proposed in the previous sections are based
on spatio-temporal relations of image intensity but do not
consider spatial and temporal relationships between the mo-
tion vectors. This seems unsatisfactory because regions cor-
responding to moving objects tend to be of compact shape
with smooth motion-vector fields. Sets of isolated moving
points with non-smooth motion vector fields are unlikely to
occur in natural images. Regularization of the motion vec-
tor fields is widely used for optical flow estimation, and has
been proposed for multiple motions as well [21]. Since we
here view motion estimation as making statistical observa-
tions, we choose to increase robustness against noise by using
a stochastic framework based on Markov random fields (sim-
ilar to how it was used in [3] for motion detection and in [4]
for single motion estimation) in combination with the block-
matching constraint. This approach has three major benefits:
firstly, it allows to select the most probable motion model (the
correct number of observed motion vectors) in the presence
of noise; secondly, it ensures the spatio-temporal smoothness
of the motion fields; thirdly, it simultaneously provides a seg-
mentation of the images based on the local number of mo-
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tions. In the following we will present a detailed estimation
algorithm for up to two transparent motions. A generalization
to more than two motions is straightforward.

4.1 Bayesian formulation for two motions

For each pixelx and time stepk, we seek the motion vec-
torsv1 andv2 and a binary segmentation values ∈ {0, 1},
which represents the number of observed motions at this par-
ticular pixel. The segmentation takes the values = 0 in re-
gions with a single motion ands = 1 in regions with two
transparent motions. Static patterns are a special case of sin-
gle motion with zero velocity. The aim is to estimate the tuple
uk(x) = (v1(x),v2(x), s(x)) at each pixel usingN +1 = 3
successive images. According to the maximum a posteriori
principle we wish to estimate the most probable segmentation
and motion vector fields for the current frame given the obser-
vationsfk, fk−1, fk−2. The estimated fielduk = {uk(x)}
hence satisfies

uk = arg max
u

p(u|fk, fk−1, fk−2), (25)

wherep(u|fk, fk−1, fk−2) is the posterior PDF for a tupleu
given the observationsfk, fk−1, fk−2. Invoking Bayes’ theo-
rem, we rewrite the above relations as

uk = arg max
u

p(fk, fk−1, fk−2|u) p(u). (26)

The prior pdfp(u) ensures that this estimate is consistent
with our smoothness expectations and the conditional PDF
p(fk, fk−1, fk−2|u) describes the relationship between the
observed images and the unknown motion fields.

4.2 The observation model

The segmentation result provides the number of observed
motions at each pixel. Depending on this segmentation, we
have to select the corresponding motion model to specify the
likelihood p(fk, fk−1, fk−2|u). From Section 3.1, we know
that the motion compensated difference (7) isN (0, 2Nσ2)-
distributed. We wish to useBM1 if the segmentations indi-
cates that there is only one motion, i.e.s(x) = 0. Otherwise,
we would switch to the model for two motions (BM2).

The following constraint formalizes the above require-
ments:

p(fk,fk−1, fk−2|u) ∝∏
x

[
(1− s(x))(4πσ2)−|B|/2e−BM1(x,v1(x))

+ s(x)(8πσ2)−|B|/2e−BM2(x,v1(x),v2(x))
]
.

(27)

To extend the above equation to the case of more motions, one
would replace the expression(1 − s(x)) by a segmentation
functions1(x), ands(x) by a second segmentation function
s2(x). Next, we will specify the priorp(u), which completes
the observation model.

4.3 Spatial smoothness

The specification of the joint densityp(u) of all tuples
u(x) should make the expected motion fields more likely
than others. The Markov assumption simplifies the specifi-
cation by definition of only local statistical dependencies of
the tuples. Invoking the Hammersley-Clifford theorem, we
can writep(u) as a Gibbs density function:

p(u) =
1
Z

e−λE(u), (28)

with Z being a normalization constant. The parameterλ con-
trols the influence of the smoothing. The energyE(u) should
therefore be small in case of locally smooth vector fields and
segmentations. Due to the Markovian assumption,E(u) can
be divided into two local energy termsEL(x,u) according to

E(u) =
∑
x

EL(x,u). (29)

The local energy termsEL(x,u) depend on the motion vec-
tors, the segmentation values at pixelx and at pixels in the
neighborhoodNx. In our case, the neighborhoodNx con-
tains the eight pixels that are adjacent to pixelx. To capture
both the smoothness of the velocities and the segmentation,
we divide the local energy terms into two parts. The term
ELs

measures the smoothness of the segmentation andELv

the smoothness of the motion fields, such that

EL(x,u) = ELs(x,u) + ELv (x,u). (30)

To obtain locally smooth motion vector fields we penalize dif-
ferences between adjacent motion vectors at two neighboring
positionsx andy. In case where we have two motion vec-
tors at both locations, we denote with the same index those
vectors, which are more similar, i.e.v1(x) is closer tov1(y)
than tov2(y). This becomes problematic in cases where the
number of motions varies in a given neighborhood, for in-
stance due to object boundaries. In such cases, again based
on the assumption of transparent layers, we apply the smooth-
ness constraint to the single motion and only one of the ad-
jacent two motions. The one motion is chosen as the one
closest to the single motion and denoted withv1. With this
convention, the local smoothness term is

ELv
(x,u) =

∑
y∈Nx

(
‖v1(x)− v1(y)‖2

+ s(x)s(y)‖v2(x)− v2(y)‖2
)
.

(31)

The above requirement is now controlled by the term
s(x)s(y).

The functionELs is specified in the same way as in [3]
where it was used for motion segmentation. The procedure
consists of counting the number of pixels inside the neigh-
borhoodNx that have the same segmentation values(x). The
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Figure 1. Results for transparent and occluded motions. Image (a) shows a frame of the transparent-
motion test sequence and (b) the estimated motion vectors. Image (c) depicts a frame of an occlusion
test sequence, (d) and (e) the estimated vectors after the first and second phase, respectively.

resulting number is then subtracted from the maximum num-
ber of pixels with equal segmentation values (which is eight).
The local segmentation energy is defined by

ELs(x,u) = 8− wNx , (32)

wherewNx
denotes the number of pixels inNx having the

same segmentation value as the pixelx. This energy term
is minimal if all pixels inside the neighborhood are of the
same motion type as the considered pixel. Obviously, if the
numberwNx

(s(x)) increases, the probability for the pixelsx
to be classified as having the common motion type will also
increase.

4.4 The optimization algorithm

The function to be maximized in Equation (26) is defined
as the product of (27) and (28) with corresponding energies

given by (31) and (32), respectively. By use of the negative
logarithm, its maximization is equivalent to the minimization
of

C(f2, f1, f0|u) =
∑
x

[(
1− s(x)

)
BM1(x,v1(x))

+ s(x)BM2(x,v1(x),v2(x))
]

+ λE(u) + log(
√

2)|B||s|,
(33)

where|s| =
∑

x s(x). The constants that do not influence the
minimization have been dropped.

We minimize this criterion by using deterministic relax-
ation of the ICM-type [9] although this procedure does not
necessarily converge to the global minimum of the functional.
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An annealing algorithm which is able to find the global min-
imum has been proposed in [13] but is not used here because
it is too slow. For each frame, the optimization routine starts
with the result obtained for the previous frame as an initial
guess. In case of sequences with fast motions, this might not
be a good guess. One possibility to overcome this problem
is to start with a motion-predicted initial guess. As long the
motion does not change abruptly such a prediction is close
to the actual motion vectors and provides temporal regular-
ization. For some applications, however, an explicit temporal
smoothing could improve the results. We outline the neces-
sary modifications of the algorithm below.

4.5 Temporal Smoothness

The estimateuk−1 is available whenuk is estimated. For
simplicity, successive images anduk−1 are modeled as being
conditionally independent, i.e.,

p(fk,fk−1, fk−2,uk−1|u) =
p(fk, fk−1, fk−2|u) p(uk−1|u).

(34)

The MAP-estimate is then given by

uk = arg max
u

p(fk, fk−1, fk−2|u) p(uk−1|u) p(u). (35)

The new estimation criterion includes an additional compo-
nentp(uk−1|u) that captures the relation between the previ-
ous motion fieldsuk−1 and the current ones.

To specifyp(uk−1|u), we again use a Gaussian model and
make two simplifications: firstly, each vectorvk = vk(x) de-
pends (implicitly) only on its predecessorvk−1(x+vk) along
the motion trajectory, thus making it more likely that both
vectors in the likelihood-term belong to the same object; sec-
ondly, we assume conditional statistical independence. The
likelihood now simplifies to

p(uk−1|u) =
∏
x

p(vk−1
1 (x + vk

1)|vk
1)p(vk−1

1 (x + vk
2)|vk

2),

(36)
with

p(vk−1
i (x + vk

i )|vk
i ) =

1
ZT

exp(−λT ‖(vk−1
i (x + vk

i )− vk
i ‖2)

(37)

for i=1,2, whereZT is a normalization constant, andλT a
weighting factor. The above term can be included in the opti-
mization algorithm defined by Equation (33).

5. Results

5.1 Results for the confidence-based hierarchical algo-
rithm

In Figure (1) examples of transparent and occluded mo-
tions are given. Image (a) shows the center frame of an im-
ages sequence containing areas with only one and with two

transparent motions. The area with two transparent motions
can be identified as the brighter box-shaped part in the image.
One layer is moving with a velocity of one pixel per frame to
the right and the other layer with one pixel per frame down-
wards. The estimated motion vectors for every other pixel are
depicted in (b). The rectangle in (b) marks the outline of the
area with two motions. Note that in both areas the motions
are correctly estimated. For this example we used a block-
size of5 × 5 pixels. Image (c) shows the center frame of an
occlusion test sequence and the images (d) and (e) the results
after the first and second phase of the algorithm respectively.
Again, motion vectors are plotted only for every other pixel.
The motions for both regions are very well detected except for
a few outliers. After the second phase, two motions are esti-
mated in an area around the occluding boundary, where no
motion could be computed in the first phase. Window sizes
of 5 × 5 and9 × 9 were used for first and second phase, re-
spectively. In both examples Gaussian distributed noise was
added to the sequences resulting in a signal-to-noise ratio of
35 dB. For the significance test we setα = 0.001. Image (a)
in Figure 2 shows the setup for a real occlusion example. A
toy train that carries a texture image is moving to the right in
front of a leftward moving background texture. Both move-
ments are approximately one pixel per frame. The rectangle
in (a) marks the region for which we show the estimated mo-
tions vectors. Image (b) depicts this selected region and also
shows the outline of the region where no motions could be
estimated after the first phase of the algorithm (due to the oc-
cluding boundary). The size of this region roughly matches
the block-size of7 × 7 pixels. The estimated motion vectors
obtained after the first phase are shown in (c). Note that, ex-
cept for a view outliers, the estimates are accurate. The final
motion vectors (after the second phase) are divided for better
visualization and shown in the two panels (d) and (e). Image
(d) shows the leftward motions and image (e) the rightward
motions. Note that both motions in the region around the oc-
cluding boundary are accurately estimated. For the second
phase we used a block-size of18 × 18 pixels. In the first
phase we setα = 0.001 for one motion andα = 0.05 for two
motions (since we did not expect transparent motions). In the
second phase we hadα = 0.001 for both cases.

5.2 Results obtained with the Markov-random-fields ex-
tension

Figure (3) demonstrates the performance of the Markov
Random Field approach. The test sequence is the same as
the one used for testing the hierarchical algorithm but with a
signal-to-noise ratio of only 17 dB. We initialized the algo-
rithm with one motion and zero velocity everywhere. Image
(a) shows one frame of the test sequence, image (b) the es-
timated motion vectors (plotted for every other pixel) for the
MRF algorithm after three iterations, and (c) the estimated
motions obtained by using the hierarchical algorithm. Again
the square frame marks the outline of the area with two mo-
tions. For both algorithms we used a block-size of3 × 3
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Figure 2. Results for real videos with occluding objects. Image (a) depicts a single frame of the
sequence, (b) the area for which the motion vectors are shown, (c) the motion vectors after the first
phase, (d) and (e) the estimated motions after the second phase, divided into two images for better
visualization. See text for details.

pixels. The parameterλ = 1 was used for the MRF approach
andα = 0.001 for the hierarchical algorithm. Note that the
MRF algorithm has considerably less outliers than the hier-
archical algorithm. In some small regions of the MRF-based
output the motions remain zero as initialized. The results ob-
tained eight frames later are depicted in the second row of
figure (3). Again we observe less outliers for the MRF algo-
rithm and now the regions with zero velocities disappeared.

6. Conclusions

We first derived a block-matching constraint for an arbi-
trary number of transparent overlaid motions. To estimateN
motions,N + 1 images and2N blocks are needed. We then
analyzed how the block-matching constraint behaves near the

occluding boundary in case of occluded motions. Based on
these theoretical results we developed a hierarchical algo-
rithm, which enables the estimation of single, multiple trans-
parent, and occluded motions. The estimation of occluded
motions is performed in a second phase by excluding the pix-
els near the occluding boundary found in the first phase. The
hierarchical algorithm has been tested with both real video
sequences and synthetic images corrupted by additive noise.
It performs well for a SNR down to 30 dB which is a typical
value for low-end cameras. Nevertheless, for some applica-
tions, e.g. sequences resulting from medical imagery, a more
robust algorithm may be needed. We therefore derived a regu-
larized version of the block-matching algorithm for transpar-
ent motions by using Markov Random Fields and have shown
that this extension significantly increases robustness.
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Figure 3. Results for transparent motions obtained with MRFs: Image (a) shows a frame of the trans-
parent motion sequence with a SNR of 17 dB, (b) the estimated velocities for the MRF-approach and
(c) the results for the hierarchical algorithm. The second row show the estimated motion vectors eight
frames later.
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