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Convolutive Blind Source Separation Based on
Disjointness Maximization of Subband Signals

Tiemin Mei and Alfred Mertins, Senior Member, IEEE

Abstract—The concept of disjoint component analysis (DCA) is
based on the fact that different speech or audio signals are typi-
cally more disjoint than mixtures of them. This letter studies the
problem of blind separation of convolutive mixtures through the
subband-wise maximization of the disjointness of time-frequency
representations of the signals. In our approach, we first define a fre-
quency-dependent measure representing the closeness to disjoint-
ness of a group of subband signals. Then, this frequency-depen-
dent measure is integrated to form an objective function that only
depends on the time-domain parameters of the separation system.
Lastly, an efficient natural-gradient-based learning rule is devel-
oped for the update of the separation-system coefficients.

Index Terms—Convolutive blind source separation, disjointness
maximization.

I. INTRODUCTION

LIND source separation (BSS) has been an active research
B topic during the past decade due to its potential applica-
tions in many areas. As a special case, separation of instanta-
neous mixtures is very successful so far and many approaches
have been proposed [1]-[5]. However, a more challenging situ-
ation is the separation of convolutive mixtures with long mixing
channels [6]-[10].

A general way for solving the convolutive BSS problem
is to extend the approaches for instantaneous mixtures to the
case of convolutive mixtures, which can be done in either the
time or frequency domain. An advantage of the time-domain
approaches is that they usually do not suffer from the so-called
unknown permutation problem [6]. Frequency-domain ap-
proaches are considered as promising techniques for BSS in
cases of very long mixing channels. It is known that convolutive
mixtures in the time domain can be considered as instantaneous
mixtures in the frequency domain, so approaches for instanta-
neous mixture separation can be applied to frequency-domain
representations of convolutive mixtures. However, the permu-
tation ambiguity, which is inherited from instantaneous BSS,
makes convolutive BSS very difficult [7], [8].

Extensive work has been done to remedy the permutation
problem. One way is to identify the permutation based on signal
and/or BSS-system properties [7], [8]. Other approaches cope
with the problem by trying to avoid permutations rather than
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identifying them. This is, for example, done by building objec-
tive functions in the frequency domain that keep the advantages
of the frequency-domain approaches while capturing the opti-
mizing parameters in the time domain [13], [14]. Because the
frequency-domain objective function is integrated in order to
yield the time-domain filter coefficients, the method is referred
to as the frequency-domain integrated objective approach. One
of the advantages of this technique is the high computational
efficiency due to the use of the fast Fourier transform. Another
one is the ability to overcome the local permutation problem.
This is achieved by constraining the separation filters to a lim-
ited length with a window during the implementation, which is
equivalent to imposing smoothness constraints on the separation
filters in the frequency domain.

In [11], the author proposed a BSS method for instantaneous
mixtures based on the maximization of the disjointness of sepa-
rated signals. In this setup, disjointness of signals means that the
signals have periods of activity and periods of inactivity and that
the active periods of different signals are distributed in a disjoint
manner along the time axis. For time-domain speech signals of
competing speakers, at least a partial disjointness is present, as
there are usually periods of silence in a speech signal. A higher
degree of disjointness is often achieved in the time-frequency
domain, in which speech signals may even be disjoint orthog-
onal, a property which is also known as W-disjoint orthogo-
nality [16], [17]. The reason for the disjointness in the time-fre-
quency domain is that speech has a very sparse representation
in this domain [18].

In this letter, we combine the DCA principle from [11]
with the concept of an integrated frequency-domain objective
function from [13]. The DCA is carried out in subbands in the
time-frequency domain. The result is a novel approach for blind
source separation of convolutive mixtures with state-of-the-art
separation performance.

II. PROBLEM STATEMENT

In this letter, we only consider the /NV-by-/V cases. The mixing
channels are assumed to be FIR of length L, and the separation
filters are also FIR with length M > (N — 1)(L — 1) + 1 [9].
We assume that the sources are real and at least partly disjoint
to each other in the time-frequency domain. Furthermore, we
assume that the mixing system is linear and time invariant. We
use s(n), x(n) and y(n) to denote the sources, the mixtures,
and the separated outputs, respectively.

The noise-free convolutive mixing model is given as

x(n) = A(n) xs(n) = z_: A(l)s(n—1) )]

where A(n) = [ai;(n)] v v is the FIR-filter mixing matrix. We
assume that the transfer function matrix of the mixing system,
A(z) = Efl;é A(n)z~",isnonsingular on the unit circle of the
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complex plane, which guarantees that the sources are separable.
The separation-system output is given as

M-—1

y(n) = H(n)xx(n) = Y H()x(n—1) 2)

=0

where H(n) = [hi;(n)] y, v is the separation system. From (1)
and (2), we have y(n) = G(n)+*s(n) withG(n) = H(n)*A(n)
being the global system. This can be rewritten in the z-domain
as Y(z) = G(2)S(z) with G(z) = H(z)A(z). BSS is con-
sidered to be successful if the components of the output vector
y(n) are permuted and filtered versions of the signal sources in
s(n), which means that G(z) = PD(z), where P is a permuta-
tion matrix and D(z) is a diagonal transfer function matrix. The
transfer functions in D(z) lead to a coloration of sources. How-
ever, such effects are not considered in this letter. They can, for
example, be reduced through postfiltering based on the Minimal
Distortion Principle [21].

III. BSS BASED ON THE MAXIMIZATION OF
DISJOINTNESS OF SUBBAND SIGNALS

In the time-frequency domain, the observed signals are de-
composed into a set of narrowband components via the short-
time Fourier transform (STFT), and the separation criterion is
defined for each frequency bin, that is, for each subband of the
time-frequency representation. The separation process can be
described by the equation

Y (1,¢7) = H(e*)X (1, ™) 3)
where [ is the time index and

Y(l,ej“’):[yl(l,ej“),yg(l,ej“’),...,yN(l,ej“’)]T 4)
X (1, e7) = [a1 (1, &), (L, 3), ..o an(Le)] . (5)

For a mixture of disjoint signals, the maximization of the dis-
jointness of the outputs of the separation system will lead to the
separation of the sources. In a time-domain setup, this is equiv-
alent to the minimization of the “overlap” between the outputs
of the separation system [11]. The “overlap” is defined as

Oij = Elyilly;l] ©)

where E[.] denotes the expectation and 2,7 = 1,2,...,N. O;;
is essentially the cross-correlation between the signals |y;| and
ly;|. For audio signals containing pauses, we have |y;| > 0
during their active periods and |y;| = 0 during their silent pe-
riods. So, if two signals y; and y; are exactly disjoint to each
other, the overlap O;; will be zero. Of course, in practice, there
will typically be some overlap.

In the following, we exploit the DCA idea to define an opti-
mality criterion for each subband of the time-frequency repre-
sentation. For this purpose, we define a vector of the absolute
values of subband signals as

Y(1,e) = [|yr (1, e)], [yall, )|, Jun (1, )]
(7)

and the correlation matrix of vector Y (I, ¢/) as

Poo(l,w)=F [?(17 YT, ejw)] . )
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The off-diagonal entries of P4 (/,w) contain the overlaps
O;; = E[lyi(l,¢7*)]||y, (I, e?™)|], which means that the diago-
nalization of P54 (/,w) is equivalent to the minimization of
the overlaps between all pairs of subband signals. Therefore,
according to [11], the diagonalization of P54 (/,w) will result
in the separation of sources.

In accordance with the frequency-domain integrated objec-
tive function in [13] and similar second-order statistics-based
approaches found in [14] and [15], we define the following fre-
quency-domain integrated objective function that will be opti-
mized according to the time-domain parameters of the separa-
tion system:

F (L H ) o, 21) = %/ de ©

where D35 (l,w) = diag[Pg(l,w)]. The operator diag].]
sets the off-diagonal elements of a square matrix to zero, and
it turns a vector into a diagonal matrix.

The derivation according to [13] and [19] of the natural-gra-
dient based learning rule for this optimization problem yields

H''(n) = H'(n) — / E [B (D%{(z,w)

_p%@w)) ?YH] H!(e)ed*ndw  (10)

where

B= dla’g([(yl (l ejw)/|yl (l ejw)|)7

(ya(l,7) /g, 7)), ... (yn (1, €7%) /Ly (L, #)]T) s a
diagonal matrix which is made up of the phases of the subband
signals.

In practice, the statistical expectation is replaced with
time-averaging. For implementation reasons, we do not want
the time-averaged term D%% (lw) — P%% (l,w) in (10) to be
involved in a second time-averaging, so we rewrite (10) in the
following form:

™ N
H™ ' (n) = H'(n)—p / (ZakE [BL(N)diag[Y*]
k=1

—T

X|yk(l,ejw)H)Hl(ejw)ejw"dw an

where a; (kK = 1,2,...,N) is a diagonal matrix whose di-
agonal entries are the kth column of the matrix D%_?l%?(l ,w) —
P%%(l, w), L(N) is an N-by-N matrix whose entries are ones,
and the superscript * is the conjugation operator.

For comparison purposes, we also define the zero-mean am-
plitude-modulation signals [12]

3i(l,e) = [ya(l, )| = E [Jual, )]

and derive a corresponding learning rule based on the matrices

(12)
Poo(lw) =E[YYT"] (13)
and

Di\(i\((l’w) = diag |:P§§(l w)} (14)
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where Y = [51(0,¢7),52(1,e%), ..., Gn(l,e5*)] . The
learning rules corresponding to (15) and its implementation
version (16) are

(w)

H™* ' (n) = H'(n) — / E [B (D;{

Y
—P%((l,w)) S?YH] H ()i dw  (15)

™

H''(n) = H'(n) — / (Z aE [BL(N)diag[Y*]

—T

X (1, e’)] )Hl(ejw)ej“"dw (16)

where B is the same as that defined in (10), but ay
(k=1,2,...,N) is a diagonal matrix whose diagonal entries
are the kth column of the matrix D=L (I, w) — P%% (I, w).

Both algorithms (10) and (15) are essentially decorrelation
approaches. The only difference between them is rooted in the
choice of signals that are to be decorrelated. While the overlap
Oi; = E[lyi(1,e7*)] |y; (1, e’*)|] will directly measure the dis-
jointness of two signals y;(l,e’*) and y;(l, ), the correla-
tion term E[7; (1, ¢7*)7; (1, ¢7*)] cannot do this. As we will see
in simulations, the algorithm (15) is not as good as the disjoint-
ness maximization algorithm (10).

IV. SIMULATIONS

A. Simulation Results for the New Algorithm

Two 4-s long speech signals were selected from the
TIMIT database [20] and used in this simulation. The se-
lected files are named TEST\DRI\FAKSO\SAl.wav and
TEST\DRI\FELCO\SI1386.wav. The sampling frequency was
16 kHz. For illustration purposes, the signals are depicted
in Fig. 1(a). As one can see from the plots, the time-domain
waveforms have a partial disjointness property. The mixing
channel impulse responses have been measured in a regular
laboratory room of size 6.9 m x 5.0 m x 3.0 m. Two loud-
speakers were placed at a distance of 1.25 m from each other,
and two microphones were placed at a distance of 1 m from
the axis connecting the loudspeakers. The distance between
the microphones was 35 cm. The mixing channel impulse re-
sponses were identified to a length of 4096 taps at the sampling
frequency of 16 kHz. They are depicted in Fig. 2.

In the following, results will be presented with respect to
signal-to-interference ratios (SIRs), which were calculated with
the following formulas for both the mixtures and the separated
channels: SIR; = 10log;(ps, /s, ) if the channel is consid-
ered to contain source 1, and SIR; = 10log;(ps, /ps, ) when
the channel is considered to contain source 2, where p,, and p,,
are the powers of sources 1 and 2 contained within the channel,
respectively.

The unmixing filters have been initialized with zeros ex-
cept for the zero-time delayed matrix H(0), which was
chosen as the identity matrix: H(0) = I. For algorithms
(10) and (15), the time-varying learning rate was set to
@ = 0.001 — (0.001 — 0.0001)¢/tmax (fmax = 3345) and
= 0.01—(0.01—0.001)¢/tmax (tmax = 1300), respectively,
where ¢t is the iteration index and ?,,,, 1S the maximum number
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Fig. 1. Signals from the experiment. (a) Two sources from TIMIT database,
sampled at 16 kHz. (b) Mixtures with SIRs of 5.86 dB and 6.36 dB, respectively.
(c) Separated signals with SIRs of 21.56 dB and 15.14 dB, respectively.
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Fig. 2. Mixing system A(n), consisting of four 4096-tap FIR filters.

of iterations. The expectations of stochastic variables were
replaced with time-moving averages, where the time-moving
averaging factor was set to « = 0.6. The separation filters
were of length 2048. The FFT block size was set to 8192. The
overlaps between FFT blocks were 7936 and 4096 for (10) and
(15), respectively.

For comparison purposes, simulations with the methods
in [7], [8], and [13] were carried out with separation-filter
lengths of 2048 taps as well. The method in [7] was used
with a time-varying learning rate of p = 0.003 — (0.003 —
0.0003)t/tmax With tmax = 1840, the overlap between
FFT blocks was 7168, and the nonlinear function was
tanh(5R(Y)) + j * tanh(5Z(Y)), where R(.) and Z(.)
are the real and imaginary part operators, respectively. For the
method of [8], five correlation matrices were simultaneously
diagonalized, where 8000 iterations at a learning rate on 1.0
were carried out. The method of [13] was used with the same
parameters as those for algorithm (10).

The SIRs before and after the separation are listed in Table 1.
Firstly, we see that the disjointness maximization algorithm (10)
is better than the amplitude-modulation decorrelation algorithm
given in (15). Secondly, the results in Table I show that the new
approach (10) performs better than the methods in [7] and [8],
and slightly better than the one in [13]. While the advantages
of algorithm (10) over the methods in [7] and [8] were found
to be consistent over many experiments with different settings,
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TABLE I
SIRs BEFORE AND AFTER THE SEPARATION WITH DIFFERENT ALGORITHMS

Before sep. | Alg. (10) Alg. (15). Parra’s Alg. (8] Smaragdis” Alg. [7] Mei's Alg. [13]_
SIR; [ 586dB | 2156 dB | 14.92dB | 1296dB | 134548 @B
SIR, | 6.36 dB | T5.04dB [ 1320 dB | 1484 dB |

8(n) 8
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Fig. 3. Impulse responses of the global system G(n) = H(n) * A(n).
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Fig. 4. Subband SIR via frequency of the separated signals.

the comparison with the method from [13] showed that the per-
formance of both algorithms is quite compatible. Depending on
the learning rate and iteration time, either the one or the other
algorithm performed slightly better.

To further illustrate the results obtained with the proposed
algorithm (10), the mixtures and the separated signals are shown
in Fig. 1(b) and (c), respectively. The impulse responses of the
global system are depicted in Fig. 3.

B. Investigation on Local Permutation

Permutation is always a problem when frequency-domain
BSS approaches are mentioned. However, there will be no such
problem if a frequency-domain defined integrated objective
function is optimized with respect to time-domain parameters
[13]. To show this, let us suppose that each of the outputs
is dominated by one source, the other source is considered
as reference. For each subband signal, the SIR is computed.
Obviously, if all subbands and all outputs have SIRs of the
same sign, it implies that no permutation has happened. For
the example in Section IV-A, Fig. 4 shows that the proposed
algorithm is not disturbed by the permutation problem.
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V. CONCLUSIONS

In this letter, we proposed a frequency-domain integrated ob-
jective function for convolutive BSS on the basis of the maxi-
mization of subband-wise disjointness of the separated signals.
The permutation problem was avoided through the frequency-
domain integration and time-domain optimization. Simulation
results for convolutive mixtures of speech show that the algo-
rithm, which primarily maximizes disjointness rather than in-
dependence, is valid and of high performance for the separation
of convolutive mixtures.
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