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Abstract

We propose a versatile signal processing and analysis framework for bioelectrical data, and in9
particular for neural recordings and EEG. Within this framework the signal is decomposed into
subbands using fast wavelet transform algorithms, executed in real-time on a current digital sig-11
nal processors hardware platform. The decomposition is used to perform various processing and
analysis tasks. Besides fast implementation of high, band, low pass 5lters, the decomposition is13
used for denoising and lossy, as well as lossless compression. Furthermore speci5c electrophys-
iologic analysis tasks like spike detection and sorting are performed within this decomposition15
scheme.
c© 2002 Published by Elsevier Science B.V.17
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1. Overview19

Recording neural activity from a high number of neurons is a key issue in understand-
ing how the brain works. Within the project VSAMUEL we developed successfully21
a versatile data acquisition system based on DSP boards [3]. The system is used for
continuous neural data acquisiton in vivo or in vitro with a high channel count (up23
to 128 channels) at sampling rate F = 50 kHz with a precision of 16 bits per sample.
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Important online data processing tasks include 5ltering and spike detection and classi5-1
cation, but also compression, transmission and storage. We propose a signal processing
framework within which these tasks can be performed in an elegant way.3

2. Wavelet transform and lifting scheme

The signal is decomposed into N + 1 subbands by a N -level wavelet transform5
(WT). The subbands dj; j=1; : : : ; N represent the frequency band [F=2j+1; F=2j+2] and
the subband aN represents [0; F=2N+1]. Fig. 1 shows the 5lter bank for N =3. In each7
step the signal is decomposed by applying complementary 5lters to aj, i.e. a high
pass g̃ and a low pass h̃, which are determined by the selected wavelet. The results of9
both 5lter operations are subsampled by a factor of two, leading to subbands dj+1 and
aj+1. Note, that the number of coeJcients in dj+1 and aj+1 is equal to the number11
of coeJcients in aj. The wavelet transform is implemented using the lifting scheme
which is faster than the standard implementation (Fig. 1). It is done in-place, and with13
a small modi5cation it implements a WT that maps integers onto integers [1] while
preserving the possibility of perfect reconstruction. Therefore, this implementation of15
the WT is well suited for realtime processing using digital signal processors (DSP).

The lifting scheme provides another point of view to the wavelet transform. Basically17
it consists of three stages, which are a split, a predict, and an update stage as illustrated
in Fig. 2 [6]. First the signal is split such that we obtain two sequences dj and aj which19
in our case consist of sample points with odd and with even indices, respectively. Now,21

Fig. 1. Filter bank with three levels.

Fig. 2. Basic structure of the lifting scheme: (a) decomposition, and (b) reconstruction.
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we predict the values in dj based on aj as P(aj). Under the assumption that the1
signal is continuous we have a good chance that our prediction is rather close to the
actual values. We compute the diKerence between prediction and actual values, and3
keep these values which are likely to be small: dj+1 = dj+1 − P(aj+1). In order to
preserve certain properties of the original signal in the coeJcients aj, e.g. the mean5
value, we need the third stage, which is the update stage. Hereby, the values in aj
are modi5ed by using an appropriate update operator on values in dj and U (dj):7
aj+1 = aj+1 + U (dj+1).

The perfect reconstruction property of the lifting scheme is obvious, because we can9
obtain aj from aj+1 and dj+1 by inverting the data Low and the signs as shown in Fig.
2(b). Note, that this holds for arbitrary predict and update operators. Therefore, if these11
operators include a rounding to the next integer we obtain a wavelet transform that
maps integer onto integers. It is possible to implement arbitrary wavelet transformations13
as shown in [1] by using multiple prediction and update operators successively. The
respective operators are computed according to the given mother wavelet.15

Using the lifting scheme and a routine optimized for our DSP, we can apply a six
level Daubechies 2 decomposition 5lter bank on 32 channels sampled at 50 kHz in17
real time.

3. Filter19

The decomposition allows a simple implementation of 5lters with diKerent high pass,
band pass, or low pass characteristics. Consider, e.g. a neural recording sampled at21
F = 50 kHz which contains both 5eld potentials and action potentials. If it is decom-
posed by a 6-level WT into 7 subbands, then the 5eld potentials are found in subband23
a6. Setting the coeJcients of a6 to zero, eliminates the 5eld potentials and corresponds
to a high pass 5lter (Fig. 3). The respective low pass 5lter which eliminates the action25
potentials is obtained by setting the coeJcients dj for j=1; : : : ; 6 to zero. A comparison
of the results of both methods can be found in Fig. 3. Fig. 4 shows a comparison of27
the respective frequency responses. The decomposition also allows the implementation
of band pass 5lters. Possible cut-oK frequencies for band pass 5lter based on the WT29
are determined by the sampling rate and the number of levels. Arbitrary 5lters can be
implemented if a Wavelet Packet Transform (WPT, see [8]) is utilized. However, the31
computation of the WPT transform involves more operations than the WT. Because
the number of operations has to be as low as possible to allow real-time computation33
on our DSP, we currently restrict ourselves to the WT.

4. Compression and denoising35

One important property of the WT is that it decorrelates the signal, i.e. the main
information about the signal is collected in a few large coeJcients, while the details37
are collected in many small coeJcients. The average information content, also called39
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Fig. 3. High pass 5ltering using IIR versus elimination of wavelet approximation coeJcients. The original
neural recording has been decomposed with a 6 level WT using the Daubechies 4 wavelet. The coeJcients
of a6 have been set to zero, corresponding to a high pass 5ltering with cut-oK at 390:62 Hz. In a second
approach the signal has been 5ltered by a 4-pole IIR high pass 5lter with cut-oK at frequency 400 Hz,
which was designed using the Butterworth method. Spike shapes in the IIR 5ltered result show signi5cant
distortions, while the spike shapes are apparently not distorted by the wavelet based high pass. Field potentials
are eliminated well by both 5lters.
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(a) Filter bank
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(b) IIR filter

Fig. 4. Comparison of 5lter bank based (a) and IIR (b) high and low pass 5lter. For the 5lter bank Daubechies
wavelet with four vanishing moments has been used. The IIR 5lter have order 4 and cut oK frequency at
400 Hz. The magnitudes of the frequency responses are comparable, but the phase of the 5lter bank is linear
while the phase of the IIR 5lter is nonlinear, which is the reason for the distortions found in Fig. 3.

entropy, can be computed as1

E(s) =−
∑

v∈Values of s

p(v) log2(p(v)); (1)

where p(v) is the probability of occurrence of value v within signal s. The entropy
is measured in bits per sample and since our signals are sampled in 16 bit resolution,3
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Fig. 5. Entropy reduction by wavelet transformation is illustrated by a comparison of the signal value and
the wavelet coeJcient histograms: (a) signal values, and (b) wavelet coeJcients.
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Fig. 6. Compression and denoising. The comparison of the original neural signal at the top and the denoised
signal in the middle reveals no apparent distortion of the signal. This is con5rmed by the diKerence of signal
and denoised signal, i.e. the removed noise, which is shown at the bottom. The entropy of the decomposition
drops from 8.34 bits per sample down to 1.04 bits per coeJcient. In other words the compression rate can
be improved by a factor of 8.

we can de5ne the optimal achievable compression rate, e.g. with HuKman coding,1
as E(s)=16. The entropy of the decomposition is smaller than the entropy of the raw
signal (Fig. 5). The entropy of a neural recording from a rat was quanti5ed in [7] to be3
about 13.9 bits per sample and it is about 8.5 bits per coeJcient for the decomposition.
Therefore, the compression rate can be improved from 0.86 for the raw data down to5
0.53 for the decomposition.

Another important task is the denoising of neural recordings. The typical background7
noise of neural recordings is mainly found in the 5rst few levels d1; : : : ; d3 of the de-
composition. Under the reasonable assumption that the background noise has a Gaussian9
distribution [5], a universal threshold can be found as � =

√
2�2 log(n) where �2 is

the variance of the Gaussian noise and n is the length of the sequence [2]. Since the11
true variance �2 is usually unknown, it is estimated from the coeJcients in d1 which
are dominated by the noise. We use the standard deviation estimator median absolute13
deviation (MAD): �2=median(|d1|)=0:6745. Using the median absolute value instead of
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Fig. 7. Spike detection base on wavelet coeJcients. Detected spikes are marked by stems. On the right an
enlarged section of the signal is shown, which reveals that the signal-to-noise ratio is quite small, but still
the spikes are detected well.

the mean absolute value, this estimation is robust against large coeJcients representing1
the signal that might occur in d1.

Compression and denoising are closely related. The thresholded decomposition which3
represents the denoised signal has a much lower entropy than the original decomposition
and thus can be compressed with a better rate. Depending on the chosen thresholds,5
the compression rate can reach values below 0.1 without losing a signi5cant part of
the signal. With the universal threshold for instance we obtain a compression rate of7
about 0.06 for neural recordings from a rat (Fig. 6). Lossy compression which does
not distort the signal signi5cantly is particularly useful for longterm recordings.9

5. Spike detection

The decomposition is used to analyse neural recordings. Spikes, for instance, are11
represented by a few large coeJcients in subbands d2; : : : ; d6. Therefore, spike detection
can be implemented by a threshold based method which uses the wavelet coeJcients.13
In Fig. 7 such a method has been used to detect spike in a neural recording from a rat,
which contains 5eld potentials and action potentials. In [4] another method to detect15
spikes based on wavelet coeJcients is proposed.

6. Conclusions17

Altogether we can state, that our DAQ system is able to record from a high number
of channels, and furthermore it can perform sophisticated processing of the incoming19
electrophysiological data in realtime, which in our case is a wavelet decomposition.
The data obtained from the wavelet decomposition represents the original data without21
loss, and it provides an elegant way to compress and to denoise the signals, and also
to do further processing, like, e.g. spike detection.23
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