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Abstract— Autonomous wireless devices for healthcare 

monitoring become a reality only if such devices are embedded 

with enough intelligent and processing capabilities to minimize 

the amount of data being transferred through the wireless 

network. Also, the embedded processing capability must be 

made energy efficient so that the device can operate on 

scavenged energy or very limited battery power. This paper 

reports the development of a real-time EEG 

(Electroencephalography) application based on DWT (Discrete 

Wavelet Transform) and its mapping and optimization on an 

Application Specific Instruction set Processor (ASIP). It shows 

the drastic energy reduction that can be achieved by cross-

optimization of the algorithm and the ASIP architecture. Our 

results indicate that such cross-optimization can reduced the 

dynamic energy by more than 80%.  

 
Index Terms— ASIP, DWT, EEG, Real-Time, Ultra-Low 

Power.  

I. INTRODUCTION 

Recent advances in miniaturized wireless autonomous 

devices are expected to enable ambulatory and non-invasive 

monitoring of health parameters, thus increasing quality of 

services in healthcare systems in the coming years. There 

are still important technology challenges to overcome in 

order to achieve widespread use of wireless intelligent 

monitoring devices, as reported previously [1]. Some of the 

tasks to materialize such an intelligent wireless autonomous 

system include the development of low-power sensors to 

collect data from human body, of real-time and efficient 

algorithms for analysis of biomedical signals, of platforms 

to process the data with very low energy consumption, and 

of radios to transmit the analyzed data to a monitoring 

center. For example, current devices used for monitoring of 

bio-potential signals, such as Electroencephalography 

(EEG), Electrocardiography (ECG), and Electromyography 

(EMG) typically include long wires connecting sensors, 

attached to the patient body, to a data acquisition box. The 

implementation of an autonomous wireless intelligent 

sensor with small size, low power, embedded processing 

 
 

capabilities and low-cost would remove the burdens due to 

wires and enable monitoring of the patient in normal 

conditions. A first generation of such a system was 

previously reported, and shown in an application for sleep 

monitoring in a home environment [2]-[3].  

Today’s wireless sensor nodes spend significant of their 

power budget in wireless communication as shown in [4]. 

While power-efficient wireless communication is essential 

in the autonomy of WSN, the problem can be alleviated by 

local processing and reducing the amount of data needed to 

be transferred over the wireless link. However, local 

processing of the data is also expensive if not performed 

effectively. While today some processing can be performed 

using commercial micro-controllers, such as TI-MSP430, 

their computational power is limited and their power 

efficiency is not acceptable for autonomous WSN.  

In [5], it was shown that by careful code and architecture 

co-optimization, significant power reduction can be 

achieved when running ECG R-peak detection algorithm. 

This paper reports the development of a real-time 

biomedical application analyzing EEG signal based on 

DWT (Discrete Wavelet Transform) and its mapping on an 

ASIP under-development in-house for bio-medical 

application domain. The code and ASIP optimizations were 

performed to achieve high energy efficiency.  

The paper is organized as follows. Next section gives a 

brief introduction to the DWT-based EEG. Section III 

presents application mapping and optimizations and the 

application mapping and architectural optimization. Section 

IV presents the results. Section V outlines the conclusions 

and future work.  

II. EEG SIGNAL PROCESSING 

A. EEG Overview 

This section introduces the basic of EEG signals and a 

widely used technique for processing the signals. EEG is the 
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Table 1. Characteristics and the origin of brain waves 

Type of 

wave 

Frequency 

range [Hz] 

Characteristics Source of generation 

Alpha 8~12 Resting condition, sitting in a relaxed position with 

eyes closed  

Cortical, thalamic nuclei and brain stem 

Beta 12~30 Mental thought and activity (eyes open) Inside the cortex 

Gamma >30 Cognitive functions, sensory stimuli, motoric activity Local areas of the cortex and brain stem 

Delta 2~4 Deep sleep  Sub-cortical areas 

Theta 4~8 Asleep  Cortical, hippocampal, brain stem and thalamus 

 

measurement of brain electrical activities using electrodes, 

which are placed on a patient’s scalp following the 

international 10-20 system as shown in Figure 1[6]. 

Different frequency components exist in the measured 

signals. EEG waves are classified into five frequency bands 

(Table 1). Each frequency band is generated by different 

regions of the brain and indicates certain features in the 

patient such as his depth of sleep. The recorded EEG 

signals are used as input for health care monitoring and 

diagnosis, such as epileptic seizure detection, emotion 

monitoring, sleep monitoring, etc. For instance, one of the 

early signs of epileptic seizure is the presence of 

characteristic transient waveforms (spikes and sharp waves) 

in EEG data.  

 

Figure 1. Electrode placement scheme on scalp 

Several methods exist to extract the oscillations of a 

specific frequency from EEG data. Among the most popular 

are wavelet transform (WT), Fourier transform (FT), 

autoregressive model and bi-spectral analysis. Since the 

EEG signals are non-stationary, (discrete) wavelet transform 

(DWT) is widely used for EEG analysis [8]-[11]. This is 

because the DWT maintains both time and frequency 

resolution, which is essential for non-stationary signals. 

DWT is explained in the next subsection. 

A. DWT-based EEG Analysis  

This subsection provides an overview of DWT without 

going into the mathematical details behind it. Interested 

readers are referred to [8] for further in-depth explanation. 

DWT provides a time-frequency decomposition of the 

signal and is usually implemented using two FIR filters, a 

high-pass and a low-pass filter [15], derived from the 

mother wavelet. The DWT of a signal is calculated by 

recursively applying these filters (Figure 2). The filters’ 

outputs are down-sampled by a factor of two. This 

procedure is repeated until the desired frequency band 

remains in the signal.  

At each iteration of the recursion (i.e. at each step of the 

decomposition scale), two types of coefficients are left: the 

details (d), representing high frequencies, and the 

approximation (a), representing low frequencies of the input 

signal of the respective decomposition step. During the 

computation, the approximation coefficients are used as 

input for the next decomposition level and the details will 

be kept for the analysis, as illustrated in Figure 2 .  

As mentioned earlier, at each decomposition scale, the 

signals are down sampled. This introduces time-variance 

and is not suitable for biomedical signal analysis (EEG, 

ECG). To solve the aliasing issue caused by down sampling, 

the un-decimated DWT was introduced. It is computed in a 

similar way, except that the down-sampling step is by-

passed. Practically, this can be easy implemented by up-

sampling the filter coefficients at each decomposition level, 

i.e. by inserting zeros between the filter coefficients. This is 

known as the “trous algorithm” [15], and is used as a 

starting point for our research.  
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Figure 2. Recursive calculation of DWT 

On-the-fly analysis of EEG signals is essential to reduce 

the output latency. Furthermore, in a wireless sensor node, 

where the processor has limited resources, it is important to 

limit the amount of memory space required. Therefore, we 

implemented an un-decimated DWT algorithm that meets 
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the real-time and limited memory space constraints by 

optimization of filter coefficient up-sampling.  

Table 2 shows the data buffer size, the program memory 

size, and the latency of the original EEG algorithm and its 

real-time implementation.  The results were obtained on an 

Intel Core 2 duo 1.8 GHz using Visual Studio 2005 

compiler. 

 Data 

Buffer 

Size 

Program 

Memory 

Size 

Latency 

Original 

Implementation 

20 kB 184 kB 1022 

samples 

Real-Rime 

Implementation 

4 kB 40 kB 256 

samples 

Table 2: Algorithm Performance  

Furthermore, since resource constrained low power 

architectures usually are fixed-point architectures, we 

converted the algorithm from floating point to fixed-point 

format. The acquired signal from the sensor already is in 

12-bit format. Therefore a conversion into fixed-point 

format was applied only to the FIR filter coefficients and 

computations. A fixed-point implementation has been done 

in 32-bit representation. The output of the fixed-point 

representation was compared with the output of the floating-

point format. The error distribution of the output is shown 

in Figure 3. The 32-bit fixed-point implementation 

introduces an error range of [-5, +4] with a mean error value 

of 0.4899, which is negligible relative to the signal 

magnitude. 

 

 

Figure 3. The output error PDF using 32-bit fixed-point 

implementation 

The real-time implementation was verified with a use 

case scenario “opening and closing eyes”. Open-eye and 

closed-eye statues correspond to the brain wave beta (12-30 

Hz) and the brain wave alpha (8-12 Hz) respectively. For 

the experiment, EEG was recorded at O1 and O2 (the 

occipital and visual locations on the scalp) locations.  

The upper part of Figure 4 shows the recorded EEG data 

at O2 location. The opening and closing of eyes happen 

every 20 seconds. Alpha waves are expected in the sixth 

scale, whereas beta waves appear in the fifth scale. To 

validate this assumption a decomposition depth of six was 

applied to the signal. From the figure, one can see that in 

closed-eye status, an increase in alpha activity is present 

(the lower part of Figure 4).  

 

Figure 4. The raw EEG data sampled at 1kHz is shown 

in the upper part. The lower part shows the energy 

content of the decomposition at each scale.  

In the following section, the code and ASIP (Application 

Specific Instruction set Processor (ASIP) optimizations are 

described. 

III.  APPLICATION MAPPING AND OPTIMIZATIONS 

EEG signal processing can be performed on a range of 

hardware platforms including general purpose processor, 

DSP, ASIP, or ASIC. While general purpose processors are 

the most flexible in terms of programming capability, they 

consume substantial amount of power, which makes them 

unsuitable for a WSN. On the other hand, ASIC’s, while 

power efficient, provides little to no programmability, 

which makes them cost-inefficient in the presence of 

changing algorithm. For this reason, the Human++ activity 

at IMEC is focusing on ASIP designs, which provide some 

degree of programmability while still power efficient.  

Today, there are a few commercially available design 

tool suits for ASIP design. One of such a tool is Silicon 

Hive [17], used for architectural exploration in this study. 

A. ASIP Design Flow 

Silicon Hive processors are described in a high level 

object oriented language from which a processor and a C 

compiler for that processor can be generated [17]. The 

compiled code can be run on the processor using a 

simulation environment. This way the bottlenecks can be 

identified and optimizations can be performed.  

The high-level processor description allows for quick 

changes in the architecture and fast architectural 

exploration. This way, application specific processors can 

be designed easily.  

For the optimized processor, then Silicon Hive can 

generate the synthesizable RTL code. The commercially 

available CAD tools for synthesis and place & route are 

then used to complete the design flow from RTL to GDSII. 
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This way the acquired power and timing information are 

more accurate as will be discussed in Section IV. 

B. Code and Architectural Optimizations 

The reference processor (Figure 5) is a 3 issue slot 

machine connected to a bus and controlled by a host, which 

can be a simple state machine. Each issue slot has its own 

local register file and separate set of functional units. 

Looking at the interfaces, issue slot 1 has two FIFO 

connections, issue slot 2 is connected to the local data 

memory and issue slot 3 has a master interface to the bus, 

which can be used for accessing external memory. The 

processor reads its instructions out of a 128-bit wide 

program memory. 

 

Figure 5. Reference architecture 

The optimizations are performed with the objective of 

reducing the cycle count. The idea is that if the cycle count 

is reduced with minimal increase in overall architecture 

power consumption, the execution time (i.e. active time) is 

reduced and that directly translates to dynamic energy 

reduction. Leakage reduction techniques then can be 

applied during the idle time to reduce the standby leakage 

consumption. The rest of this section presents different 

optimization steps and their impacts on the cycle count. The 

result is summarized in Table 3.  

1) Code Enhancement:  

The following code enhancements were performed to 

reduce the cycle count. 

- Memory access reduction: Analyzing the execution 

statistics, it turns out that a performance bottleneck is 

having only one load/store unit in issue slot 2 to 

communicate with the data memory. This results in 

many stall cycles for instructions requiring access to 

the data memory. The memory access should be as few 

as possible because of their limited availability and 

also their high energy per access. Therefore, the code 

has to be rewritten into a compact form to avoid many 

load operations.  

- Conditional statement: Conditional statements such 

as if-else or switch-case statements should be removed 

when possible because they consume clock cycles for 

checking whether the condition is true or not. 

Rewriting the code into a loop kernel and removing 

the conditional statements gives a more compact code, 

reducing the cycle count.  

- Native data type: We also remove non-native data 

types whenever possible. This is beneficial because 

whenever arithmetic operations are performed on data 

types shorter than integer, the compiler is obliged to 

insert sign-extend operations after it to make sure that 

the value stays within the range of the data type.  

Rewriting the most prominent code segment into a loop 

kernel and changing the non-native data types into 32-bit 

integer native data type reduce the cycle count from 7494 

clock cycles to 5982 clock cycles per sample, a 20% 

reduction. 

2) Circular Buffer 

There are six linear buffers in the code, each of which 

corresponding to a different decomposition level, n. In the 

algorithm, a sliding window principle is applied to the data 

such that all elements of a buffer were shifted by one to 

overwrite the oldest sample in the buffer and to insert the 

new incoming sample at the end of the buffer. Because the 

buffer size increases from decomposition level n-1 to 

decomposition level n by 2
n
, the required move operations 

increases by 2
n 
. On the other hand, the register files are not 

large enough to keep the entire buffer and it must be stored 

in the memory. To solve the problem, we used a circular 

buffer instead of a linear buffer. In terms of hardware, the 

circular buffer is a storage element with two ports for write 

and read. The one advantage of circular buffer versus shift 

buffer is having write- and read-pointers and using them in 

parallel. The other advantage comes from rotating the read- 

and write-pointers instead of physically moving elements of 

a buffer.  

In practice, a circular buffer is a linear buffer with 

circular addressing mode. Therefore a manual bound 

checking for the end of the circle using modulo arithmetic is 

required.  

After implementing the circular buffer and running the 

rewritten code on the processor, the cycle count was not 

decreased. On the contrary, the cycle count was increased 

by a factor of 2. The conclusion is that this implementation 

is only efficient for processors that support the circular 

addressing mode.  

The modulo arithmetic operation can be replaced by the 

binary mask operation. In other words, the number to use as 

a mask in order to perform a modulo 2n is 2n-1. The 

following example explains the concept. 

Modulo operation: x = y % 8   x = y % 16 

Equivalent binary mask 

operation: 

x = y & 7 x = y & 15 

Implementing the circular buffer using the binary mask 

operation reduces the cycle count from 5982 to 2352, a 60% 

reduction.  

3) Custom Operations 

Silicon Hive provides two ways of running an application 

on the processor. One is without any customer instruction. 

The complier decides which path will be taken in the 

processor. The other way is to force the compiler to use 

customer instruction. The following custom operations were 

used and their impacts were analyzed. 
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- Modadd: Such a operation can be used in the 

circular buffer (see III.B.2). With this operation, 

the the intermediate code from III.B.2) can be 

rewritten with the custom operation modadd.  

- Mac: Since the loop kernel uses convolution, the 

computation is done using multiplication and a 

successive addition. This can be also optimized 

using a multiply accumulate unit (MAC), which is 

usually available on a common DSP processor.  

However, the reference processor does not 

support the MAC function unit. Therefore, the 

processor architecture needs to be modified to 

implement the MAC operation. To increase the 

parallelism, it would be more efficient to insert 

MAC unit into issue slot 1. 

Adding the MAC function unit reduces the cycle count 

from to 2352 to 1713. Further modification was applied to 

issue slot 2 by removing the multiplication function unit. 

Since all multiplications in the code is done by the MAC 

function unit, the multiplication unit is redundant and can 

removed.  

4) Exhaustive Scheduling and Software Pipelining 

As a result of the above optimizations, the main part of 

the code now has an optimized loop kernel that does not 

have any control flow. Moreover, all iterations of the loop 

are independent. The computations in any given iteration do 

not depend on the results of the previous iterations. Thus we 

can apply software pipelining, a.k.a. loop-folding.  

We can also have a better utilization of different 

functional units/issue slots. We use the compiler option for 

exhaustive scheduling in the Silicon Hive compiler. 

Applying the two mentioned techniques reduces the cycle 

count from 1713 to 1415.  

5) Removing Global Variables 

The use of global variables should be kept minimal, 

because global variables are stored in the memory and 

loading them from the memory and storing them to the 

memory is expensive. Whenever possible the global 

variables should be changed to local variables to keep them 

in the register files. This step reduces the cycle count from 

1415 to 1396.  

The next section presents the power measurement results. 

Table 3. Performance optimization steps 

Step Optimization Techniques Cycles/Sample 

1 Initial Code 7494 

2 Code Enhancement (reducing 

conditional branches) 

5982 

3 Employing Circular Buffer 2352 

4 Using Custom Operation (mod 

& mac) 
1713 

5 Exhaustive Scheduling, software 

pipelining  

1415 

6 Code Enhancement (removing 

globals) 

1396 

IV. RESULTS 

To obtain the power consumption of running the DWT-

based EEG algorithm on the optimized architecture, the 

VHDL model of the processor was generated. Then, the 

VHDL design was synthesized and placed & routed using 

TSMC 90 nm process technology. The memory blocks were 

generated using a commercial memory generator. 

The DWT-based EEG algorithm then was simulated on 

the back-annotated netlist of processor after place and route 

using Cadence NCSim. The value change data (VCD) 

information, generated during the simulation was used by 

Synopsys PrimeTime to get power numbers. 

The reference processor runs at 100 MHz and consumes 

68.7 micro-Watt/MHz dynamic energy and 100 micro-Watt 

of leakage. It takes 7494 cycles to process one EEG sample. 

Given that EEG samples arrive at 1 kHz, the duty cycle of 

the application is approximately 8%. The active 

energy/sample is approximately 515 nJ. The leakage 

energy/sample is 100 nJ. Since the active energy is 

substantially larger than leakage energy, our initial effort 

was concentrated on reducing the active energy by reducing 

the cycle counts as described in the previous Section III.B. 

The energy consumption per sample calculated from the 

cycle count at each optimization step is shown in Figure 6.  

 

Figure 6. Energy consumption per sample in each 

optimization step 

It shows an initially exponential drop of energy 

consumption during the optimization steps. After the 4
th
 

optimization step, the cycle count goes down slowly and so 

does the energy saving. The optimization steps reduce the 

active energy consumption from 515 nJ to 96 nJ. The new 

duty cycle of the application after optimization is about 1% 

now. With the reduced duty cycle, the active energy is 

reduced to 96 pJ, making the leakage energy also a 

dominant component in the overall system energy 

consumption. Further optimizations are required to reduce 

leakage. The leakage power consumption of the architecture 

is shown in Figure 7 [5].  

 

Figure 7. Leakage power break down 
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It can be seen that the power consumption of memory 

dominates over the power consumption of the logic. 

Memory consumes 89% of the total power. This needs to be 

addressed in future. One way of reducing the memory 

power consumption was memory width reduction. The 

power consumption of the program memory is 39% and 

decreasing the width of the VLIW processor reduces it. 

However, by having a 2-issue-slot VLIW machine, the cycle 

count goes up by 6.5% but the power consumption in the 

program memory goes down. This brings a gain of 30% in 

the energy consumption.  

V. CONCLUSION 

This paper provides a low power platform for processing 

EEG signal by cross-optimizing the EEG application and 

the processing architecture. Such processing platform can 

be embedded into wireless devices for health care 

monitoring system to perform local signal processing and to 

reduce the wireless data transfer, which consumes 

substantial energy. This work is a step toward making the 

wireless health care monitoring devices a reality. We were 

able to reduce the dynamic energy consumption (per EEG 

sample) from 515 nJ to 96 nJ, an 81% reduction. Currently, 

we are working on adapting the code and the architecture 

for processing multiple-lead EEG signals using vector 

processing.  
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