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ABSTRACT
The paradigm of event detection is general enough to be used
in a multitude of applications from various domains. In this
contribution we describe an improved method to mark the ap-
pearance of blood mixed with contrast agent in a sequence of
fluoroscopic images of the coronary arteries. This is needed
for various computer-vision based technologies aimed at sup-
porting the physician during a Percutaneous Transluminal
Coronary Angioplasty (PTCA). PTCA is a surgical interven-
tion conducted for the purpose of reopening blocked coro-
nary arteries. We show how to extract a feature describing the
amount of contrast agent present in each fluoroscopic image
and how to establish a threshold over this feature, to separate
the event of contrast-agent appearing from the normal case,
when no contrast agent is present. For this purpose we esti-
mate the likelihood of feature-values given the normal case
and decide to mark the event for images whose feature has a
very small likelihood. We test our algorithm on a number of
sequences acquired in clinical routine.

1. INTRODUCTION

The problem of event detection can be divided into three
groups [4]: point events, context event and collective events.
To detect an event one analyzes single observations or groups
of observations relative to a certain process. In the case of
point events, the observations we try to select are very differ-
ent from the rest of the data and appear very rarely. Under
this definition looking for point events is in some cases simi-
lar to detecting outliers. For context events, one no longer an-
alyzes single observations, but groups of successive observa-
tions and marks an event if a single observation is strikingly
different from the others in its group, even if the observation
itself is no outlier with respect to entire data. In the case of
collective events, we again analyze groups of observations,
and mark an event if a group exhibits certain characteristics,
usually other than those specific to a context event. In this
contribution we describe a point-event detection algorithm.

Coronary arteries disease occurs when the vessels sup-
plying oxygenated blood to the heart muscle narrow as a con-
sequence of plaque buildup. Treatment is facilitated by Per-
cutaneous transluminal coronary angioplasty. During such
an intervention, the narrowing is eliminated usually by in-
flating a balloon at that position in the vessel. The balloon
is brought in place with the help of a fluoroscopic imaging
system. The imaging system functions in imaging sessions,
which usually differ from one another by the position of the
imaging device. To make the vessels visible under X-ray for
a while, a bolus of radio-opaque contrast agent is injected
through a catheter positioned into the vessels. Algorithms

have been developed [1], [6] to use the contrasted images,
also called coronary angiograms, to build a dynamic vessel
roadmap such that the physician still sees the vessels even af-
ter the contrast agent has washed out, and can thus navigate
better. In this context we need to find out when contrast agent
first appears in the fluoroscopic images during an imaging
session. Considering that previous to that moment only im-
ages without vessels have been recorded, this is a point-event
detection problem.

In [5] we have described a method to detect the first im-
age of a contrast agent injection by means of a significance
test. In this paper we show how to improve this method by
estimating the likelihood of the null hypothesis by means of
nonparametric probability density function (pdf) estimation,
rather than parametric under the Gaussian assumption. We
also provide a detailed description of the feature-extraction
process, test our algorithm on a larger set of sequences ac-
quired in clinical routine and quantitatively evaluate its per-
formance.

2. METHODS

For our vessel-event detection algorithm, we start by first
computing a feature related to the proportion of image area
occupied by vessels. We then establish a threshold over this
feature and mark the event at the moment when we record a
fluoroscopic image whose feature is above the threshold.

2.1 Vessel enhancement and feature extraction

To directly estimate the vessel area in fluoroscopic images we
need vessel segmentation, which is difficult due to the small
signal-to-noise ratio in most of the analyzed images. Thus,
instead of computing the vessel area, we introduce a vessel-
area-related feature. The vessel feature is computed from
a vessel map whose histogram can be assumed to consist of
two distinct distributions, one from background and one from
potentially occurring vessels. The vessel map is the result of
several enhancement steps aimed at improving separability
between background and vessels. As we seek to detect the
presence of contrast agent from the vessel-map histograms
rather than accurate segmentation or enhancement geared to-
ward the human observer, issues like border accuracy and
preservation of a certain “harmony” in the vessel map are of
less concern [2], [9].

The first step towards enhancing vessel contrast exploits
the property that, being filled by contrast agent, vessels are
locally darker than their immediate surroundings [2]. We se-
lect such structures and equalize the varying background by
a Bothat transform [7], thus reducing its standard deviation.
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Figure 1: Coronary angiogram (a) and result of morphologi-
cal processing (b).

The Bothat transform preserves though the grey level differ-
ence between background and vessels. This transform ap-
plied to image I is defined as:

B(I) = (I •B)− I (1)

the difference between the closing of the original image by
the structuring element B and the image itself. B has a cir-
cular shape slightly larger than the largest vessel. In the end
we invert the image, such that vessels are again darker than
background. A processing example is shown in Figure 1.
The purpose of the next enhancement steps is to transform
the additional absorption of contrasted vessels such that its
mean is considerably larger than the background mean.

An additional clue to vessels is their mostly strong and
jerky motion, which is caused by the beating heart [2] and
shifts them quickly over a distance of several vessel diam-
eters. When the vessel moves to a new position, absorp-
tion at this position will increase due to the contrast agent
within the vessel. Therefore, when calculating the pixel-
wise difference image between any given current image IC
and its predecessor IP, pixels with the new vessel positions
will tend to exhibit negative differences, while the vessel po-
sitions in the previous image will tend to show positive dif-
ferences. This effect is even more pronounced in rescaled
Bothat-transformed angiograms, since the Bothat transform
reduces background structures that would otherwise cause
clutter in the difference images. In a second motion-based
vessel-enhancement step, we therefore clip positive values in
the difference images D(IC, IP) = B(IC)−B(IP) to zero, and
add this result to the current transformed image:

M(I) = B(IC)+D≤0(IC, IP) (2)

Consequently, the moved vessel-tree regions will become
darker than before. Local minima of small extent present in
the clipped difference image D≤0(IC, IP), which are unlikely
to be caused by moving vessels, are removed by a morpho-
logical closing with a 3× 3 structuring element. A block
diagram of the processing chain and a processing result are
shown in Figure 2.

The Bothat transform selects all dark background struc-
tures comparable in size with the vessels including some
which are not genuine vessels but vessel-like artifacts
(i.e. vessel noise). As the motion-based enhancement step
is effective only for moved vessels, such noise still affects
motionless vessels. These noise structures have a small sur-
face, are dark but somewhat less contrasted than comparable
vessels, have mostly diffuse edges, and their shape is mostly

(a) (b)

Figure 2: Block diagram of spatiotemporal filtering (a) and
filtration result (b).

(a) (b)

Figure 3: Block diagram of derivative processing (a) and fi-
nal vessel map (b).

patch-like although some of them can be elongated and thin.
The patch-like vessel noise is due to the soft-tissue that the
X-rays encounter on their way through the body and is thus
ubiquitous. The surface it covers varies from image to image
as a consequence of the motion induced by the heart and by
the respiration. The elongated vessel noise is mainly due to
bone-tissue, it does not cover such a large area, it is localized,
and its surface is approximately constant. By contrast to the
patch-like noise, the influence of the elongated noise on our
algorithms can be ignored.

In the third and last vessel enhancement step, we attenu-
ate the patch-like noise. For this purpose, starting from the
result of the Bothat transform, we compute first the gradient-
norm and add it to the second derivative [10, 13] using em-
pirically determined weights:

E(I) = 0.55‖∇B(I)‖+0.45∆B(I) (3)

Then, we multiply this result pixelwise (�) with the result
of the motion-based enhancement to finally obtain the vessel
map:

V (I) = E(I)�M(I) (4)

E(I) is equivalent to a logical OR operation between the
results of the gradient-norm, which responds to contrasted
structures with sharp edges but does not respond to vessel-
like ridge-profiles, and the second derivative, which does.
Each operation responds to different vessel characteris-
tics, by combining them we increase the robustness of our
method. V (I) is the equivalent of a logical AND operation
between the result of the derivatives-based enhancement and
that of the motion-based enhancement, and is justified by the
fact that each procedure is based on different vessel proper-
ties, which are thus brought together. To correctly apply the
AND operation, the result of the motion-based enhancement
is rescaled before multiplication so that vessels are brighter
than background. A block diagram of the processing chain
and a vessel-map result are shown in Figure 3.

To detect interventional images where contrast agent is
also present, we desire a feature that reaches its peak once



the slightest trace of contrast agent appears. As the area still
influenced by vessel noise in an angiogram is about one per-
cent, we choose the 98 percentile as feature. Then, for im-
ages where contrast agent is present, where more than two
percents of all pixels in the analyzed image have high inten-
sities, the feature will exhibit higher values than for images
that show no vessels.

2.2 A nonparametric maximum-likelihood method for
vessel-event detection
The 98-percentile feature ideally builds a separable feature
space, as an image either shows some vessel structures or
shows only background. The 98 percentile is linked to the
vessel area. When contrast agent is injected into the vessels,
the 98 percentile increases rapidly as it is computed from
gray levels that are characteristic for pixels belonging to the
large, well-contrasted vessels.

Our problem can be also formulated like a binary classifi-
cation problem, where we try to separate vessel images from
background images. To find the optimal percentile threshold
T that separates these two classes we need to know some-
thing about them. This knowledge is usually extracted from
a sample of our feature space that covers both classes. How-
ever, it is very difficult to obtain such a sample here, because:
1. the strong intervention variability requires each case to

be treated independently, and thus it is pointless to gather
data from several patients, design a classifier and use it
on other patients.

2. the analysis of fluoroscopic on-line images clearly re-
quires a strictly causal processing, and thus one cannot
wait until the end of the sequence to analyze it.
All images recorded until the vessels appear show only

the background, therefore we formulate our problem like an
event-detection problem and consider that an image showing
no vessels represents the normal case, and an image with ves-
sels represents the event. Usually there are 10 to 15 seconds
from the moment a recording begins until vessels appear. By
a frame rate of at least 12 fps, this gives us quite a large
sample of background images that in turn makes possible the
computation of the likelihood of the vessel feature given the
background class. We can thus model the pdf of the “nor-
mal” case and mark the event as soon an image is recorded
whose feature has a small likelihood.

This likelihood approach to point-event detection is simi-
lar to a significance test [11] whose null hypothesis H0 is that
the investigated image shows no vessels [5].

p(y(n)|H0) is estimated from the samples acquired dur-
ing the first seconds of an imaging session. Instead of assum-
ing this pdf to be Gaussian and estimate it parametrically,
we propose here to estimate it nonparametrically by kernel
smoothing. For this purpose we use the Epanechnikov ker-
nel, that is defined as [8]:

KE =
{

3
4 · (1− x2) for |x| ≤ 1
0 else (5)

A plot of the kernel is known in Figure 4.
The nonparametric estimate of p(y(n)|H0) is then com-

puted by the function [14]:

f (x) =
1

n ·h
·

n

∑
i=1

KE

(
x−xi

h

)
(6)
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Figure 4: The Epanechnikov kernel.

where n is the total numbers of components in the sample
and h is the kernel bandwidth.

The bandwidth is fixed and is computed as [14]:

h =
[

8 ·
√

π ·R(KE)
3 ·µ2

2 (KE) ·n

] 1
5

· σ̂ (7)

with
σ̂ =

SIQR
Φ−1

( 3
4

)
−Φ−1

( 1
4

) (8)

where SIQR is the sample interquartile range, Φ−1(p) =√
2 ·er f−1(2 · p−1), p∈ (0,1) is the quantile function of the

normal distribution, R(KE) is defined as R(KE) =
∫

K2
E(z)dz

and µ2(KE) as µ2(KE) =
∫

z2 ·KE(z)dz. h was shown to min-
imize the estimator error for kernels with fixed bandwidth.

The event-threshold T is determined such that the prob-
ability of y(n) exceeding T given H0 is α , the significance
level. A typical value for α is α = 1 ·10−4. T is computed by
inverting Pr(y(n)> T |H0)= α based on p(y(n)|H0). As soon
as the 98-percentile y(n) exceeds this threshold, we mark the
vessel-event at the corresponding image.

To improve detection, before hypothesis testing we at-
tenuate the inherent variation of the feature curve by filtering
with a time-varying causal recursive first-order low-pass fil-
ter. A feature curve before and after filtering is shown in
Figure 5. The difference equation characterizing this filter is:

y(n) = a(n)x(n)+(1−a(n))y(n−1) (9)

where: a(n) =
{

k ∈ [0,1) if x(n)− x(n−1)≤ 3σ̂

1 else
with σ̂ the standard deviation estimated for the null hypoth-
esis from the first images of the sequence, as described in
equation (8). The filter thus smoothes within stationary time
intervals, but preserves what it assumes to be a transition.

3. EXPERIMENTS AND DISCUSSION

We have detected contrast-injections in 18 sequences. The
sequences were recorded during nine different interventions.
All sequences were acquired under similar conditions, i.e.,
constant X-ray dosage, no patient nor table movement. Thus,
the percentile-based feature responds only to variations of the
observable vessel surface. The patients were mostly allowed
to breath freely, but in some cases they were required to hold
their breath. Some patients had also an open-heart surgery,
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Figure 5: 98 percentile feature curve before (a) and after (b)
filtration for an interventional sequence. The vessel event is
marked by a bullet on the filtered feature curve.

and the sewing wires were visible in the analyzed sequences.
The analyzed sequences contained images with a resolution
of 512×512 pixels and were quantized to eight bits. To com-
pute the vessel map the same parameters set was used for all
sequences. In our experiments, the maximum vessel diam-
eter was 19 pixels. The window size of the Bothat operator
was thus chosen to be 21×21 pixels. We chose empirically
k = 0.1 for the low-pass filter.

The significance level was: α = 3 · 10−3. The size of
the kernel was: h = 2.3684, computed as average value over
six sequences. During testing, α and h were held constant
for all sequences. Alternatively we have also conducted ex-
periments where h was computed for each analyzed sequence
independently. The classification results do not change, how-
ever such an approach is more robust, as the algorithm adapts
better to the data.

For the learning phase we take 72 images, which are ac-
quired over a period of six seconds, with a frame rate of
12fps. This is justified by the need to sample at least one
complete respiration cycle, considering that under normal
circumstances, a human breathes between 15 to 20 times a
minute.

The algorithms described in this contribution give the so-
lution to a classification problem – i.e. for each new image
decide if it shows any vessels. We evaluate them using dis-
crepancy methods [3], [15], by analyzing the frequency of
correct and incorrect decisions relative to a golden standard
[12]. The golden-standard was achieved after detecting per
expert-visual analysis the first image which shows vessels.
Taking into consideration the variability of such a visual seg-
mentation, we consider that the automatic detection was suc-
cessful if it falls in an interval of plus/minus two images from
the expert-reference. In all sequences the detection was suc-
cessful.

We have segmented the 18 sequences currently available
to us also with the algorithm described in [5], where the like-
lihood of the normal case is estimated parametrically under
the Gaussian assumption. It detected the vessel-event cor-
rectly only in 15 sequences, which means that on this data
set, the new algorithm represents a 20% improvement over
the old one.

4. CONCLUSIONS

Our vessel-event detection algorithm works under a set of
assumptions. The most important one is that the first six
seconds of an imaging session show no vessels. As in this

interval we collect our “training” data, it should include a
good sample of the normal case and cover a few heart beats
and a full respiration cycle. This is particularly needed for
projection angles which permit also the visualization of the
diaphragm, as in this case, the 98-percentile follows the vari-
ation of the projected diaphragm area. We believe that this
is a consequence of the automatic gain control unit trying to
compensate the variation of the image brightness caused by
the moving diaphragm.

The contrast agent that reaches the vessels mixes with
blood and is carried away by this, thus at the end of the imag-
ing session, there is usually no contrast agent left into the
vessels. However, the contrast agent present in the catheter
is not washed away by blood. If a new imaging session be-
gins with the catheter with contrast agent in place, then there
will be something similar to vessels visible from the very be-
ginning. By handling each imaging session independently,
we are also robust against this case and can detect the mo-
ment when contrast agent reaches the vessels, even if some
parts of the catheter with contrast agent in it are visible in the
analyzed sequence.

In this contribution, we estimate the pdf of the feature
given the normal case nonparametrically. Nonparametric es-
timation provides a better, robuster statistical model for the
specific problem we are dealing with. This leads to better
results in comparison to a parametric approach. Using the
Epanechnikov kernel, the estimation result does no longer
have an infinite support. We have chosen this specific kernel,
also because it was proven to fulfill some optimality criteria
for nonparametric density estimation [14]: it minimizes the
mean squared error of the estimator.
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