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Abstract

Data acquisition for multisite neuron recordings still requires two main problems to
be solved — the reliable detection of spikes and the sorting of these spikes back to
their originating neurons. Approaches and solutions for both problems are difficult
to evaluate quantitatively, due to a lack of knowledge about the “truth behind the
experimental data. Biologically realistic simulations allow to overcome this funda-
mental problem and to control all the processes which lead to the measured data.
Within this framework the quantitative evaluation of the performance of data anal-
ysis methods becomes possible. In this paper the potential of Independent Compo-
nent Analysis (ICA) for spike sorting and detection is studied. A biologically realistic
simulation of hippocampal CA3 is used to get a measure of quality and usability of
ICA to solve the neural cocktail party problem. The results are promising.
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1 Introduction

It is now common knowledge that the processing power of the brain is based
on its billions of computing units, called neurons. These cells communicate
primarily by an exchange of action potentials among dynamically changing
networks. So far, their representing peaks in extracellular voltage are easiest
measured using low-traumatizing microelectrodes that are inserted into the
neuropile with as little damage as possible to the cells.
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Unfortunately, an electrode’s signal is not exclusively the recording of a sin-
gle neuron but a mixture of all neurons that surround this electrode. As a
consequence, the analysis of such a signal, especially the extraction of spikes
becomes difficult due to superposition and elimination effects. The problem is
similar to the infamous cocktail party problem, which can be solved by using a
multiplicity of recording devices and an appropriate signal analysis algorithm,
e.g. Independent Component Analysis.

Independent Component Analysis (ICA) is an extension of the widely used
Principal Component Analysis (PCA). It assumes that the measured signals
are mixtures of statistically independent sources. While PCA decorrelates the
measured signals for extracting the sources from these incoming mixtures,
ICA not only tries to find a decorrelated but statistically independent decom-
position of these mixtures [3]. Here, the statistically independent sources are
the neurons. Having extracted the source signals, sorting and detection be-
comes much easier, as each isolated signal then has the characteristics of the
corresponding neuron’s intracellular potential.

Brown et al. [2] already used ICA for spike sorting on 448-channel photo-
detector signals from insects. In this experiment, neurons were stimulated to
perform time dependent activity bursts, which then were used to evaluate
the performance of ICA. However, the drawback of this kind of evaluation is
that the ground truth is not known and can only be crudely estimated, based
either on an expected behavior of the system or on an subjective judgment of
an expert.

This fundamental problem can be bypassed by biologically realistic simula-
tions, e.g. with GENESIS [1]. GENESIS was originally developed to realisti-
cally simulate single neurons. The simulation of an ensemble of such neurons
can mimic extracellular recordings as if achieved with real multielectrodes.
But this time we know the ground truth, i.e., all the detailed processes behind
the measured data.

So far, neural activity has been measured by spikes that were extracted from
the raw signal trains. But recent results revealed that the reliability of the com-
monly used detection methods is not very high. Menne et al. [4,5] evaluated
different spike detection algorithms on the proposed GENESIS simulations. All
these methods, ranging from simple thresholds to discrete wavelets, showed
a rather bad overall detection performance. To reach a false acceptance rate
(FAR) of about 10%, most methods end up with a false rejection rate (FRR)
of almost 60%. As long as detection results are on this level, the usefulness
of sorting algorithms based on these detections is questionable (this might
be one of the reason why reference data for the performance of spike sorting
approaches can hardly be found).
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Fig. 1. (a) The GENESIS simulation setup. Pyramids show the position of pyra-
midal cells and interneurons, denoted by ff and fb, respectively. The electrode is
located at the cross. Contributing cells are large, detectable cells are unfilled. (b)
An example for a 1.5s multi-channel recording with 13 simulated electrodes.

2 Data and Methods

Menne et al. used GENESIS to mimic the behavior of a tiny part of the CA3
region of a rodent Hippocampus, using a network with 72 pyramidal cells and
18 interneurons. In Figure la this setup is shown. The pyramidal cell clones
are arranged in a 6 x 12 array. 9 feed-forward and 9 feed-backward interneurons
are distributed among them. The z-coordinate of all cells is randomly altered
in a range of £50um, and the clones are rotated randomly around the z-axis
to provide for more morphological variability. Compartment models according
to Traub et al. for the pyramidal cells [7] as well as for the interneurons [6]
are used. Extracellular recordings are taken as if recorded with a single mul-
tielectrode probe equipped with 13 microelectrodes, linearly arranged with a
stepwidth of 12.5um. The multielectrode yields a realistic signal of the trans-
membrane current, mimicking electrodes fixed on one side of an insulating
carrier [4].

Due to the distance energy loss of each cell as well as the estimated opening
angle, only some cells have the possibility to contribute to the mixed signal
above the noise level. Such cells are marked by unfilled triangles in Figure 1a.
Figure 1b shows typical recordings obtained with the proposed setup.

The number of statistical independent sources that ICA can extract is limited
by the number of recording channels. In our setup with 13 electrodes we can
seperate the signals of at most 13 cells. Since only 13 pyramidal cells and
2 interneurons are contributing spikes above the noise level, the number of
channels is in a reasonable size.

It should be mentioned again that with ICA we first perform the sorting and
then the detection task. This is illustrated in Figure 2. An IC is shown and,
determined with the scalar product, its best matching electrode. The third plot
shows the best matching principal component (PC), and the last plot shows



the original neuron signal. This cell is very well recorded by the electrode
shown. But still, it can be seen that some spikes get significant weaker or
disappear completely into the noise. Spikes from other cells get mixed into the
electrode signal as well. The IC inpressively matches the original cell signal,
while the PC is far from representing it.

For each IC, we have to decide whether or not it represents a neuron. We
decided to use the scalar product between the raw electrode signals and the
ICs as a measure. A high product indicates that an IC represents a neuron,
i.e., a certain subset of spikes are found on one of the electrodes as well. On
one hand, this is a drawback of our approach, as we constrain our results to
cells that can be seen on the raw data anyway. But on the other hand we
only need to use the electrode data for this measure. Hence, exactly the same
framework can be used on real data. Furthermore, as we will see later, with
the product between IC and electrode it is possible to estimate the position
of the represented neuron relative to all electrodes.

Using the knowledge about the original neuron signals, we calculated two
receiver operating characteristics curves (ROC curves), one for detection and
one for sorting. For the latter, no approaches exist for comparison. It might
itself be used as a benchmark in the future. The detection results can be
compared to the quality level of classic approaches. For spike detection, we
use each IC that was assigned to a neuron and combine the result. The spikes
in the ICs can simply be detected with a positive threshold, as these 1Cs
are assumed to represent the intracellular potentials of single neurons. For
determining the spike detection error the result is compared with the overall
spike train of all cells that are represented by the ICs.

A measure for the performance of the spike sorting is given by the ability to
detect the spikes of a neuron, based on its representing IC. I.e. for each IC
that is representing a neuron, we get a ROC curve, this time showing the
one-to-one comparison of each IC with its corresponding cell.

3 Results

We used a 1.5 seconds simulation of the described 13 channel multielectrode
recording to extract 13 independent components. Calculating the scalar prod-
uct between the electrodes and the independent components, we extracted six
ICs that matched good enough onto the electrode signals to be assumed to
represent neuron signals. At this point we completely discarded the remaining
seven ICs. In future work they might be taken into account as well. For the
“top 6, the scalar product matrix is shown in Figure 3a. Each column codes
the score between an IC and all 13 electrodes. The brightest spot in each col-
umn can be used as an estimate for the z-position of the neuron represented
by this IC. The “real positions of the corresponding pyramidal cell somas are
shown as well. They all match very well up to a constant offset.
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Fig. 2. The top plot shows an IC with a sufficiently high scalar product with at
least one of the electrode signals. The second plot shows the electrode signal which
is best matching with this IC. The third plot shows the best matching principal
component, and the last plot shows the signal of the assigned neuron, in this case
the intracellular potential of pyramidal cell 40. The IC represents the signal of its
assigned neuron very well.

In Figure 3b the ROC curves for the spike detection performance is shown.
So far, the best result for spike detection performance has been obtained for
a combined discrete wavelet and positive threshold (pt) method [4]. This ap-
proach reaches an equal error rate (EER) of only about 35%. We generated
two ROC curves for detection, one with all six ICs and one with the three
ICs representing the three cells closest to the electrode probe. Of course, the
better result is obtained for the latter one (EER=12%), however, also for all
six cells we still reach an EER of remarkable 14%.

Then we evaluated the sorting performance. For this purpose we generated a
ROC curve for each of the six ICs. Not to overdraw Figure 3b, we only show
the equal error rate (FAR=FRR) of each ROC curve. The sorting is harder
than the overall detection of spikes. For example, a false positive sorted spike
of one IC might be a correctly detected one if looked onto the whole set of
ICs (as we do it for detection). In spite of that, for the cells close to the
electrode probe we reach an impressive ERR of below 10% for spike sorting.
That means, for these cells we suceeded in reconstructing more than 90% of
all spikes that this cell has generated.

We applied the same procedure to a 5 second simulation. To test robustness
and time-independence, we performed ICA on the complete 5s and on an
arbitrary window of 1.5s length. Then we determined detection and sorting
performance on the signals within the 1.5s window with both the ICs from
the 5s and the 1.5s window. This was done for different 1.5s windows. All
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Fig. 3. (a) The scalar product of ICs and electrode signals, white for a 100% match.
Black triangles denote the location of the corresponding pyramidal cells. (b) The
black line with stars shows the ROC curve of a dwt+pt method, obtained by Menne
et al. [4]. The slash-dotted line shows the ROC curve for spike detection with all six
represented pyramidal cells as ground truth. The solid line shows the ROC curve
obtained for the three cells closest to the probe. The crosses mark the EER for the
sorting performance on each of the six ICs.

the time the results obtained with the ICs from the 5s intervall and the ICs
from the respective 1.5s interval were comparable. Thus, ICA on multisite
neuron recordings appears to be a quite time-independent and robust analysis
method.

4 Discussion

We have shown that ICA is a promising method for spike sorting. We succeeded
in extracting six independent components that represented six cells in the
surrounding of the multielectrode. We were able to estimate the position of
these cells up to a certain offset. Not only that we reached a competitive
result for the spike detection, we even got impressively good results for the
spike sorting task within the direct neigborhood of the probe. These results
were stable over time.

In the simulation, we used a probe with a very simple linear arrangment of the
electrodes along the z-axis. In the future it might be possible to design and
test different layouts either for optimal use with ICA or for any other purpose.
Then, it might be possible to generate even 3D maps of the recorded neurons
and to sort the corresponding spiking activities reliably.

ICA can be performed on-the-fly. Once the transformation which decomposes
the mixed signals into their independent sources is learned, a time series of
electrode data can be decomposed on-line. This can be extended to the level
where ICA multielectrode analysis could lead to a new generation of exper-
imental devices which allow the experimentalist not only to visually inspect



the neurons located around the probe but to track the activity of each visible
neuron in realtime.

References

[1] J.M. Bower and D. Beeman. The Book of GENESIS: Ezploring Realistic Neural
Models with the GEneral NEural SImulation System. Springer, New York, 2nd
edition, 1998.

[2] G. D. Brown, S. Yamada, and T. J. Sejnowski. Independent components analysis
at the neural cocktail party. Trends in Neuroscience, 24(1):54-63, 2001.

[3] A. Hyvérinen and E. Oja. Independent component analysis: Algorithms and
applications. Neural Networks, 13(4-5):411-430, 2000.

[4] K. M. L. Menne, A. Folkers, R. Maex, T. Malina, and U. G. Hofmann. Test
of spike sorting algorithms on the basis of simulated data. Neurocomputing,
44-46:1119-1126, 2002.

[5] K. M. L. Menne, T. Malina, A. Folkers, and U. G. Hofmann. Biologically realistic
simulation of a part of hippocampal ca3: Generation of testdata for the evaluation
of spike detection algorithms. 5th GWAL, pages 17-25, 2002.

[6] R. D. Traub and R. Miles. Pyramidal cell-to-inhibitory cell spike transduction

explicable by active dendritic conductances in inhibitory cell. J Comput Neurosci,
2:291 — 298, 1995.

[7] R.D. Traub, J.G. Jefferys, M.A. Whittington, and M. Toth. A branching
dendritic model of a rodent cad pyramidal neurone. J Physiol, 481:79-95, 1994.



