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Abstract. Transcranial sonography (TCS) is a new tool for the diag-
nosis of Parkinson’s disease (PD) according to a distinct hyperechogenic
pattern in the substantia nigra (SN) region. However a procedure includ-
ing rating scale of SN hyperechogenicity was required for a standard clin-
ical setting with increased use. We applied the feature analysis method
to a large TCS dataset that is relevant for clinical practice and includes
the variability that is present under real conditions. In order to decrease
the influence to the image properties from the different settings of ul-
trasound machine, we propose a local image analysis method using an
invariant scale blob detection for the hyperechogenicity estimation. The
local features are extracted from the detected blobs and the watershed
regions in half of mesencephalon area. The performance of these features
is evaluated by a feature-selection method. The cross validation results
show that the local features could be used for PD detection.
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1 Introduction

Transcranial sonography (TCS) was used for the first time in a clinical study
between a group of Parkinson’s disease (PD) patients and healthy controls in
1995 [I]. For PD patients, the hyperechogenicity of the substantia nigra (SN) was
significantly increased compared with controls. In 2002 the SN hyperechogenicity
in PD was confirmed by another independent group [2]. By means of TCS, it
is possible to determine the formation of idiopathic PD as well as monogenic
forms of parkinsonism at an early state [3]. Furthermore, the SN area showed
a distinct hyperechogenicity pattern on TCS for about 90% of PD patients,
however, the structural abnormalities were not detected on CT and MRI scans
[4]. These studies show that the SN hyperechogenicity is a valuable marker for PD
diagnosis, especially for early diagnosis [5]. Compared to other clinical imaging
modalities, the advantages of TCS include mobility, lack of side effects, and low
cost. However, the quality of TCS images mainly dependents on the experience
of the examiner and the acoustic bone window of the patient. With increased use,
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a standardized procedure including rating scale of SN echogenicity was required
for a standard clinical setting [7].

One solution to reduce investigator dependence of the diagnosis is to apply
feature analysis to the image of the ipsilateral mesencephalon wing, which is
close to the ultrasound probe as shown in Fig. [0l Firstly, the moment of inertia
and Hul-moment were calculated based on manually segmented half of mesen-
cephalon (HoM) for separating control subjects from Parkin mutation carriers
[5]. Then a hybrid feature extraction method which includes statistical, geomet-
rical and texture features for the early PD risk assessment was proposed [g],
which showed good performance of texture features (especially Gabor features).
Thirdly, a texture analysis method that applied a bank of Gabor filters and
gray-level co-occurrence matrices (GLCM) was used on TCS images [9]. After
feature selection by sequential forward floating selection (SFFS), GLCM tex-
ture features were combined with Gabor features as a feature subset. The cross
validation showed good results with the selected feature subset.

(a) Images from datasetl (b) Images from dataset2 (c) Images from dataset3

Fig. 1. Manually segmented TCS images from Philips SONOS 5500. The first row is
from healthy control subjects, and the second row from PD patients. The red marker
indicates the upper HoM. Yellow/green markers show the SN area as a bright spot.

The last two previous works [8/9] analyzed data from only one ultrasound ma-
chine, and the selected features turned out to be sensitive to user settings and
the ultrasound machine itself. In this paper, we collected three datasets that
were acquired by different examiners with Philips SONOS 5500 in different pe-
riods. These datasets include the TCS images from PD and the healthy controls
(HC). Actually, the properties of the TCS images, such as the gray values, the
brightness, and the contrast, could be possibly affected by the different settings
of the ultrasound machine used by different examiners. The mean and variance
of the region of interest (HoM) in each TCS image were calculated and shown
in Fig. 2l The variation between each dataset can be seen from TCS images in
Fig. [ and the statistical features of the images in Fig. 2l Our goal is to develop
local features that are invariant to the illumination and contrast changes from
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(a) 38 subjects of Parkinson’s Disease (b) 39 subjects of healthy control

Fig. 2. The illustration about mean and variance of ROI (HoM) of 138 TCS images
from Philips SONOS 5500

the different settings, even invariant to different ultrasound machines. The pro-
posed local feature analysis method applies invariant blob detection to localize
the hyperechogenicity area in HoM area and extracts local features based on
watershed regions for the hyperechogenicity estimation.

2 Keypoint Localization

The hyperechogenicity of SN area consists of several bright spots in TCS im-
age. The blob detection algorithm is stable under the monotonic changes in gray
scale. The goal of this section is to localize the hyperechogenicity in HoM by
the invariant scale blob detector. Based on space-scale theory, a multi-scale blob
detector was proposed by Lindeberg [10], which could automatically select the
appropriate scale for an observation. The scale space can be built using differen-
tial operators, such as Laplacian of Gaussian (LoG) and difference of Gaussians
(DoG) filters. A brief framework for the invariant scale blob detector based on
LoG is given by

Viom 9= 0" - 29(x,y;0). (1)

where o is the standard deviation of the Gaussian g(z,y; o), and the scale-space
representation L(x,y; o) of the image f(x,y) is defined as

L(xvy; U) = V?lormg * f(fE,y)7 (2)

(jv @7 &) = arg[eXtremum(m,y;U)L(Iv Y U)]v (3)

where (Z,¢) corresponds to the center vector and & to the scale vector of the
detected blobs on each scale level. We suppose that one blob center (&1,91) is
stable through the scale space, and a unique maximum over scales is given by

0o (L(%1,9150)) = 0. (4)
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The evolution of blobs along scales was studied based on the idealized model
patterns [I0]. In practice, the amount of detected blobs on each scale level is
different, and the centers of the same blobs might not be found at the same
position on corresponding levels. One common solution is that a blob is detected
if a local 3D extreme is present and its absolute value is higher than a threshold
[11]. However, same blobs at different scales are not related and can be detected
many times along the scale space. Our strategy is to link the trajectory of the
same blobs along scale space and select the scale and center at the unique maxima
that best represent each blob. For the presentation of this method, a phantom
image was created as shown in Fig. Blc). The linked pipelines for each detected
blob from the phantom image are shown in Fig. [B(a). The corresponding local
maxima of each pipe through scales are shown in Fig. Blb). The final scale
selection by (@) is shown in Fig. Blc).

\
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(a)Pipes through scale space  (b)Extrema of the pipes  (c)Scale selection result

Fig. 3. Blob scale selection from their trajectories along scale-space representation
with LoG. (a) Three filtered images at scale o = 4, 15, and 30. (b) Four global max-
ima at scales 4, 15, 20, and 25 were found from the connected trajectories. (c) Four
corresponding blobs were detected and displayed on the phantom image.

In addition, the DoG is a close approximation to the scale normalized LoG,
V2 ormd, given by

g(zvyﬂko') - g(l’,yvff) ~ (k - 1) vglorm 9, (5)

where the factor (k — 1) is constant over all scales and has almost no impact on
the stability of extrema localization [12]. In this paper, DoG was applied for the
construction of scale space. Actually, the analysis of scale-space maxima presents
severe complications in TCS image, but the possible hyperechogenicity areas are
localized by the proposed extrema selection method.

3 Local Feature Extraction

The mesencephalon is a butterfly-shape-like structure from the transverse view.
The TCS image is obtained from the temporal acoustic bone window in a stan-
dardized axial mesencephalic imaging plane [5]. Only the HoM which is close to
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(a) Maxima in 26 neighbors (b) Maxima in pilpeline (c) Watershed regions

Fig.4. (a) Detected maxima using DoG in 26 neighbors or (b) through pipe in scale
space from control images (top row) and PD (bottom row) of Philips SONOS 5500. (c)
Watershed segmentation results based on the detected blobs.

the probe is analyzed because of a decreased signal-to-noise ratio with increasing
insonation depth. As a result, two TCS images from both sides are acquired per
individual. It is better for this study not to include uncertainties that are at-
tributed to the segmentation algorithm. Therefore HoM images were manually
segmented by physicians and then analyzed for the estimation of the hypere-
chogenicity. The hyperechogenicity area is indicated with the blob detection as
shown in Fig. @l In the next step, a local image descriptor is needed to label
the detected blob. The watershed algorithm [13] works on the gradient of an
image, which is invariant to the brightness changes of the image. The watershed
regions were thus segmented with the input of the detected blobs to estimate
the hyperechogenicity in HoM.

Firstly, the blobs were detected with DoG operators in the HoM using the
proposed extrema-selection method. The detection results of TCS images from
Philips SONOS 5500 are shown in Fig. [l The same blobs were prevented from
being detected many times and the appropriate scales for each blob are indicated
around the blob center as shown in Figs. @(a) and (b). Secondly, based on the
input of the detected blobs, the watershed regions were segmented and labeled
by different color as shown in Fig. l{c). Then, a selection procedure for the
blob and watershed region was implemented with an ellipse mask filtering the
false positives as shown in Fig. Bl(a). From the prior knowledge of the anatomic
location of SN, this mask is created from the ellipse which is fitted onto the
ROI as mentioned in [B]. The values of the ellipse mask are calculated from their
distance d to the minor ellipse axis. For d < f (with f the distance between the
focus point and the minor axis) the mask value is one. For d > f the mask value
is zero. Only the blobs that have big scale (For example, o > 3) were taken into
account as shown in Fig. B(b). The watershed regions that are entirely within
the ROI were considered as interesting areas. As a result, the selected blobs
(indicated by green plus signs) and watershed regions are shown in Fig. [l(c).
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(a) Ellipse mask (b) Selected blobs (c) Selected regions

Fig.5. (a) An ellipse is fitted with the ROI. Two green lines are parallel to the minor
ellipse axis and across the two ellipse focuses, respectively. (b) The selected blobs (green
sign) and (c) the selected watershed regions which are inside of the ellipse mask.

For the estimation of the hyperechogenicity, nine local features F'1...F'9 were
extracted based on the selected blobs and watershed regions in HoM. Entropy
is used to measure the randomness of a local region. The parameters shape and
scale of a Weibull approximation [14] of the gradient distribution were deter-
mined by maximum likelihood estimation [I3] and used as local image features.
The calculation of entropy and the estimation of Weibull distribution parameters
were obtained from the gradient images after Gaussian smoothing. Considering
the image scaling, the features F1 and F2 were normalized by the corresponding
HoM area. The local features are shown as follows:

F1,F3: Area and entropy of all selected watershed regions

F2 F4: Area and entropy of all selected blobs

F5,F6: Weibull parameters (a,b) of all selected watershed regions and blobs
F7: The scale of the biggest detected blob

F8,F9: Entropy of the biggest blob and HoM

4 Experimental Results

The experiments were based on three data sets which were obtained with Philips
SONOS 5500 by different examiners. Dataset 1 includes 42 TCS images from 23
PD patients and 36 TCS images from 21 healthy controls. Dataset 2 includes
15 PD TCS images from ten PD patients and eight control images from four
controls. The last dataset consisted of ten PD TCS images from five PD patients
and 27 TCS from 14 controls. Totally, this large dataset includes 67 PD images
from 38 PD patients and 71 control images from 39 healthy subjects.

The outline of the framework is as follows: First, the dataset is classified
using the selected feature subsets F(17, 25, 26, 27, 29) from [§] and F(17, 77)
from [9]. Secondly, based on the manually segmented HoM images which were
marked by the physicians, the suspicious hyperechogenicity areas were localized
by the invariant scale blob detection method. Then, the watershed-segmentation
algorithm was applied to the gradient image after Gaussian smoothing. At last,
local features were extracted based on the selected blobs and the watershed
regions. These local features were evaluated by the feature-selection method
SFFS. The criterion function of SFFS was the accuracy of the SVM classifier.
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The training of SVMs was carried out with sequential minimal optimization
(SMO) and a linear kernel. The SVM classification results were cross validated
with the leave-one-out method.

The feature analysis results are shown in Table[Il Based on this dataset, the fea-
tures found in [8] and [J] achieved 76.81% and 48.55% correct rate, respectively.
Five local features F'(3,7,8,1,9) were selected with SFFS based on this dataset. Us-
ing the selected local featrues, the classification accuracy reached 72.46%, which
was better than the Gabor feature and GLCM feature from [9]. To test how the
feature sets perform when standard operations such as brightness and contrast
normalization are carried out, for each image the intensity values in the ROI were
normalized to the range [0, 255]. The results in the right column of Table [l show
that the local features are invariant to illumination changes from the image nor-
malization and outperform the other features under such conditions.

In another experiment, an SVM classifier was used to evaluate the perfor-
mance of the three selected feature subsets when the training is carried out on
other datasets than the test. We used Datasets 1 and 3 for Training and Dataset
2 for test. The classification results are listed in Table[2l They show that the clas-
sifier with the selected local features works better than the others when training
and test conditions are different.

Table 1. Feature analysis and SVMs cross-validation results on the large dataset

Dataset 1,2,3 Accuracy Confusion matrix Accuracy(normalized data)
F(17,25,26,27,29) from [8] 76.81% (gg 443 71.01%
40 27
F(17,77) from [9] 48.55% (44 27) 58.70%
52 15
Local feature F'(3,7,8,1,9) 72.46% (23 48) 72.46%

Table 2. Classification results of the three selected feature subsets

Training data(Dataset 1,3), test data (Dataset2) Accuracy  Confusion matrix

F(17,25,26,27,29) from [§] 65.22% 185 8

F(17,77) from [9] 60.87% (184 é)
141

Local feature F'(3,7,8,1,9) 78.26% ( 4 4>

5 Conclusions

We have analyzed the selected features from two previous works and nine new
local features based on a large dataset of TCS images. In particular, the local
features are invariant to the monotonic changes in gray scale. Almost all possible
locations of hyperechogenicity in HoM area could be indicated by the proposed
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invariant scale blob detection. Moreover, the watershed segmentation was applied
to segment the ROI for PD detection. Of course, the current results depend on
the manual segmentation of HoM area by physician. An automatic segmentation
algorithm could be implemented for localization of the HoM area. Even though
the appearance of mesencephalon can vary considerably across subjects, the
prior knowledge of anatomic shape and location of SN can be utilized for the
improvement of the selection strategy. The keypoint detection would be improved
with shape estimation, and more robust and precise local image descriptors of
hyperechogenicity may be developed for PD detection.
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