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Abstract. In this paper, we propose a method for the detection of irregularities
in time series, based on linear prediction. We demonstrate how we can estimate
the linear predictor by solving the Yule Walker equations, and how we can com-
bine several predictors in a simple mixture model. In several tests, we compare
our model to a Gaussian mixture and a hidden Markov model approach. We suc-
cessfully apply our method to event detection in a video sequence.

1 Introduction

Event detection [2, 4, 11] is one of the basic tasks for automatic surveillance. Suppose
we observe a complex machinery using several sensors, and we want to distinguish
between normal activities and a malfunction (event). As failures are rare occurrences
and their properties are commonly unknown, it is difficult to model the malfunctions in
a direct manner. To circumvent this problem, we can create a model that describes the
machinery when it works normal, and define the “events” as the absence of the “normal
case”. Our goal is to determine a simple but effective method for this distinction.

An usual approach is to predict the next observation using the knowledge of several
previous ones, measure the true observation afterwards, and compare the prediction
with the true observation [3, 1]. If the difference is higher than a given threshold, we
decide “event”. Using linear functions for the prediction [8, 5] provides several benefits,
in particular the ease with which the parameters are estimated.

Two of the most commonly used models for event detection are Gaussian Mixture
Models (GMMs) [11] and Hidden Markov Models (HMMs) [4]. While GMMs ignore
any temporal connection between samples of the observed stochastic process, HMMs
include some temporal coherence. Our approach has several similarities with the GMMs
and HMMs. While GMMs use the location in a feature space to distinguish the “normal
case” from the “events”, our method uses a multiple filter approach [3], respecting a
temporal connection between measurements. In comparison to HMMs, our method is
simpler to implement, and we use the temporal connection directly, not over the abstract
concept of hidden states.

Assuming the input signal is not stationary, adaptive filters like Kalman filters [3]
are needed. However, linear adaptive filters include several strong assumptions with re-
spect to the observed data, like Gaussianity and linearity. As a bridge gap solution, lin-
earity is assumed over short intervals. This leads to methods like the extended Kalman
filter [3]. We propose here an alternative, in the form of a mixture of linear one step
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predictors. Our method has several advantages, for example less training vectors are
needed to achieve comparable results. Furthermore, for event detection, should what
we define as the normal case change with time, our method can be easily adapted.

The rest of this paper is structured as follows. In Section 2, we estimate the param-
eters of a linear prediction, and demonstrate how we can apply a mixture of such pre-
dictors to event detection. In Section 3, we demonstrate the effectiveness of the model
we propose here in several experiments. In Section 4 we present our conclusions.

2 Linear Predictor Mixtures

The parameters of one step linear predictors (see Section 2.1) are computed from the
Yule-Walker-equations [9, 10]. In Section 2.2, we show how we can build a mixture of
several predictors to describe more complex data.

2.1 Linear Predictors and Linear Prediction Error Filters

There is a strong relationship between Linear Predictors (LPs) and Autoregressive (AR)
models [1]. Let x be a sequence of observations, x(t) ∈ RN , we assume that x(t) is a
linear combination of its p predecessors x(t− p), . . . ,x(t− 1), a constant term and an
error term

x(t) =
p

∑
i=1

a(i)x(t− i)+a(0)eN +v(t), (1)

where a := [a(0),a(1), . . . ,a(p)]> is the (linear) predictor and eN := [1,1, . . . ,1]>,
v(t)∼ N(0,Σ). (1) is an AR model. From E(v(t)) = 0 follows

E[x(t)] = x̂(t) :=
p

∑
i=1

a(i)x(t− i)+a(0)eN . (2)

x̂(t) is called the linear prediction of x(t).
With X(t) := [eN ,x(t−1),x(t−2), . . . ,x(t− p)], we write (2) in matrix notation as

x̂(t)=X(t)·a. With a combination of x-vectors y(t) :=
[
x(t)>,x(t−1)>, . . . ,x(t−n)>

]>
and X-matrices Y(t) :=

[
X(t)>, . . . ,X(t−n)>

]> respectively, ŷ(t) = Y(t) ·a. Using the
assumption that the errors v are mutually independent Gaussian distributed, we can es-
timate the linear predictor [1, 9, 10] by

â(t) :=
[
Y(t)> ·Y(t)

]−1
Y(t)>y(t). (3)

The quadratic prediction error at time step s is ε(s)2 := (x(s)− x̂(s))>(x(s)− x̂(s)).
If we use the estimated predictor â(t), we obtain in (2) the estimation of x̂(s), that is
ˆ̂x(s) := X(s) · â(t), and we estimate the prediction error by

ε̂(s)2 := (x(s)− ˆ̂x(s))>(x(s)− ˆ̂x(s)). (4)
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This error is most important for the event detection, because if the prediction error is
high, we have observed an event.

Using a matrix representation of the linear predictor

A(t) := [I,−I · â(0),−I · â(1), . . . ,−I · â(p)] (5)

and for a shorter notation η(s) := [x(s)>,e>N ,y(s−1)]>, (4) reads

ε̂(s)2 = (A(t)η(s))>(A(t)η(s)) = η(s)>H(t)η(s), (6)

with H(t) := A(t)>A(t). This becomes useful for the Linear Predictor Mixture model
(LPM) we describe in the next section.

2.2 Mixture Model and Detection of Events

In order to create a LPM, we use the exponential representation of the error

ft(η(s)) := exp
(
−η(s)>H(t)η(s)

)
= exp(−ε̂(s)2), (7)

0 < ft(η(s))≤ 1.
The LPM has similarities to Gaussian Mixture Models (GMMs) [11]. Let gi(x) be

an Gaussian distribution, than the GMM p(x) = ∑i∈I w(i)gi(x) is an approximation to a
more complex distribution; I is a set of indices, and w(i) are weights with ∑i∈I w(i) = 1,
w(i) ≥ 0. In the same manner, the LPM is a mixture of several linear prediction error
filters (see Equation (5)), and therefore an approximation to complex time series that
are not stationary. We use the exponential representation (7) in a weighted sum, similar
to GMMs:

F(η(s)) := ∑
t∈T

w(t) ft(η(s)), (8)

T is a set of time indices that refers to a training dataset. Note that F is not a probability
function, because we use no normalization of the exponential functions. Hence, we refer
to F by score in the following. Similar to GMMs, an event is detected if the score is
below a threshold θ with 0≤ θ≤ 1.

2.3 Parameter Estimation

The parameter estimation for our model proceeds in two steps: first, we estimate a set
of several linear predictors â(t), second, we estimate the weights w(t).

Let x0 be a training set of observations. We initialize the index set T with one time
index t(1): T ← {t(1)}. Note that with t(1) and (3), a unique estimated linear predictor
â(t(1)) is defined.

At iteration τ > 1, we want to add an estimated linear predictor â(t(τ)) that reduces
the highest prediction error of the training dataset. Hence, we set

t(τ) := arg min
t̃ /∈T

τ−1

∑
i=1

ft(i)(η0(t̃)) (9)
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and T ← T ∪{t(τ)}; η0 is the combination of several observation vectors similar to η in
Section 2.1 and 2.2, with respect to x0. We terminate this parameter estimation stage if
we have a fixed number τmax of predictors.

The weights in Equation (8) are computed by

w(t(i)) :=
∑
s

ft(i)(η0(s))

∑

t( j)∈T
∑
s

ft( j)(η0(s))
(10)

for each t i ∈ T . The estimated linear predictors and the weights define the LPM, see
Equation (8). In the next section, we will test this model in comparison to GMMs and
HMMs.

3 Experiments and Discussion

Our experiments consist of two parts: in the first part, we use simulated data and com-
pare the LPM with a GMM and an HMM. In the second part, we use a LPM to detect
events in a video stream.

3.1 Comparison to GMMs and HMMs on Synthetic Data

In this test, we compare the LPM with two of the most commonly used models for
event detection, the GMM and the HMM. This test is designed as a proof of concept;
we concentrate on a real problem in the next section, in this one, we use synthetic
data, which has the benefit that we have enough data for each model. A problem with
insufficient data especially arises with the HMM, because to estimate the transition
probabilities, we need to observe enough transitions.

3.1.a Synthetic data. Similar to HMMs, the model we use as a generator for the syn-
thetic data consists of five states, and it switches between the states at random. As a
difference to HMMs as they are discussed in [7], each state in our model is associ-
ated with a linear filter, not with a distribution, in order to create a more sophisticated
temporal connection. In detail, the synthetic 5D-“observations” are recursively defined
by x(t) := m(s) + xs(t) + v(t) where xs(t) := ∑

3
i=1 as(i)(x(t− i)− µ̂(t)) and µ̂(t) :=

1
3 ∑

3
i=1 x(t− i), v(t) ∼ N(0,Σ). The filters [as(i)]3i=1 and offsets m(s) are preset values.

s = s(t) represents the state of the model, with P(s(t)|[s(τ)]t−1
τ=1) = P(s(t)|s(t−1)).

The event data is generated with a similar model. We use five states with the same
transition probabilities. To simulate events, we changed the offsets m(s) (Set 1), we
used noisy filters as(i) + r(t, i), r(t, i) ∼ N(0,1) (Set 2) and r(t, i) ∼ N(0,2) (Set 3)
respectively, and we used Gaussian noise only (Set 4). We generated each 50000 normal
case and event observations.

3.1.b Tested models. We build a LPM with τmax = 50 predictors. We use p = 10 pre-
vious observations to predict the following one, and in the training, we use 15 observa-
tions to estimate one predictor (n = 14, see Section 2.1). For the GMM, we tried several
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numbers of Gaussians from five to one hundred. We decided to use ten Gaussians for
the comparison, because with this, we have obtained the best results in our tests. The
HMM consists of ten states. Each state is associated with a Gaussian distribution [7]
(Gaussian Hidden Markov Model, GHMM).
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Fig. 1: ROCs of (a) the LPM, (b) the GMM, (c) the GHMM and (d) overview of (a), (b) and (c),
computed using all test sets at once.

3.1.c Results. In Figure 1, we can see different Receiver Operating Characteristics
(ROCs) of the three models. The ROC is the curve that results if we plot the probability
to correctly detect an event (p(T P)) against the probability that an normal observation

is falsely classified as an event (p(FP)), that is p(T P) = #(Detected, simulated events)
#(Simulated events)

and p(FP) = #(Falsely detected events)
#(Normal observations) . A method is superior to another one at a fixed

false positive rate if its ROC curve is above another ROC. In order to reduce false alerts
and respect that events are rare occurrences, we are particularly interested in parameters
with low false positive rates.

In Figure 1(a), 1(b) and 1(c), we can see the performance of the different models
separately, one ROC for each test. In Figure 1(d), we can see the overall performance
(results using all event datasets as one set) of each model.

Comparing the GHMM and the GMM, the GHMM performs better. But as we can
see in Figure 1(a) and 1(d), the LPM outperforms both methods. Hence, there are event
detection problems where the LPM can be successfully applied, and they perform better
than GMMs or GHMMs. In the next section, we apply the LPM on real data.

3.2 Car Tracking and Event Detection

The setup of this test is as follows. A web cam is positioned to monitor a fixed area. We
drive an RC car in the visible area and perform several actions. The “normal case” con-
sists of any combination of normal movements (driving straight, turning left or right),
an “event” is an arbitrary action that differs from these possible actions (for example, if
the car hits another object).

To adapt the LPM to tracking and motion detection, every time window of p ob-
servations is rotated so that the difference vector of the first two is orientated in one
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particular direction. This simplifies the prediction, and reduces the number of predic-
tors.

3.2.d Tracking. We use a background subtraction algorithm [6] for the motion de-
tection. This algorithm estimates for every image of a video sequence the foreground
and updates a background model. It uses one threshold for each pixel. It is similar to
many other background subtraction algorithms, but we have adapted it to our problem,
especially to color images.

In detail, let Bt(i, j) ∈ [0,1]3 be the (normalized color) pixel (i, j) of the tth back-
ground image, Ct(i, j) ∈ [0,1]3 the corresponding pixel in the tth measured image,
Tt(i, j) ∈R+ the tth threshold for pixel (i, j). We say, Ct(i, j) belongs to the foreground
if (Bt(i, j)−Ct(i, j))> (Bt(i, j)−Ct(i, j)) > Tt(i, j). Let Gt(i, j) = 1 if Ct(i, j) is fore-
ground, and 0 otherwise, than

Bt+1(i, j) := (1−Gt(i, j)) · (αBBt(i, j)+(1−αB)Ct(i, j))+Gt(i, j) ·Bt(i, j),

Tt+1(i, j) := (1−Gt(i, j)) · (αB(Tt(i, j)+0.01)+(1−αB)Dt(i, j))+Gt(i, j) ·Tt(i, j),

where Dt(i, j) := (Bt(i, j)−Ct(i, j))> (Bt(i, j)−Ct(i, j)). The constant 0.01 is used
for noise suppression, αB ∈ (0,1) controls the adaption to the background of C. The
resulting blob (all foreground pixels) for several frames can be seen in Figures 3(a) and
3(b).

3.2.e Extended model. We model a special case of an AR model in this test (see
Equation (1)),

x(t) =
p

∑
i=1

a(i)x(t− i)+a0 +v(t), (11)

a0 ∈ R2, x(t) ∈ [0,1]2, and we assume p = 3. In this test, x(t) is the position of the
car at frame t, one dimension of a0 represents the forward movement, the other one the
drift. We use this adaption because we assume these two values to be very different.
This adaption implies that X(a)(t) := [IN ,x(t−1),x(t−2), . . . ,x(t−n)] is used for the
Yule-Walker equations instead of the X(t) assumed in Section 2.1. We use for Equation
(7) ft(η(t1)) = exp(−10 · ε̂(t1)). This scaling is used for visualization only.

We use three predictors, one for straight parts, one for turning left and one for turn-
ing right. As weights, we set w(1) = w(2) = w(3) = 1/3. If the score F is lower than
θ = 0.4, we say, we have detected an event. In general, θ is an arbitrary threshold with
0 < θ < 1, and θ = 0.4 is sufficient for our task, as we have verified with some test data
(see Figure 4).

(a) Turning left (b) Straight (c) Turning right

Fig. 2: Frames from the training data: the car turns left(a), drives straight (b) and turns right (c).
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3.2.f Training data. The predictors are estimated only for the basic actions. That
means, the predictor for straight movement is estimated using only a video where the
car moves in one particular direction, and the turns are estimated using videos includ-
ing only the turns, but no straight parts. A normal activity is any combination of these
actions. For each action, less than hundred data vectors were sufficient; for many other
models, we would have to use more features, depending on the complexity of the model.

(a) Accident

(b) Normal case

Fig. 3: Several frames from an accident video and the blobs of the tracking (a), and normal activ-
ities: car is driving in an S-bend (b).

3.2.g Results. In Figure 3(a), we see several frames of a video we use, that is the
first frame with an detected object, immediately before an accident, the frame that has
been captured during the accident, the following one and at the last frame of the se-
quence. The mark on the upper left denotes an event. The event is detected right after
the accident.

In Figure 3(b), we see the car, performing an S-bend. This action is correctly clas-
sified as normal activity, and no events are detected.
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Fig. 4: Score F as described in Section 2.3.

In Figure 4, we can see the score F of several normal movements and an accident
(an event). As we can see, the score of the normal activities is above the threshold. The
same is true for the event video until the accident happens, than the score drops below
the threshold and keeps at this low level.
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4 Conclusion and Outlook

We have described and tested a method for event detection based on a mixture of linear
predictions. Our model outperforms a GMM and a GHMM in a set of tests, despite
being less complex than the latter one.

In contrast to GMMs, the LPM uses time dependencies for an improved decision.
Furthermore, the LPM is a descriptive model, while the GMM and the GHMM are gen-
erative ones. However, LPMs and GMMs have the same simplicity in the inference. The
estimation of the LPM is the easiest, because we do not need to estimate covariances,
which can be difficult.

Further, we can adapt the LPM easily if the normal case changes by adding new
predictors and calculate the weights on some new measurements. This adaption is not
useful for GMMs, because it alters the probability of all observations, and HMMs have
to be calculated from scratch.

Some problems with the LPM arise from the solution of the Yule Walker equations.
For example, in the presence of outliers, the accuracy of the predictor estimation de-
creases, and if the variance in the data is too low, the number of values to estimate a
linear predictor increases. Solutions to these problems are available within the frame of
the Yule Walker equations. Because the LPM builds upon these equations, these solu-
tions are available for the LPMs as well.
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