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Abstract. In this paper we present an approach which estimates the
course of a road over long distances based on static and dynamic scene
cues detected by a video camera. The approach is based on a clothoid
road model, a probabilistic fusion concept as well as a fast variational
inference method. Our experimental results show that the approach out-
performs a state-of-the-art road marking-based method in challenging
real-world driving situations.
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1 Introduction

Automated driving requires a robust and precise estimation of the road course.
This is a challenging task, which for all conceivable driving situations and en-
vironments is still unsolved. State-of-the-art road-course detection systems fuse
di�erent complementary sensor signals to receive better estimation results. This
are typically signals of radar, lidar and camera systems. Within these setups,
camera systems are a valuable source of information. They usually contribute
detected road markings to the road-course estimation. Unfortunately, this kind
of information is often not su�ciently available in many driving situations like for
example on some newly build roads or in dimly lit environments (e.g. at night).
Therefore, we propose a camera-based estimation approach, which does not de-
pend on information from road markings but instead on information of di�erent
road-course correlated scene cues. Thus, our approach estimates the course of a
road within reach of 140 m on the base of static and dynamic scene cues like
delineators or other tra�c participants. We build our algorithm on a clothoid
road model and fuse measured scene cues with the help of a probabilistic model
and variational inference. We empirically evaluate our approach in challenging
real-world driving situations with reduced light, and prove its performance.

1.1 Related Work

The importance of a robust road-course estimation for the realization of a vehicle-
cruise-control system (ADAS) led to a high research interest in this subject early
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on. The �rst commercially available systems were based primarily on radar sen-
sors. Such systems detect the road course based on radar-signal-re�ecting land-
marks such as cars or guardrails. Since then the abilities of such systems pro-
gressed constantly. State-of-the-art radar systems depend heavily on increased
and detailed environment models, probabilistic estimation approaches [1],[7] and
advanced radar-hardware designs [2]. Of particular interest is the approach by
Hammarstrand et al. [3]. They received a more robust estimation system by in-
tegrating a clothoid road model, which explicitly models the course of a road
according to real-world design principles in road construction [23]. The �rst
camera-based systems used road markings for a road-course estimation [4],[5].
Recent proposals for camera-based systems depend exclusively [11] or addition-
ally [10] on semantic segmentation results computed with the help of a deep
convolutional neuronal network. These kind of approaches produce remarkable
results in day-light situations. But because these methods mainly exploit sur-
face textures of objects for a scene segmentation, they often lack performance in
dimly lit environments (e.g. at night) where surface textures are hardly visible.
To overcome limitations of individual sensor systems and methods, fusion-based
approaches, that integrate information of multiple methods as well as multiple
sources, such as radar, lidar, cameras sensors and digital HDR maps, were pro-
posed [6],[8],[7]. Popular representatives of these use an occupancy grid to fuse
the information [9]. Another very promising fusion method has been proposed
by Geiger et al. [12],[13] for a camera-only crossroad structure estimation. Based
on graphical probabilistic modeling the approach showed remarkable estima-
tion performances. However, a computational bottleneck of this approach is the
used sampling-based inference method. Recent published variational-inference
techniques [18],[19],[20] promise to solve this problem. Therefore, in this con-
tribution we use a similar probabilistic fusion model combined with an e�cient
variational inference technique for an estimation of the road course based on
camera-detected static and dynamic scene cues. Our versatile probabilistic fu-
sion framework also allows the integration of information provided by other
sensors, if these are available.

The remainder of the paper is structured as follows: Sec.2 describes our pro-
posed estimation approach in detail, then in Sec.3 we evaluate and discuss our
method in challenging driving situations. The Sec. 4 summarizes our approach
and o�ers a brief outlook on future work.

2 Road Course Estimation using Variational Inference

2.1 Scene Cues

The foundation of our approach are scene cues or landmarks that re�ect the
course of a road. They are detected by a monoscopic camera system which is
mounted behind the rear-view mirror in a car (see Fig. 1).
These scene cues (see Fig. 1) are:
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Fig. 1. Schematic road course with regarded evidence types (left) and di�erent data-
projection concepts (right)

� Static Objects: Guardrails, delineators, road poles, road lanterns and road-
embedded re�ectors.

� Dynamic Objects: Bicycle, cars, motorbikes and trucks.

The static and dynamic objects are detected with the help of di�erent classi�ers.
Each classifer detection is rated by a con�dence measure. The detected objects
are tracked over time and thus generate tracklet information. The classi�er and
tracking [17] methods are not the subject of this publication, and therefore will
not be discussed in detail.
In addition to the images, our road-course estimation approach makes also use
of information from a 6-axis Inertial Measurement Unit (IMU).

2.2 Causality Model

The theoretical foundation of the proposed approach is a generative Bayesian
network (BN) model which describes the causal relationship between the road-
course de�ning parameters and the image projections of road-course correlated
static and dynamic scene cues. A sketch of the context of our approach together
with the proposed probabilistic model are shown in Fig. 2. To properly intro-
duce the complete modeling, we begin with a description of a sub-part of the
model. Hence, we start with the causal relationship between the road-course
determining parameters and the 3D positions of the static landmarks. A look
at the context-referencing Fig. 2, suggests that the course of a road can be de-
scribed by a virtual contour line. This contour line can quanti�ed by a road
model fff (CCC), in which the CCC represents the shape-de�ning parameters. The 3D
positions yyyStat3DPos of the road-course aligned static landmarks can then be
described as objects lateral-shifted to the contour line along the contour-line
normal f̃ff (CCC). This is exemplary shown with delineators in Fig. 2. While driv-
ing, those 3D positions yyyStat3DPos get projected on the image sensor according
to the 3D pose of the user-vehicle camera yyyUV Cam3DPose and thereby gener-
ate landmark-corresponding measurements yyyStat2DPos. The same ideas can be
transferred to dynamic objects as well. Analogous to static landmarks, the 2D
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positions yyyV 2DPos can be modeled as a causal superposition of the road-contour

parameterCCC, the vehicle-speci�c o�sets O
[p]
D and the camera poses yyyUV Cam3Pose.

However, unlike static objects, dynamic objects, such as vehicles, change their
positions over time and generate a 3D scene �ow yyyV 3DFlow as well as a corre-
sponding sparse optical �ow yyyV 2DFlow. Because these generated �ows are directly
connected with the positions of the vehicles, they can be modeled equally by a
causal superposition of the road-contour parameter CCC and the vehicle lateral
o�sets OOOD. This model, in conjunction with the measured evidence yyyStat2DPos,
yyyV 2DPos, yyyV 2DFlow and the IMU data XXX and ΘΘΘ, enables the estimation of the
road-course parameters CCC, OOOS and OOOD.
In order to increase the estimation robustness we build the proposed model on
additional design principles:

� Data Bu�ering: To obtain a su�cient amount of evidence we accumulate
ego-motion compensated data over a time period T .

� Flat World Assumption: To simplify the complexity of the contour model
fff (CCC) during the estimation process we make the assumption that the 3D
road course is located on �at plane and therefore can be handled as a 2D
road course.

� Multi Stage Design: We use a two stage signal processing pipeline (see
Fig. 3) to reconstruct a 3D scene from measured 2D information and then
estimate the course of the road in 3D.
• In the �rst stage we reconstruct the 3D signals yyyStat3DPos, yyyV 3DPos

and yyyV 3DFlow from the corresponding image measurements yyyStat2DPos,
yyyV 2DPos and yyyV 2DFlow. The 3D positions of trackable static objects are
obtained with the help of standard structure-from-motion (SfM) meth-
ods. In detail, we use a combination of an inverse-depth reconstruction
[22] and a bundle adjustment calculation [21]. The necessary ego-motion
information is obtained from the IMU. For the 3D reconstruction of ve-
hicles we use an approach based on prior knowledge about the geometry
of the vehicles, as well as the assumption of a distortion-free camera pro-
jection model. Hence, we calculate the 3D positions and the 3D scene
�ows with the help of the intercept theorem (IcT) [22] and standard
tracklet-based di�erential methods.

• In the second stage of the pipeline we estimate the road course based
on the 3D evidence. This stage is presented in detail in Sec. 2.3.

2.3 Probabilistic Model

The purpose of our approach is the identi�cation of the contour parameter CCC
as well as the lateral-o�set parameters OOOS and OOOD, which explain the measured
evidence data YYY . This directly corresponds to a regression problem. However,
due to the chosen clothoid-contour model

f (CCC) =

[
x (l)
y (l)

]
=

[
x0
y0

]
+

∫ l

0

[
cos(φ(t))
sin(φ(t))

]∣∣∣∣
φ(t)=φ0+κ0·t+κ1

2 ·t2
dt , (1)
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Fig. 2. Schematic road course (left) and proposed probabilistic model (right). The
acronyms used in the �gures are explained in the text.

this regression problem is not trivial. The integral terms complicates the math-
ematical handling of the road model within a regression problem. A solution
to this problem can be derived by the clothoid-approximation framework of
Bertolazzi [24]. This framework allows the de�nition of a clothoid based on the
con�guration of its start and end point. Therefore, the contour parameter CCC is
determined by

CCC = [xStart, yStart, αStart, xEnd, yEnd, αEnd] .

In order to adapt the model to the measured evidence data we need an e�ective
method to project this data orthogonally to road-contour model fff (CCC) (see Fig.
1). However, an optimal orthogonal projection results in a computational heavy
regression problem. To avoid that, we apply an approximative orthogonal pro-
jection concept similar to the procedure proposed by Geiger et al. [13]. In the
�rst stage, we therefore sample the clothoid road model along its length. Based
on the sampling, an evidence point yyy is then assigned to the closest clothoid-
sample point ppp. Associated with that assignment, the scene �ow of an evidence
point yyy (in case of a moving vehicle) is than connected to the corresponding
clothoid-tangent at point ppp (see Fig. 3). Therefore, the regression problem is no
longer di�erentiable and hence can not be solved by an e�cient gradient-based
optimization method.
Alternatively, we reformulate the regression problem as a probabilistic maxi-
mum a-posteriori (MAP) estimation within a graphical model framework and
solve that with the help of variational inference. In this reformulation, the re-
gression parameters (CCC,OOOS ,OOOD) correspond to hidden random variables and
the evidence data YYY correspond to observable random variables. The general
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structure of the joint distribution of this MAP-problem follows the form

P (HHH,YYY )|HHH = {CCC,OOOS ,OOOD}
YYY = {YYY S ,YYY D}

= P (CCC) · P (OOOS) · P (OOOD) (2)

· P (YYY S |CCC,OOOS) · P (YYY D|CCC,OOOD) .

Thereby, the evidence data YYY consists of static landmarks YYY S and dynamic
landmarks YYY D. The prior terms of the regression parameters are assumed as
Gaussian distributed. Thus, they are de�ned as

P (HHHi) =
exp

(
− 1

2 (HHHi −µµµHi)
T
ΣΣΣ−1Hi (HHHi −µµµHi)

)
(
(2π)

dim(HHHi) · det (ΣΣΣHHHi)
) 1

2

. (3)

Here, the parameters µµµHi andΣΣΣHi represent manually de�ned hyperparameters.
The likelihood terms of the joint distribution, which re�ect the errors between
the road model-predicted evidence data Ŷ̂ŶY and the true evidence data YYY , are
modeled similarly in our approach. Their structure is as follows:

P (YYY S |CCC,OOOS) =
NPosS∏
n=1

P
(
YYY PosS

[n] |CCC,OOOS
)
, (4)

with

P
(
YYY PosS

[n] |CCC,OOOS
)
=

βPosS

1
2 · exp

(
−β

Pos
S

2 ·
errorPos

(
CCC,OOOS ,YYY

Pos
S

[n]
)2

σ2

YYY Pos
S

[n]

)
(
2π · σ2

YYY PosS
[n]

) 1
2

and

P (YYY D|CCC,OOOD) =
NPosD∏
n=1

P
(
YYY PosD

[n] |CCC,OOOD
)
·
NFlowD∏
n=1

P
(
YYY FlowD

[n] |CCC,OOOD
)

(5)

with

P
(
YYY PosD

[n] |CCC,OOOD
)
=

βPosD

1
2 · exp

(
−β

Pos
D

2 ·
errorPos

(
CCC,OOOD,YYY

Pos
D

[n]
)2

σ2

YYY Pos
D

[n]

)
(
2π · σ2

YYY PosD
[n]

) 1
2

P
(
YYY FlowD

[n] |CCC,OOOD
)
=

βFlowD

1
2 · exp

(
−β

Flow
D

2 ·
errorF low

(
CCC,OOOD,YYY

Flow
D

[n]
)2

σ2

YYY Flow
D

[n]

)
(
2π · σ2

YYY FlowD
[n]

) 1
2

.
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Here, the proposed Gaussian character of those distributions shall re�ect the
typical lateral-�uctuations of landmark positions in the real-world, as well as
inaccuracies in our 3D reconstruction and small sampling-caused projection er-
rors (see Fig. 1). The value of errorPos corresponds to the euclidean distance
between the road model-predicted position and the true position of a evidence
data point. Similarly, errorF low re�ects the anti-correlation between the road
model-predicted scene �ow and the true scene �ow of an evidence data point
(see Fig. 1). The hyperparameters NPos

S , NPos
D , NFlow

D depict the quantities
of the di�erent data types within the measured evidence data and the values
of σYYY PosS

σYYY PosD
, σYYY FlowD

are related to the speci�c con�dences of the measured

evidence points. In contrast, βPosS , βPosD and βFlowD represent design parame-
ters which control the in�uence of the corresponding evidence data types in the
MAP-problem.
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Fig. 3. Schematic representation of the estimation pipeline

2.4 Variational Inference

Solving the MAP-problem requires an analysis of the extreme value of the a-
posteriori distribution P (HHH|YYY ) which is de�ned by the joint distribution P (HHH,YYY ).
However, this analysis is not trivial, because of the structure of the problem and
the continuous random variables. Therefore, we propose to approximate the a-
posteriori distribution initially and then infer the MAP-solution based on the
generated approximation. In detail, we exploit a state-of-the-art variational infer-
ence technique, called Overdispersed Black-Box Variational Inference (O-BBVI)
[18],[20]. This deterministic and fast-converging method lacks the typical high
computational cost of popular sampling-based techniques [15],[16].
When applied to the MAP-problem, O-BBVI approximates the exact a-posteriori
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distribution P (HHH|YYY ) by a factorized distribution with the form

Q (HHH|λλλ) =
N∏
i=1

qHi (HHHi|λλλi) ,

in which each component qHi is de�ned as:

qHi (HHHi|λλλi) =
exp

(
− 1

2

∑dim(HHHi)
d=1

(
H

[d]
i − λ

[d]
i

)2)
(2π)

1
2 dim(HHHi)

. (6)

Based on that, O-BBVI computes this approximation by an optimization over
the parameters λλλi of the factor terms qHi . The parameter-decoupling structure
of the O-BBVI approximation modi�es the solution of the MAP-problem to

HHHopt = argmax
HHH

(P (HHH|YYY ))

∣∣∣∣
P (HHH|YYY )≈Q(HHH|λλλopt)

(7)

≈ argmax
HHH

(Q (HHH|λλλopt))
∣∣∣∣
Q(HHH|λλλopt)=q(CCC|λλλCopt)·q

(
OOOS |λλλ

OS
opt

)
·q
(
OOOD|λλλ

OD
opt

) (8)

CCCopt = argmax
CCC

(
qC
(
CCC|λλλoptC

))
= λλλoptC

=⇒ OOOoptS = argmax
OOOS

(
qOS

(
OOOS |λλλoptOS

))
= λλλoptOS

OOOoptD = argmax
OOOD

(
qOD

(
OOOD|λλλoptOD

))
= λλλoptOD

.

Finally, this MAP-solution in conjunction with the applied road-contour model
fff (CCC) returns the full 3D-description of an estimated road course.

3 Experiments and Discussion

In the following section, we will compare our scene cue based fusion approach on
three real-world tra�c examples with a corresponding state-of-the-art estimation
method which is based on road markings [5]. The chosen examples cover various
driving situations in which a road marking-based approach shows weaknesses in
comparison with the landmark-based approach. The spectrum of the situations
varies across di�erent types of roads and di�erent types, numbers and densities
of available static and dynamic scene cues. All the situations are scenarios with
reduced light. The course estimations for both methods are post-processed un-
der real-time conditions on the base of recorded images and logged IMU data.
However, for a better understanding of the scene structure, we visualize the
IMU-recorded trajectory of the ego-vehicle as well as all the 3D-reconstructed
static landmarks upfront. The results are shown in Fig. 4, 5, 6.
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The �rst scenario in Fig. 4 represents a driving situation on a country road in
low-light conditions. The road has roadside-markings and rows of delineators on
both sides. The ego-vehicle follows an other vehicle through a curve. The results
demonstrate that the range of the landmark-based estimation exceeds the corre-
sponding estimation of road marking-based approach by more than 25 m or 33%
because of the detected delineator on the right side. Making use of the delin-
eators on the right side, our approach is even capable of seeing a short distance
around the bending of the curve and hence identi�es a part of the course which
is not detected by the road-marking based system.
The second scenario in Fig. 5 re�ects a ride on a highway at night. The scene
is only illuminated by the high-beam head lamps of the ego-vehicle. On both
sides of the road are re�ectors mounted on the guardrails. Road markings are
also available. The results illustrate that our approach achieves an estimation of
the road course up to 140 m relative to the position of the ego-vehicle. This is
accomplished with the help of the detected delineators. As a result, our estima-
tion reaches 70 m or 100% further than the corresponding estimation based on
road markings.
The scene in Fig. 6 shows a driving situation in an urban environment at night.
The road has no delineators or roadside-markings. The scene is mainly illumi-
nated by a few road-aligned road lanterns on the right and left side. Hence the
road lanterns on the right side, our approach generates a virtual road boundary.
This information can not be exploited by a road-marking based method. Next

Ego-Motion	Course	(IMU-recorded)

Road	Course	by Road-Markings

Orientation-Grid (Grid-Cell:	10	m	X	5	m)

Road	Course	by Landmarks	(our method)

delineator

traffic	
vehicle

ego-vehicle

Fig. 4. Rural Road: 3D Reconstruction (left), Camera Image (right)

to the comparison with the road-marking based method, we also evaluate our
approach statically with labeled ground-truth road courses on a database of ap-
proximately 14,000 images of various night tra�c situations. For this purpose,
we labeled the regions in those images where we expect the boundaries of the es-
timated road courses with polygon-shaped tubes. Based on that labeling, we rate
road-course estimations which are fully embedded within the labeled polygons
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Ego-Motion	Course	(IMU-recorded)

Road	Course	by Road-Markings

Orientation-Grid (Grid-Cell:	10	m	X	5	m)

Road	Course	by Landmarks	(our method)

ego-vehicle

delineator

Fig. 5. Highway: 3D Reconstruction (left), Camera Image (right)

Ego-Motion	Course	(IMU-recorded)

Road	Course	by Road-Markings

Orientation-Grid (Grid-Cell:	10	m	X	5	m)

Road	Course	by Landmarks	(our method)

road	lantern

ego-vehicle

Fig. 6. Urban Road: 3D Reconstruction (left), Camera Image (right)

as true positives. Estimations which do not ful�ll this criterion are rated as false
positives. In this evaluation framework our approach achieves a true positive rate
(TPR) of 92.18% and a false positive rate (FPR) of 4.68%. With the objective of
using our approach on hardware platforms with limited computational resources,
we further investigate the in�uence of the amount of the numerically expensive
iterations within the O-BBVI inference method on the quality of the estimated
road courses. In detail, we reduce the number of iterations to 75%, 50% and 25%
of the amount of iteration which are needed for a complete convergence of the
O-BBVI method during the inferences. The reduction to 75% results in a TPR
of 81.8% and FPR of 15.4%. A further reduction to 50% causes a TPR of 74.5%
and a FPR of 22.9% and a reduction to 25% lowers the TPR to 61.5% and FPR
of 36.4%. These results implicate that the O-BBVI based inferences converge
fast after a few iterations. Thus, this circumstance allows our approach to easily
adapt to available hardware resources without entirely given up on estimation
quality.
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4 Conclusion and Future Work

In this publication we presented an approach that estimates the course of a road
based on images of a monoscopic camera for ranges of 140 m, particularly in
di�cult situations with reduced light. The method therefore uses static and dy-
namic scene cues which are correlated to the course of a road. The underlying
fusion concept is �exible and hence works with a variety of di�erent landmark
types and quantities. This makes the approach highly adaptive to varying ev-
idence in a scene. In order to optimally respond to real-world road designs we
proposed to use a clothoid road model. The associated complications with such
a road model in a regression problem were addressed with a probabilistic model
and a numerically e�cient and adaptive variational inference. We demonstrated
the performance of our algorithm in challenging low-light driving situations.
Thereby, we proved that the approach can achieve larger estimation ranges than
a comparable road marking-based method in the same situations. These results
re�ect that information fusion provides a framework to integrate expert knowl-
edge over the problem setup with data-driven insights into the decision-making
process.
In future work we plan to strengthen the presented approach in several areas.
At �rst, we plan to exploit our current set of evidence data more e�ectively in
the fusion process. Therefore, we would like to substitute manual-de�ned hy-
perparameters within the probabilistic model (see Eq. 3, 4, 5) by data-trained
counterparts. In addition to that, we intend to develop a robust strategy to iden-
tify lane-changing vehicles. This would allow us to react better to lateral-shifts
of vehicles during the estimation process. Beyond these improvements we would
like to extend the current set of evidence data by integrating more camera sig-
nals, like road markings or semantic segmentation results, as well as signals from
other sensors, such as lidar or radar into our probabilistic fusion framework. We
expect that this will enhance the robustness and also will allow us to model even
more complex driving scenarios, like splitting or reunifying roads. Furthermore,
we plan to improve the variational inference procedure in order to achieve even
faster and more precise estimates.
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