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Abstract

Object recognition, i. e. classification of objects into
one of several known object classes, generally is a difficult
task. In this paper we address the problem of detecting and
classifying moving objects in image sequences from traffic
scenes recorded with a static camera. In the first step, a sta-
tistical, illumination invariant motion detection algorithm is
used to produce binary masks of the scene–changes. Next,
Fourier descriptors of the shapes from the refined masks are
computed and used as feature vectors describing the differ-
ent objects in the scene. Finally, a feed–forward neural net
is used to distinguish between humans, vehicles, and back-
ground clutters.

1 Introduction

Recognizing 3–dimensional objects from 2–dimensional
images is an important part of computer vision applications
such as robotics, target recognition, surveillance, etc. [4].
While the human visual system can recognize various dif-
ferent kinds of objects very easily, visual recognition is gen-
erally a difficult task for computers [8]. A general and com-
prehensive solution to the problem should be able to cope
with the variability of object appearance in the scene, due
for example to changing viewpoints, illumination or occlu-
sions.

The first step in object recognition is to find all object
candidates in an image. Often this is done by model–based
methods [6, 3] which usually try to match image regions to
given object models. However, such approaches generally
have three major disadvantages: firstly, they are rather com-
plex and therefore computationally expensive, if the object
models are reasonably detailed. Next, they have difficul-
ties in dealing with general outdoor surveillance situations,
as there are many different types of objects of interest (like
cars of various shapes). And finally, they do not use the

temporal component of image sequences.
In the case of moving object analysis, a straightforward

way to find object candidates is motion detection. This is
usually done by analyzing the difference of two successive
frames [1]. Once the candidates are identified, template
matching is not needed anymore. Instead, a feature–based
approach can be used [7] to classify the objects. Here, the
procedure is to define an appropriate set of features, com-
pute them for all object candidates and finally compare them
to a pre–defined set of labelled training features. This train-
ing data set contains features from relevant objects in var-
ious possible appearances. If the training data are chosen
properly and the features have suitable invariance proper-
ties, the final object recognition is largely independent of
the camera viewpoint.

In this paper we present a moving object recognition sys-
tem consisting of three main steps: First, we use an adap-
tive and illumination invariant motion detection algorithm
for object candidate finding which is described in detail in
[1] and [10]. Next, object features are computed, using two
different concepts of Fourier descriptor calculation as de-
scribed in [5] and [11]. Finally, the objects are classified by
a feed–forward neural net. As the system should be used
for analyzing traffic scenes, object classes are ”human” and
”vehicle”.

In the following sections, we first briefly describe the il-
lumination invariant motion detection algorithm (Sec. 2)
and the concept of Fourier descriptors (Sec. 3). This is fol-
lowed by an outline of the whole recognition system (Sec.
4). Finally, we present results obtained from several hun-
dreds of images from outdoor traffic scenes (Sec. 5).

2 Illumination invariant motion detection

Moving objects generate temporal changes in the image
intensity. Even though motion detection is highly related to
temporal change detection, there are mainly two problems
in this relationship. On the one hand, not only real object
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motion can change image intensity, but also noise or fast il-
lumination drifts will do so, causing false positives. On the
other hand the overlap of the same moving object in two
successive frames is naturally hard to detect as changed,
if the object is not sufficiently textured. This often leads
to false negatives. Simple image differencing and ad hoc
thresholding techniques like the one used in [7] will there-
fore hardly produce object masks good enough for reliable
object recognition. In the next two sections we describe
how to cope with these problems.

2.1 Context–adaptive motion detection

The goal of a motion detection system is to generate a
binary mask containing the labels ”0” for pixels belonging
to static image regions and ”1” for pixels inside moved ob-
jects. To avoid the problems of false negatives and false
positives caused by noise mentioned in the previous para-
graph, an approach based on a statistical decision rule is
used ([2]). Starting from the difference image between two
frames, changes are detected by comparing the sum of abso-
lute differences (SAD) within a sliding window to a thresh-
old. Considering the noise standard deviation, the problem
can be formulated as a significance test. In [1], the ap-
proach is embedded into a Bayesian framework where a–
priori knowledge about typical properties of change masks
is expressed by a spatial Gibbs–Markov random field. This
leads to variable thresholds, which favour the emergence of
compact, smoothly shaped object masks, and reduce scat-
tered decision errors which might be caused by noise. In
[10] we have improved the algorithm by considering also
temporal context. In Figure 1 the principle of the algorithm
is shown.

Figure 1. Adaptive motion detection. fn and
fn+1 are two successive frames, dn their dif-
ference, LP a low–pass filter, thresh the adap-
tive threshold and qn the resulting motion
mask.

2.2 Homomorphic pre–filtering

In a simple model the observed intensityy of an image is
given by the product of an illuminationi and a reflectance

componentr. To avoid false positives caused by fast illu-
mination changes, each frame is pre–filtered using a homo-
morphic filter shown in Figure 2. Thus, the possibly disturb-
ing illumination component is removed and the above mo-
tion detection algorithm is applied to the reflectance com-
ponent alone [10].

Figure 2. Homomorphic filter for multiplied
signals. ‘LP‘ denotes a low–pass filter.

3 Feature extraction and classification

3.1 Fourier descriptors

Once the binary motion mask is determined, the object
candidates are labelled using a connected component analy-
sis. In the next step, features are extracted describing each
individual object. As we want to use Fourier descriptors, a
boundary tracing is needed first. We used the method in-
troduced by Suzuki and Ade [9] to get the boundary and
the Freeman chain code to represent it. The boundary is
then sub–sampled in order to reduce the number of points
in the boundary to the next smaller integer power of two
so that an FFT algorithm can be used to speed up compu-
tation. Each boundary pixelk is represented by the pair
(x(k), y(k)) of its coordinates. There are different ways to
use the coordinates to compute Fourier descriptors. For an
N–point boundary the traditional way is to define complex
numbers

z(k) = x(k) + j · y(k), k = 0, 1, ..., N − 1 (1)

which, for a closed boundary, would be periodic with pe-
riodN [5]. That is, thex–axis is treated as the real axis and
the y–axis as the imaginary axis of the sequence of com-
plex numbersz(k). Obviously, this representation of object
boundaries has one great advantage: it reduces a 2 D to a 1
D problem. The discrete Fourier transform ofz(k) is given
by

a(n) =
1
N

N−1∑
k=0

z(k)e−j2πnk/N , n = 0, 1, ..., N−1. (2)
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The complex coefficientsa(n) are called the Fourier de-
scriptors (FDs) of the corresponding boundary. They con-
tain the same information about the object shape as the ini-
tial coefficientsz(k). However, prior to using the FDs for
classifying objects, they must be processed to make them
invariant of object position and size. Depending on the
starting point when traversing the boundary, on translation,
rotation and scaling of the objects, the FDs can look differ-
ent for the same shapes. The demanded invariance prop-
erties are easy to achieve. Independence of translation and
rotation is obtained by ignoring the DC–componenta(0)
and by using the magnitude of eacha(n) only, as rotation
is coded in the phase of the coefficients. Scale invariance
is achieved by dividing alla(n) by the magnitude ofa(1)
and starting point invariance by subtracting the phaseejφ1

of a(1) weighted withn [5]. The new set of coefficients
with the desired invariance qualities is given by the follow-
ing equation:

fd =
[
|a(n)|
|a(1)|

e−jφ1·n
]
, n = 2, 3, ..., N − 1. (3)

In [11] another method of boundary representation is re-
ported to show superior performance in object based im-
age retrieval. Here, instead of defining complex numbers
like the ones in (1), the distances of the boundary points
(x(k), y(k)) to the objects centroid(xc, yc) is used:

r(k) =
(
(x(k)− xc)2 + (y(k)− yc)2

)1/2
. (4)

The discrete Fourier transform of the real numbersr(k) is
then analogous to Equation 2 and yields the coefficients
b(n):

b(n) =
1
N

N−1∑
k=0

r(k)e−j2πnk/N , n = 0, 1, ..., N−1. (5)

Because ther(k) in equation 4 are real valued, only half
of the Fourier descriptorsb(n) are needed to index the cor-
responding shape. Due to the subtraction of the centroid,
which represents the position of the shape, the setr(k) is al-
ready invariant to translation. Thus, the FDsb(n) are trans-
lation invariant as well. The other invariance properties for
theb(n) can be achieved in a similar way like it was shown
for thea(n) [11]. This leads to a set of invariant descriptors
fdc, with the indexc denoting ”centroid”:

fdc =
[
|b(n)|
|b(0)|

]
, n = 1, 2, ..., N/2. (6)

Finally, as we want to reduce dimensionality and are not
interested in all details of the object boundaries, we discard
the high–frequency components by using only the first 10
coefficients from the setsfd andfdc for the object classifi-
cation task. This quantity was derived empirically, since

our experiments showed, that using only the first 10 co-
efficients for reconstructing the boundary is sufficient to
capture the global shape of the objects (see Figure 3).We
computed both setsfd andfdc because we wanted to com-
pare which method suits better for the task of moving object
recognition.

Figure 3. Example human and vehicle shapes
and reconstructed boundaries using 10 FDs.

3.2 Classification

The classification part itself is performed by a feed–
forward neural net consisting of four layers: one input layer
with one neuron per feature, two hidden layers with seven
neurons each and one output layer with one neuron per
class. We used sigmoidal activation functions for the neu-
rons and back–propagation training. The net produced good
classification results after 10000 training cycles (see Section
5). The training data set consisted of 400 human and an-
other 400 vehicle feature vectors. All features were normal-
ized to the range[0, 1]. In the output layer two thresholds
are used: a decision for one class is only made if the value of
the output neuron representing this class is above the upper
threshold and simultaneously the value of the other output
neuron is below the lower threshold. Otherwise the object
in question is rejected. Thus, decisions for the wrong class
are highly unlikely.

4 System overview

The system proposed for moving object detection and
recognition consists of three stages as depicted in Figure 4.
In the first stage, all moving object candidates are detected
by the illumination insensitive motion detection algorithm
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described in Section 2. Next, the Fourier descriptors for all
candidates are computed, using the method pre–defined by
the user (either ”complex” or ”centroid distance”). Finally,
the neural net classifies each object into the classes ”human”
or ”vehicle” or rejects it if it cannot be classified reliably,
like background clutter.

Figure 4. System overview: three stages.

5 Results

To test the algorithms, we implemented them on an up
to date 1.6 GHz Pentium PC running under Linux using In-
tel’s Open Source Computer Vision Library. For350× 270
pixel images the overall processing time is currently 160
ms/frame including the homomorphic pre–filtering and 100
ms/frame without homomorphic pre–filtering. This corre-
sponds to 6 and 10 frames/sec respectively. However, the
code is by far not optimized yet and we have to find a better
implementation for the homomorphic filter.

Figure 5 shows a typical result from the motion detection
stage. A frame from an outdoor sequence with three moving
cars and the binary motion mask overlayed is depicted.

Figure 5. Example result from the motion de-
tection stage.

We applied the system to several hundreds of images
with moving vehicles and humans. Altogether, over 1200
humans and vehicles were detected and classified. Table 1
shows the correct classification rate for the ”complex” (fd)
and the ”centroid” (fdc) Fourier descriptors. In the first data
row the number of objects in the respective classes (”hu-
man” and ”vehicle”) is given. The next two rows show the
numbers of misclassified and correctly classified objects re-
spectively and in the last row the percentages of correct ob-
ject identification are given. The main problem for both
classes are occluded objects, because the motion detection
cannot detect them entirely. Another problem for classifica-
tion of humans is that they sometimes move slowly causing
the moving object mask not being accurate enough.

Method fd fdc

Target class human vehicle human vehicle

# Objects 777 463 773 456
# Misclass. 32 11 101 20
# Correct 745 452 672 436
% Correct 96 98 87 96

Table 1. Classification results.

As stated in Table 1, we discovered that both methods for
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Fourier descriptor computation perform similarly well for
the class ”vehicle”. However, using thefdc–based features
yields a much worse result for the class ”human”. There-
fore, we could not approve the statement from [11], that
the centroid method is superiour to the traditional complex
method. At least, this is not the case for the application of
moving object recognition. Naturally, humans can be mod-
elled as deformable bodies whereas vehicles are rigid. Thus,
the former are less stable in appearance and therefore harder
to classify correctly.

Note, that the classification is currently performed off–
line. Once it is embedded into the system, correct classifi-
cation might slightly decrease.

Figure 6 shows some examples of correct object classi-
fication. The images are sections cropped from the original
frames. For single and un–occluded objects, the classifica-

Figure 6. Examples of correctly classified ob-
jects.

tion is robust for differently shaped humans (Fig. 6a–c) as
well as for vehicles (Fig. 6d–f). Furthermore, as expected,
the classification does not depend on object size and orien-
tation. Note, that bushes and grass moving because of wind
are correctly rejected as background clutter (Fig. 6g–i).

In Figure 7 some examples of incorrectly classified ob-
jects are depicted. Vehicles occluding each other are erro-
neously identified asonevehicle only (Fig. 7a). Humans
partially occluded are sometimes rejected (Fig. 7b), vehi-
cles just entering the scene could be classified as humans

(Fig. 7c). Objects shaped similarly to humans, like flags
blowing in the wind (Fig. 7d), can also be classified incor-
rectly. Overall, currently the system works very robust, if
objects are entirely visible.

Figure 7. Examples of misclassified objects.

6 Conclusions

In summary, we have built a system for detecting and
classifying moving humans and vehicles in outdoor traffic
environments. In the first step, an illumination invariant mo-
tion detection algorithm yields moving object candidates.
These binary shapes are used for calculation of Fourier de-
scriptors. Finally, a feed–forward neural net is used to clas-
sify the objects in question. We have tested two methods
of Fourier descriptor (FD) calculation: A traditional one,
where complex numbers are built for all object boundary
pixels and transformed to get the FDs. In addition, we tested
an alternative method, based on the Fourier transform of the
set of centroid distances of the boundary points. In our sys-
tem both methods perform very well yielding correct object
classification in more than 90 % of all cases. However, the
traditional method works equally well for both human and
vehicle recognition, which is not the case for the centroid
based method.

There are two elements that make the classification ro-
bust: firstly, the Fourier descriptors are based only on ob-
ject shape, which makes them a good choice for various
outdoor applications. Secondly, a double threshold check
makes the neural net decision more reliable. Furthermore,
the motion detection part yields well shaped object candi-
dates. Nevertheless, we are currently improving the stage
of object detection in terms of shadow extraction, because
especially long shadows can mislead the system.

Finally, since we do currently not quite reach real–time
capability, we will also increase the speed of our system by
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optimizing the software implementation.
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