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ABSTRACT

This paper studies the problem of blind separation of con-
volutive mixtures by means of Kullback-Leibler divergence
in frequency domain. Unlike exiting approaches, an inte-
grated objective function is defined in frequency-domain
with time-domain parameters as the variables. The permu-
tation problem is avoided through the frequency-domain in-
tegration and time-domain optimization. Simulation results
show that the algorithm is valid and of high performance for
the separation of real-world recorded convolutive mixtures.

1. INTRODUCTION

Blind source separation (BSS) has been an active research
topic during the past decade due to its potential applica-
tions in many areas. As a special case, separation of in-
stantaneous mixtures is very successful so far and many ap-
proaches have been proposed [1][2][3][4]. However, a more
challenging situation is the separation of convolutive mix-
tures with long mixing channels [5][6][7][8][9].

A general way for solving the convolutive BSS is to ex-
tend the approaches for instantaneous mixture to the case of
convolutive mixtures, which can be done in either time or
frequency domain. An advantage associated with the time-
domain approaches is that they usually do not suffer from
the so-called unknown permutation problem[5].

Frequency-domain approaches are considered as promis-
ing techniques for BSS in the cases of very long mixing
channels. It is known that convolutive mixtures in the time
domain can be considered as instantaneous mixtures in the
frequency domain, so approaches for instantaneous mix-
ture separation can be applied to convolutive mixtures at
a specific frequency. However, the permutation ambiguity,
which is inherited from instantaneous BSS, makes convolu-
tive BSS very difficult [6][7].

People have done extensive work to remedy the permu-
tation problem. The general way is to identify the permu-
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tation based on source signal and/or BSS system properties
[6][7]. Despite the extensive efforts so far, the permuta-
tion ambiguity problem is still a challenging issue. A better
way would be to avoid permutation rather than to identify it.
The idea in this paper is therefore to build objective func-
tions in the frequency domain that keep the advantages of
the frequency-domain approaches, but the optimizing para-
meters are captured in the time domain.

In this paper, the proposed approach is based on the ex-
isting work of using Kullback-Leibler (KL) divergence for
instantaneous BSS [2]. An objective function, which is the
integration of KL divergence applied to each frequency bin,
is defined in the frequency domain. As a function of the
time-domain parameters of the separation system, the ob-
jective function is optimized in the time domain, so the per-
mutation problem at frequency level is avoided.

2. PROBLEM STATEMENTS

In this paper, we only consider the N -by-N cases. The mix-
ing channels are assumed to be FIR of length L, and the
separating channels are also FIR with length M ≥ (N −
1)(L − 1) + 1 [8]. We assume that the sources are real,
of zero mean and independent of each other, and the mix-
ing system is linear and time invariant. We use s(n), x(n)
and y(n) to denote the sources, mixtures and the separated
outputs, respectively.

The noise-free convolutive mixing model is given as fol-
lows:

x(n) = A(n) ∗ s(n) =
L−1
∑

l=0

A(l)s(n− l) (1)

where A(n) = [aij(n)]N×N is the FIR filter mixing matrix.
We also assume that the transfer function matrix of the

mixing system, A(z) =
∑L−1

n=0 A(n)z−n, is nonsingular on
the unit circle of the complex plane, which guarantees that
the sources at different frequency bins are separable.

The separation system output is given as follows:

y(n) = H(n) ∗ x(n) =
M−1
∑

l=0

H(l)x(n− l). (2)
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where H(n) = [hij(n)]N×N is the separation system. From
(1) and (2) we have:

y(n) = H(n) ∗ A(n) ∗ s(n) = G(n) ∗ s(n) (3)

where G(n) = H(n) ∗ A(n). Equation (3) can be rewritten
in the z-domain as follows:

Y(z) = G(z)S(z). (4)

BSS is considered to be successful if the output y(n) is
a permuted and filtered version of the signal sources s(n),
which implies:

G(z) = PD(z) (5)

where P is a permutation matrix and D(z) is a diagonal
transfer function matrix.

3. A HALF-FREQUENCY DOMAIN APPROACH

For the instantaneous mixing cases (M=1 in (2)), Amari et
al. [2][11] proposed an algorithm based on the KL diver-
gence function, in which the objective function is given as:

φ(H) = −1

2
log

(

det(HTH)
)

−
N

∑

i=1

log pi(yi) (6)

where H is the separation matrix. Based on this objective
function, a very successful natural-gradient based approach
for instantaneous mixtures was derived by Amari et al[2].

With frequency-domain approaches, observation signals
are decomposed into a set of narrowband components via
short time Fourier transform (STFT), and the separation is
performed for each frequency bin. The separation process
can be described by the following equation in frequency do-
main:

Y(l, ejω) = H(ejω)X(l, ejω) (7)

where l is time index and

Y(l, ejω) = [y1(l, e
jω), ..., yN (l, ejω)]T,

X(l, ejω) = [x1(l, e
jω), ..., xN (l, ejω)]T.

Note that (7) results from applying the STFT to (2). As
H(ejω) is an instantaneous mixing matrix for any specific
ω, (7) implies that instantaneous BSS approaches can be
used for all the individual frequency bins. This is the sce-
nario behind the frequency-domain BSS approaches.

As the mixing is instantaneous in nature for each fre-
quency bin, the objective function in (6) can be directly
applied to every frequency bin. The work was done by
Smaragdis [6] and the resulting objective function is

φ(l,H(ejω)) = −1

2
log

(

det
(

HH(ejω)H(ejω)
))

−
N

∑

i=1

log pi(yi(l, e
jω)) (8)

where yi(l, e
jω) is the STFT of yi(n). The corresponding

natural-gradient based algorithm is as follows:

Hl+1(ejω) = Hl(ejω) + µ×
[

I− f
(

Y(l, ejω)
)

YH(l, ejω)
]

Hl(ejω) (9)

where

f(Y(l, ejω)) = [f1(y1(l, e
jω)), ..., fN (yN (l, ejω))]T

is referred to as the activation function.
The frequency-domain algorithm (9) suffers from the

permutation ambiguity. Although measures are taken to
eliminate the permutation, separation results are not always
guaranteed.

In order to overcome the permutation ambiguity, we in-
tegrate the frequency-domain objective function (8) with re-
spect to the frequency ω, and replace pi(yi(l, e

jω)) with
pi

(∣

∣yi(l, e
jω)

∣

∣

)

in (8), which yields an objective function
whose variables are just the time-domain parameters of the
separation channels. That is,

ψ(l, H(n) |n=0,1,...,M )

= −1

2

∫ π

−π

log
(

det
(

HH(ejω)H(ejω)
))

dω

−
N

∑

i=1

∫ π

−π

log pi

(
∣

∣yi(l, e
jω)

∣

∣

)

dω (10)

The permutation problem is avoided through the opti-
mization of this new objective function (10) with respect to
time-domain parameters of separation system.

The gradient of the objective function (10) is obtained
as

∂ψ(H(n) |n=0,1,...,M−1 )

∂H(n)

= −1

2

{
∫ π

−π

[I−RFYY (l, ω)]H−H(ejω)ejωndω

+

∫ π

−π

[I−RFYY (l, ω)]H−T(ejω)e−jωndω

}

= −
∫ π

−π

[I−RFYY (l, ω)]H−H(ejω)ejωndω. (11)

where RFYY = FY

(

l, ejω
)

YH(l, ejω), and

FY

(

l, ejω
)

= [f1(y1(l, e
jω)), ..., fN (yN (l, ejω))]T,

and

fp(yp(l, e
jω)) = −∂

(

log pp

(
∣

∣yp(l, e
jω)

∣

∣

))

∂ |yp(l, ejω)| ejθ(yp(l,ejω))

is the polar-coordinate activation function [10], and where

θ
(

yp(l, e
jω)

)

= arg
(

yp(l, e
jω)

)

.
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Based on the definition in [9][11], the corresponding
natural gradient is as follows:

∂ψ(H(n) |n=0,1,...,M−1 )

∂H(n)
|Natural

=
∂ψ(H(n) |n=0,1,...,M−1 )

∂H(n)
∗HT(−n) ∗H(n)

= −
∫ π

−π

[I−RFYY (l, ω)]H(ejω)ejωndω. (12)

Therefore, the natural-gradient based adaptive learning rule
can be obtained as follows:

Hl+1(n) = Hl(n) + µ×
∫ π

−π

[I−RFYY (l, ω)]Hl(ejω)ejωndω. (13)

As the polar-coordinated activation function concerned,
we assume that the STFT of the source signals has the gen-
eralized Gaussian distribution of the form [12]:

pp

(
∣

∣yp(l, e
jω)

∣

∣

)

=
rp

2σpΓ( 1
rp

)
e
− 1

rp

 |yp(l,ejω
)|

σp

!rp

(14)

where Γ(·) is gamma function, σr
p(l, ω) = E

[∣

∣yp(l, e
jω)

∣

∣

r]

is the generalized measure of variance, known as the disper-
sion of the distribution.

Based on (14), the activation function fp

(

yp(l, e
jω)

)

can be obtained as follows:

fp

(

yp(l, e
jω)

)

=

∣

∣yp(l, e
jω)

∣

∣

rp−1

σ
rp
p (l, ω)

ejθ(yp(l,ejω)). (15)

Substituting (15) into (13), we obtain

Hl+1(n) = Hl(n) + µ×
∫ π

−π

[

I−D−1(l, ω)P(l, ω)
]

Hl(ejω)ejωndω (16)

where

D(l, ω) = diag
(

[σr1

1 (l, ω), ..., σrN

N (l, ω)]T
)

and

P(l, ω) = Yr−1(l, ejω)YH(l, ejω),

Yr−1(l, ejω) =
[

∣

∣y1(l, e
jω)

∣

∣

r1−1
ejθ(y1(l,e

jω)), ...

...,
∣

∣yN (l, ejω)
∣

∣

rN−1
ejθ(yN (l,ejω))

]T

.

In the implementation, σrp
p (l, ω) is computed as follows:

σrp
p (l, ω) = βσrp

p (l, ω) + (1− β)
∣

∣yp(l, e
jω)

∣

∣

rp (17)

where β is the moving average parameter.

4. SIMULATIONS

4.1. Simulation results for the new algorithm

Simulations have been performed using the two speech sig-
nals which were provided to the delegates of the ICA’99
conference [13]. The convolutive mixtures were recorded
with omni-directional microphones, and the sampling fre-
quency is 16000Hz. We used the first 131072 samples for
our simulation. In our simulation, the length of the sep-
aration filters is M=512; FFT block size is K=4096; It-
eration times: 20; β = 0.3; µ = 0.01. We assume that
∣

∣yp(l, e
jω)

∣

∣ are of Gaussian distribution, which implies that
rp = 2, p = 1, ..., N in (16). The mixtures and the sepa-
rated sources are shown in Figure 1, where the mixtures and
the separated sources are normalized to the range [-0.5,0.5].
Listening tests showed that very good separation has been
achieved. Hence we consider that output 1 contains one
source (denoted as source 1) and output 2 contains the other
source (denoted as source 2).

As the original sources are unknown, we use the fol-
lowing approach to estimate the SIRs for each of the two
outputs:

Find a time interval T1 during which the waveform of
output 1 has a peak and output 2 exhibits low (silent) sam-
ples. Denote the segment of samples in outputs 1 and 2 as
s11 and s21 respectively. It is reasonable to believe that s11

is the contribution of source 1 only, and that s21 is the leak-
age of source 1 to output 2; Similarly we could find a time
interval T2 during which output 2 exhibits a peak s22 but
output 1 is low (silent) s12. Similarly s22 can be considered
as the contribution of source 2 only, and s12 the leakage of
source 2 to output 1.

The SIRs for outputs 1 and 2 are then calculated as
10 log10

ps11

ps12

and 10 log10
ps22

ps21

, respectively.
Based on the above approach, SIRs for channels 1 and 2

were measured as 23.51dB and 20.58dB, respectively. Note
that the two mixtures have almost the same amplitudes dur-
ing T1 and T2, respectively, which means that the SIRs be-
fore separation are about 0dB. Therefore the two output
SIRs show a significant improvement by the proposed al-
gorithm.

4.2. Comparisons with other algorithms

The new algorithm (16) is compared with the algorithms
proposed by I. Sabala [9] and P. Smaragdis [6]. For Sabala’s
algorithm, the activation function is f(y(n)) = tanh(γy(n))
with γ = 15; for Smaragdis’ algorithm, the activation func-
tion is f(z) = tanh(Re{z}) + j tanh(Im{z}). The block
size of the FFT was chosen as K=4096, and the filter length
was set to M=512 for all the three algorithms. The signal-
to-interference ratios of the separated results are listed in
Table I.

It can be clearly seen in Table I that our new algorithm
has a better performance. On the other hand, the signal-
to-interference ratios of the two output channels are quite
unbalanced as algorithms [9]and [6] are concerned.
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(a)

(b)

Figure 1: Real world recorded speech sequences and the
corresponding separation results. (a) Mixed speech se-
quences. (b) The separated speech sequences. The two seg-
ments of the separated speech sequences T1 and T2 (T1 =
T2), which contain 5000 samples respectively, were used to
evaluate the separation performance.

5. CONCLUSIONS

In this paper, we proposed a frequency-domain integrated
objective function for convolutive BSS on the basis of the
Kullback-Leibler divergence. A polar-coordinate activation
function was exploited for complex-valued signals. The ob-
jective function was minimized with respect to the channel
parameters of the separation system, and the correspond-
ing algorithm was developed. The permutation problem
was avoided through the frequency-domain integration and
time-domain optimization. Simulation results show that the
algorithm is valid and of high performance for the separa-
tion of real-world recorded convolutive mixtures.
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