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Abstract

Estimation of local orientation in images is often posed
as the task of finding the minimum variance axis in a lo-
cal neighborhood. The solution is given as the eigenvector
belonging to the smaller eigenvalue of a2 × 2 tensor. Ide-
ally, the tensor is rank-deficient, i.e., the smaller eigenvalue
is zero. A large minimal eigenvalue signals the presence of
more than one local orientation. We describe a framework
for estimating such superimposed orientations. Our analy-
sis of superimposed orientations is based on the eigensys-
tem analysis of a suitably extended tensor. We show how
to efficiently carry out the eigensystem analysis using ten-
sor invariants. Unlike in the single orientation case, the
eigensystem analysis does not directly yield the orienta-
tions, rather, it provides so-called mixed orientation param-
eters. We therefore show how to decompose the mixed ori-
entation parameters into the individual orientations. These,
in turn, allow to separate the superimposed patterns.

1. Introduction

Analysis of local orientation in an image is an essen-
tial step in, e.g., directional filtering [1, 2], directional in-
terpolation [8], feature extraction, tracking, motion estima-
tion [12, 11, 9, 5] and pattern analysis [7, 10, 5]. Multiple
orientations appear in non-opaque imagery like X-ray, ul-
trasound, and Computer Tomography and in image features
like corners, crossings and bifurcations. Here we present an
approach for estimating multiple orientations for additively
overlaid patterns. The solution is based on earlier results
for multiple transparent motions [13, 12]. Orientation esti-
mation for two superimposed patterns is expressed as the

Work supported by Deutsche Forschungsgemeinschaft under Ba
1176/7-2

eigensystem analysis of a generalized structure tensor. Un-
like in the single-orientation case, the tensor concept now
leads to a nonlinear problem that is here linearized by intro-
ducing so-calledmixed-orientation parameters. The mixed-
orientation parameters form a unique descriptor of double-
orientation neighborhoods, but do not provide the orienta-
tions explicitly. Decomposing the mixed-orientation param-
eters into the individual orientations is solved by seeking
the intersections of a line and a circle. Furthermore, we de-
rive a hierarchical algorithm which allows to deal with sin-
gle and superimposed orientations.

2. Single orientation estimation

A two-dimensional imagef(x),x = (x, y) is oriented
in a regionΩ if

f(x) = f(x + u) (1)

∀x,x + u ∈ Ω. The vectoru = (cos θ, sin θ)T describes
the orientation off(x) in terms of the angleθ, which is con-
ventionally restricted to lie in the interval(−π/2, π/2]. In
order to estimate the local orientation, we follow the differ-
ential approach introduced in [6, 5, 10, 4], which finds the
minimum gray level variance axis within the local neigh-
borhoodΩ. Let

α(φ) = cos(φ)
∂

∂x
+ sin(φ)

∂

∂y
(2)

denote the derivative operator with respect to the vector
(cos φ, sinφ)T . Unlessf(x) is locally constant, it has an
unique orientationθ atx if and only if its directional deriva-
tive in the direction ofθ vanishes, i.e.

α(θ)f(x) = cos(θ)fx(x) + sin(θ)fy(x)
= uT∇f(x) = 0

(3)



In practice, local orientation is estimated within a local
neighborhoodΩ by minimizing the residual

ε(u) =
∫

Ω

(
uT∇f(x)

)2
dΩ = uT J1u, s.t.uT u = 1

(4)

with respect tou. The constraintuT u = 1 excludes the triv-
ial solutionu = 0. The symmetric2× 2-tensorJ1 is

J1 =
∫

Ω

(∇f)(∇f)T dΩ =
∫

Ω

[
f2

x fxfy

fxfy f2
y

]
dΩ. (5)

Minimization of the composite criterion

E(u) = uT J1u + λ(1− uT u) (6)

with λ being an arbitrary constant, is equivalent to

J1u = λu s.t.uT u = 1. (7)

The solutionu is then the eigenvector ofJ1 correspond-
ing to its smallest eigenvalueλ2. The minimum residual is
equal to this smallest eigenvalue, i.e.ε(u) = λ2. Eq. (4)
evidently assumes that only a single orientation is present
within Ω. Compliance with this assumption is indicated by
a low value ofλ2, and a high value for the larger eigen-
valueλ1. Indeed, if the single-orientation hypothesis is ide-
ally met, the residualλ2 is zero, and hence, rank(J1) = 1.
Violation of the single-orientation hypothesis is indicated
by a large residualλ2. This in turn indicates that more than
one oriented structure is present inΩ. In the following, we
will show how multiple superimposed orientations can be
locally estimated.

3. Estimation of two overlaid orientations

We model a double-oriented pattern byf(x) = g1(x) +
g2(x). Since the two componentsg1 andg2 are assumed to
be ideally oriented in the directionsθ andγ, respectively,
they satisfy the following equations

α(θ)g1 = uT∇g1 = 0 α(γ)g2 = vT∇g2 = 0 (8)

whereu = (cos θ, sin θ)T andv = (cos γ, sin γ)T . There-
fore, the composite imagef(x) satisfies (for multiple mo-
tions the analog equations have been derived in [13])

α(θ)α(γ)f =(
cos(θ)

∂

∂x
+ sin(θ)

∂

∂y

)(
cos(γ)

∂

∂x
+ sin(γ)

∂

∂y

)
f

= cT df = 0
(9)

where

c = (cos(θ) cos(γ), sin(θ + γ), sin(θ) sin(γ))T (10)

and
df = (fxx, fxy, fyy)T . (11)

The vectorc is the result of the concatenation of two direc-
tional derivative operators, and thus combines both orienta-
tions θ andγ. We will refer toc as the mixed-orientation
vector. LetF (ω) denote the Fourier transform off(x) over
Ω. We then obtain in the Fourier domain

α(θ)α(γ)f(x) = 0 ◦−• (uT ω)(vT ω)F (ω) = 0, (12)

whereω is the frequency vector. The above equation im-
plies that the local spectrumF (ω) must be zero except for
the linesuT ω = 0 andvT ω = 0. The non-zero spectral
components atuT ω = 0 correspond to the Fourier trans-
form of g1(x) and those atvT ω = 0 to the transform of
g2(x). Consequently, forω = 0 the frequency components
of both layers are superimposed. Eq. (8) and Eq. (12) ensure
that Eq. (9) is a necessary and sufficient condition for the ex-
istence of a double orientation as long as Eq. (9) is evalu-
ated within a regionΩ. As in the single-orientation case, the
residual errorε2 of Eq. (9) withinΩ is defined as

ε2(c) = cT J2c (13)

where

J2 =
∫

Ω

(df)(df)T dΩ

=
∫

Ω

 f2
xx fxxfxy fxxfyy

fxxfxy f2
xy fxyfyy

fxxfyy fxyfyy f2
yy

 dΩ.
(14)

Minimizing ε2 with respect toc under the constraintcT c =
1, we obtainc as the eigenvector of the3 × 3 tensorJ2

that corresponds to the smallest eigenvalueλ3. The mini-
mum residual error is then equal toλ3. Confidence for the
double-orientation hypothesis is high ifλ3 is small and the
other eigenvalues are large. The resulting mixed-orientation
vector c is an unambiguous descriptor of double orienta-
tion neighborhoods, which could be used as, e.g., tracking
feature. It does, however, not yet explicitly provide the ori-
entations.

3.1. Decomposing the mixed-orientation vector

The eigenvector analysis of the generalized tensorJ2 in
Eq. (13) defines the vectorc only up to an unknown scaling
factorR, i.e.

c = R (cos(θ) cos(γ), sin(θ + γ), sin(θ) sin(γ))T

= (a, b, c)T .
(15)

Though R is unknown, it complies with the constraint
cT c = 1, i.e.,a2 + b2 + c2 = 1. We first observe that

a∓ c = R cos(θ ± γ), b = R sin(θ + γ) (16)



These expressions cannot be inverted to findθ + γ andθ −
γ because, even thoughθ andγ are restricted to lie within
(−π/2, π/2], we have−π < θ ± γ ≤ π. The inversion of
the cosine and sine functions is, however, ambiguous in this
interval.

An alternative solution, similar to solutions derived for
multiple motions, consists of seeking the roots of a poly-
nomial constructed from the componentsa, b, andc of the
mixed-orientation vector, see [12, 3]. We use

b

a
=

sin(θ + γ)
cos(θ) cos(γ)

= tan(θ) + tan(γ), (17)

c

a
=

sin(θ) sin(γ)
cos(θ) cos(γ)

= tan(θ) · tan(γ)

as coefficients to construct the polynomial

P (z) = z2 − b

a
z +

c

a
= (z − tan θ) (z − tan γ) (18)

We could then determinetan(θ) and tan(γ) as roots of
P (z). The angles could therefore be unambiguously ob-
tained within (−π/2, π/2]. We would, however, have to
deal with the singularity ata = 0 in cases whereθ = π/2
or γ = π/2.

Starting from the above result, we now show a solu-
tion that avoids these difficulties. We propose a decompo-
sition method that determines the auxiliary vectorsP =
(cos(2θ), sin(2θ)) andQ = (cos(2γ), sin(2γ)) as the in-
tersections of a line with the unit circle. To do so, we first
replace the variablez of P (z) by one of the roots ofP (z),
here denoted byy/x where the ratio is either defined by
x = cos θ andy = sin θ in case ofP or x = cos γ and
y = sin γ for Q. Eq. (18) then becomes equivalent to

cx2 − bxy + ay2 = 0. (19)

Now we observe that

x2 = cos2 θ =
1
2

+
1
2

cos 2θ, (20)

y2 = sin2 θ =
1
2
− 1

2
cos 2θ,

xy = sin θ cos θ =
1
2

sin 2θ.

Note that analog equations are valid forγ. Therefore, the
two pointsP = (cos 2θ, sin 2θ) andQ = (cos 2γ, sin 2γ)
lie on the line

mX + nY − r = 0, (21)

whereX andY are the first and second components ofP
andQ, respectively. The parametersm,n, r are

m =
a− c√
1− 2ac

, n =
b√

1− 2ac
, r =

a + c√
1− 2ac

(22)

wherem, n, andr are normalized to satisfym2 + n2 = 1.
From Eq. (21) and the additional constraintcT c = 1 (see
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Figure 1. Geometry of the separation.

above) we can draw the following two conclusions: (i)
1 − 2ac is always positive and (ii) the pointsP andQ are
given as the intersections of the line defined by Eq. (21) and
the unit circle. Note that the vectore1 = (m,n) is orthogo-
nal ande2 = (−n, m) is parallel to the line. Sincer is the
distance between the line and the origin, the pointsP and
Q are found by the linear combination

P,Q = re1 ∓ se2 (23)

wheres =
√

1− r2. Figure 1 depicts the geometric inter-
pretation of the separation procedure. Finally,P andQ de-
termine the orientations.

4. Confidence measures

As we have seen, orientation estimation is ideally only
possible if the structure tensorsJ1 or J2 have a single zero
eigenvalue. As shown in [12], the above confidence crite-
rion can be expressed in terms of the tensor-invariants with-
out explicit evaluation of the eigenvalues. Such a confidence
criterion is especially useful for2×2 and3×3 matrices be-
cause its evaluation based on the minors of the tensor is sim-
pler and faster. The tensorJ1 has the invariants:

K1 = detJ1 = λ1 λ2

= 〈f2
x〉〈f2

y 〉 − 〈fxfy〉2 (24)

H1 = traceJ1 = λ1 + λ2 = 〈f2
x〉+ 〈f2

y 〉,

where〈f2
x〉 =

∫
Ω

f2
xdΩ, and so on. Clearly,H1 = 0 if

and only ifλ1 = λ2 = 0. This can only occur in homoge-
neous regions where no orientations can be estimated. In
case of single orientations the confidence criterion trans-
lates toH1 > 0 andK1 = 0. As shown in [12], these in-
variants obeyK1 ≤ H2

1 . Equality holds for isotropic re-
gions only, i.e.,H1 = K1 = 0. Thus the confidence cri-
terion becomesK1 ≤ ε1H

2
1 with a confidence parameter

ε1.
In regions where the single-orientation model is rejected

by the above confidence criterion, we test for the double-
orientation model. For tensorJ2 we use the invariants

K2 = det(J2) = λ1λ2λ3 = 〈f2
xx〉M33

− 〈fxxfxy〉M32 + 〈fxxfyy〉M31

S2 = (λ1λ2 + λ1λ3 + λ2λ3) (25)
= M11 + M22 + M33,



whereMij are the minors obtained fromJ2 by eliminat-
ing row 4 − i and column4 − j. In analogy to the single-
orientation case, we obtain the confidence criterionK2

2 ≤
ε2S

3
2 . As shown in [12], for any matrix having a single zero

eigenvalue the eigenvector corresponding to the zero eigen-
value can be expressed in terms of the minors. ForJ1 this
eigenvector is

u =
(−〈fxfy〉, 〈f2

x〉)T√
〈f2

x〉2 + 〈fxfy〉2
or

u =
(〈f2

y 〉,−〈fxfy〉)T√
〈f2

y 〉2 + 〈fxfy〉2
(26)

ForJ2 there are three possibilities to compute the eigenvec-
tor corresponding to the zero eigenvalue:

ci = Ri(Mi3,−Mi2,Mi1)T = (ai, bi, ci)T , i = 1, 2, 3 (27)

where the scaling factorsRi are not needed in our analysis,
but can be determined by(ai + ci)2 + b2

i = R2
i according

to Eq. (16).

5. Layer separation

For some applications it is useful to separate the super-
imposed patterns using the double-orientation information.
Let g1(x) andg2(x) be oriented in directionsθ andγ, re-
spectively. The directional derivativeα(θ)f(x) nulls out
g1(x) (see Eq. (8)), and yields in the Fourier domain

α(θ)f(x) = α(θ)g2(x) ◦−• ωT uG2(ω) =: Ḡ2(ω). (28)

The patterng2(x) is thus recovered up to a convolution. At
frequencies whereωT u 6= 0 we obtainG2(ω) by

G2(ω) =
Ḡ2(ω)
ωT u

. (29)

The frequencies whereωT u = 0 correspond to the support
of G1(ω) and therefore

G2(ωT u) = 0. (30)

Since both lines (determined byu andv respectively) pass
through the origin, it is impossible to separate the frequency
components at the origin. Accordingly, the mean values of
the patterns cannot be recovered.

6. Results

Figure 2 shows two sinusoidal patterns that are superim-
posed: one is vertically oriented and the other is a section
of a circle. We added Gaussian white noise with an SNR
of 25dB. The estimated orientation vectors are depicted in
the right image (15-fold sub-sampling). For each pattern

Figure 2. Two overlaid patterns.

Figure 3. Results for fabric with two opaque
orientations (top) and an X-rayed blood ves-
sel crossing (bottom).

we performed an error analysis by comparing the estimates
with the known ground truth. For the vertical oriented pat-
tern the mean squared angular error is 0.28 degrees and its
standard deviation 0.29 degrees. For the circular pattern, the
errors are estimated relative to the tangent, and we observed
an MSE of 1.48 and a STD of 0.94 degrees. The parame-
tersε1 andε2 are set to 0.1 and 0.4 respectively, and the size
of the integration areaΩ was7 × 7 pixels. The top left im-
age in Figure 3 depicts a fabric, which was taken from the
MIT-VisTex database. The estimated orientations are shown
top right for every tenth pixel. Even though the image does
not satisfy the superposition assumption, the estimated ori-
entations correspond well to the orientations in the texture.
The parametersε1 and ε2 are set to 0.2 and 0.6, respec-



Figure 4. Layer Separation

tively, and the size of the integration area is21 × 21 pix-
els. The second example of figure 3 shows a small part of
an X-ray image with a blood vessel crossing. In this case the
superposition is approximately additive. The estimated ori-
entations are depicted on the right image. Note that in the
overlapping region the two orientations are quite accurately
detected. For the non-overlaid vessel parts the single ori-
entation is also accurately estimated. We used a integration
filter size of9 × 9 pixels and the parametersε1 = 0.6 and
ε2 = 0.6. In all three examples we used a Gaussian pre-filter
with size3 × 3 pixels and standard deviation of one pixel.
Derivatives were computed by finite differences. Figure 4
shows an example for layer separation. The first row de-
picts the two original layers (top left and middle) and their
overlay (top right). In the second row we show the sepa-
rated layers. We were able to recover the layers except for
their mean values.

7. Conclusions

We presented methods for the detection, estimation, and
separation of two locally overlaid orientations in images.
A key element is a generalized structure tensor that is de-
fined for any number of orientations. We have used this ten-
sor to first detect the number of orientations based on con-
fidence measures that do not involve an eigenvalue analy-
sis. Instead, these measures can be fast and efficiently cal-
culated by the invariants of the generalized structure ten-
sor, which in turn are calculated in terms of the tensor
minors. The overlaid orientations are unambiguously de-
scribed by a mixed-orientation vector, which is given as
the tensor’s eigenvector corresponding to the smallest (ide-
ally zero) eigenvalue. As for the confidence measures, we
have shown that the mixed-orientation vector can be calcu-
lated from the tensor minors without an explicit eigensys-
tem analysis. It is a powerful feature of local image con-
tent, and uniquely decomposable into the individual orien-

tations. Finally, we have used the orientation parameters to
separate the overlaid image patterns. Our results, for real
and synthetic images, illustrate the potential of our frame-
work. The orientation parameters are quite accurately re-
covered under noisy conditions and a wide range of relative
orientations. Test patterns were well separated into the orig-
inal layers. Further examples illustrate the benefit for tex-
ture analysis and vessel segmentation.
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