
TRANSFORMATION OF ADAPTIVE THRESHOLDS BY SIGNIFICANCE INVARIANCE
FOR CHANGE DETECTION

Til Aach

Institute of Imaging and Computer Vision
RWTH Aachen University, D-52056 Aachen

Germany
til.aach@lfb.rwth-aachen.de

Alexandru P. Condurache

Institute for Signal Processing
University of Lübeck
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ABSTRACT

The detection of changes in image sequences often is the
first essential step to video analysis, e.g. for the detection,
classification and tracking of moving objects. As a binary
classification problem, change detection is afflicted by the
trade-off between two class error probabilities, viz. the rates
of false positives and false negatives. In this contribution,
we derive an adaptive two-threshold scheme to improve on
this trade-off. The threshold selection for each pixel in the
current frame is controlled by the previous detection result
for this pixel. Since the test statistics are calculated from
samples comprising several pixels within a local sliding
window, a transformation of the thresholds from the single-
pixel observations to decisions based on larger samples is
required. Based on the fact that we can only model the null
hypothesis, i.e., absence of motion, realistically, we suggest
to transform the threshold under the constraint of a constant
false-positive rate, or significance invariance. The resulting
detection algorithm is only marginally more complex than
a straightforward global thresholding procedure, while pro-
viding visibly improved results.

Keywords: motion detection, adaptive thresholding,
significance test, significance invariance.

1. INTRODUCTION

Detection of moving objects in image sequences often re-
lies on the detection of temporal grey level changes [1, 2,
3, 4, 5, 6, 7]. The underlying reasoning is that structural
changes in the depicted scene, such as motion of the objects
to be detected, but also background motion or changes in
the viewing angle by egomotion of the camera, induce tem-
poral changes of the 3D world point projected respectively
onto any given point in the image plane, which in turn re-
sult in a noticeable grey level change. However, such grey
level variations may also originate from other sources, par-
ticularly from illumination changes and camera noise. As-

suming a static camera or that global background motion
has been compensated, and a temporally only slowly vary-
ing scene illumination, the observed grey level changes may
then be attributed to object motion or camera noise [7, 8]. In
addition, if the condition of an only slowly varying scene il-
lumination is not met, the corresponding unwanted temporal
grey level variations can be filtered out to a certain degree
by approaches such as homomorphic filtering [9, 10, 11]
or motion analysis using an intrinsically less illumination-
sensitive test statistic based on a total least squares approach
[12, 13, 14].

On the other hand, object motion does not always gen-
erate noticeable grey level variations. Motion of, e.g., spa-
tially homogeneous regions with low gradients may result
in only low grey level variations (cf. [15] for analysis of op-
tic flow). Object motion is therefore neither a sufficient nor
a necessary condition for temporal grey level changes to oc-
cur. In consequence, we regard the reverse inference from
grey level variations to object motion as a two-class decision
problem. The detection of object motion via temporal grey
level changes is therefore afflicted by the trade-off between
the two class error probabilities, viz. the rates of false posi-
tives and false negatives. Moreover, since motion detection
as a binary segmentation problem seeks to infer the under-
lying structure from observed noisy image data, we added it
[16, 17] to the list of ill-posed problems in computer vision
[18, 19, 20]. When solving such problems, the space of pos-
sible solutions is constrained by appropriate regularization
[21, 22, 23, 24], which may also be expressed in a statistical
manner within Bayesian approaches [25, 7]. In the context
of motion detection, this translates into adaptive algorithms,
which considerably improve the above trade-off. Successful
adaptive techniques often rely on an appropriate modelling
of the prior knowledge within a Bayesian framework, e.g.
in terms of Gibbs/Markov random fields (GMRF) [26, 27].
Spatial GMRFs are suitable to express the prior expectation
of compactly shaped moving objects, and consequently sup-



press the emergence of spurious, noise-like detection results
[16].

For some applications, however, such models may over-
constrain the detection procedure. An example is the analy-
sis of a bolus of contrast agent flowing through the blood
vessels in digital X-ray angiography. The fine, filigran-
like and anisotropic nature of the smaller vessels may not
be appropriately captured by a spatial GMRF. This kind of
overconstraining is vividly illustrated by the almost isotrop-
ically compact nature of label fields drawn from GMRFs by
a Gibbs sampler [26, 28].

In this contribution, we therefore restrict ourselves to
modelling the temporal behaviour of the states of a pixel.
An injection of a contrast bolus, for instance, extends over a
certain finite time interval. While flowing through the ves-
sels, the contrast bolus is further diluted. This dispersion
is often described by a convolution of a vessel impulse re-
sponse with the injection profile. It is therefore reasonable
to assume that, once the moving contrast agent is detected
at a certain pixel, this pixel remains in a moving state for a
certain time interval [29]. This translates into a certain de-
gree of similarity between subsequent change masks, which
is in the following exploited.

2. CONTEXT-ADAPTIVE CHANGE DETECTION

2.1. Statistical Modelling

To assess temporal changes, we calculate the pixel-wise dif-
ference image D = {d(k)} between the two grey level
images Gj = {gj(k)}, j = 1, 2, to be compared; these
may be two successive video frames, or one reference and
one current image. In the case of two successive frames,
this differencing corresponds to a temporal highpass which
eliminates slow illumination changes from further analysis.
For each pixel k, the difference is computed as d(k) =
g2(k) − g1(k). We assume the camera noise as additive,
zero-mean, Gaussian distributed and spatiotemporally in-
dependent. Note that, when processing X-ray images, the
noise is actually Poisson distributed [30], what, for reason-
able quantum counts, may be approximated by a Gaussian
pdf with signal-dependent variance [31]. In the current mo-
tion mask Q = {q(k)}, we seek to assign to each pixel k
a binary label q(k) ∈ {u, c}, with u denoting unchanged
(null hypothesis H0), and c denoting changed (hypothesis
H1). Since we process image sequences, the previous mo-
tion mask R = {r(k}, r(k) ∈ {u, c} shall also be avail-
able. For the decision at pixel i, we observe a sample
di = {d(k)|k ∈ wi} of differences within a small slid-
ing window wi centred at i. Use of an observation window
makes the decision more robust, at the cost, though, of a
slight loss of spatial resolution [8].

In addition, within wi we observe a sample ri =
{r(k)|k ∈ wi} of previous labels. Resorting to the like-

lihood ratio as a most powerful test statistic [32], a possible
decision approach is

p(di, ri|H1)

p(di, ri|H0)

c

>
<

u

t (1)

with this notation indicating that q(i) = c if the left quantity
exceeds the right-hand side, and q(i) = u if the left-hand
side is less than the right-hand side. The fixed threshold t
depends on the chosen criterion, such as maximum a poste-
riori estimation, and the global prior probabilities of the two
hypotheses.

It is reasonable to assume that the statistical properties
of the observed grey level difference vector di depend only
on the underlying hypothesis (or “state”) H0 or H1. In other
words, given the state, the old label constellation ri does
hence not influence the probability density function (pdf) of
di, i.e. p(di|Hj , ri) = p(di|Hj), j = 0, 1. The observa-
tions di and ri are thus conditionally independent:

p(di, ri|Hj) = p(di|Hj , ri)p(ri|Hj) = p(di|Hj)p(ri|Hj) .
(2)

Decision (1) can then be written as

l(di) =
p(di|H1)

p(di|H0)

c

>
<

u

t ·
p(ri|H0)

p(ri|H1)
= t̂(ri) . (3)

Here, t̂(ri) is an adaptive threshold depending on ri. Let the
variance of the differences d(k) under the null hypothesis be
σ2, which be known from calibration measurements (a sim-
ple but in many cases sufficient model is that σ2 is twice the
camera noise variance). Under the assumption that given
H1, the observed grey level differences obey another zero-
mean Gaussian distribution with considerably larger vari-
ance σ2

c [16], we obtain from (3)
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Here, ∆i = 1/σ2
∑

k∈wi
d2(k), and N is the number of

pixels in wi (practically, N = 25...49). With σ2

c >> σ2

(measurements showed that typically, σ2

c ≈ 100σ2), and
taking the logarithm, (4) becomes

∆i
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2 log
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(σc
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]

+ 2 log
p(ri|H0)

p(ri|H1)
= t̃N (ri) . (5)

The decision threshold adapts to the label constellation ri

in the previous image. The first part of the sum corresponds
to a fixed threshold ts, which, due to σ2

c being unknown,
cannot be directly evaluated. Given H0, p(∆i|H0) is a
χ2-distribution with N degrees of freedom. Setting an ac-
ceptable false alarm rate or significance α, we determine ts

from Prob(∆i > ts|H0) = α. For the adaptive part of the



threshold, however, there are 2N different label constella-
tions possible in wi, which, even for small windows, result
in impracticably many parameters. In the next section, we
show how the number of adaptive thresholds can be reduced
to two, which depend only on the previous detection result
r(i).

2.2. Threshold Transform by Significance Invariance

We start from a window wi with just one pixel, i.e., N = 1.
The observed vectors di and ri reduce to a scalar difference
d(i) and a single previous label r(i). The fixed threshold
part ts is then determined from a χ2-distribution with only
one degree of freedom for a given significance α. From
the four “reverse” transition probabilities p(r(i) = u|H1),
p(r(i) = c|H1), p(r(i) = u|H0), p(r(i) = c|H0), only
one per hypothesis needs to be estimated or set from ex-
perience, the other two are easily determined from the to-
tal probability. Evidently, because of temporal coherence,
p(r(i) = u|H0) > p(r(i) = c|H0), and p(r(i) = c|H1) >
p(r(i) = u|H1). For r(i) = u and r(i) = c, the threshold
pair is from (5)

t̃1(u) = ts + 2 log
p(r(i) = u|H0)

p(r(i) = u|H1)
> ts (6)

and

t̃1(c) = ts + 2 log
p(r(i) = c|H0)

p(r(i) = c|H1)
< ts (7)

In this notation, the subscript “1” of the threshold variables
t̃1(r(i)) reflects the validity of these thresholds for a win-
dow wi of size 1 × 1.

To transform this threshold pair towards being used with
larger window sizes N , we determine the significance for
each threshold by

Prob(d2(i) > t̃1(u)|H0) = αu (8)

and
Prob(d2(i) > t̃1(c)|H0) = αc (9)

Again, the probabilities are evaluated based on a χ2-pdf
with one degree of freedom. Requiring these significances
to be valid for other window sizes N as well (significance
invariance), the threshold pair t̃N (u), t̃N (c) can be obtained
by reversing (8) and (9), now based on a χ2-pdf with N de-
grees of freedom. Table 1 illustrates this threshold transfor-
mation for N = 25, α = 5 · 10−4, p(u|H0) = 0.99, and
p(c|H1) = 0.98.

2.3. The Two-Threshold Algorithm

The above strategy can be implemented as a two-threshold
algorithm, which is only marginally more complex than a
global, non-adaptive algorithm: the values of the threshold

α ts t̃1(u) t̃1(c)
5 · 10−4 11.9 19.6 2.7

αu αc t̃25(u) t̃25(c)
10−5 0.1 67.5 34.3

Table 1. Threshold transform based on significance invari-
ance.

pair are determined off-line in the beginning, and stored in
a LUT. Before processing pixel i, we only check its previ-
ous label r(i) to extract the corresponding threshold from
the LUT. Since checking on r(i) is done before actually de-
ciding on the current label q(i), r(i) can be overwritten by
q(i), additional storage for the previous change mask R is
therefore not needed. Also, the algorithm can be fully par-
allelized.

2.4. Initialization of the Two-Threshold Algorithm

Obviously, when computing a motion mask, the threshold
selection is only applicable if a previous motion mask is
indeed available. For the first motion mask of an image se-
quence, though, a predecessor mask does not exist. The
initial mask can therefore only be determined by a non-
adaptive algorithm with a global threshold, which is reason-
ably taken from the set {t̃N (u), t̃N (c)}. The probably best
choice appears to be the lowest of these, viz. t̃N (c). This
results in a high number of false positives in the first mask.
These vanish, however, quickly, since they are caused by
outliers of the camera noise, the statistical bindings of which
extend over only a short temporal interval determined by the
length of the differencing operation. Alternatively, initial-
ization by the high threshold t̃N (u) would result in a high
false negative rate (i.e. “holes” in moving objects). Since
these false negatives are caused by spatially homogeneous
regions of moving objects, their correlation length is much
longer. The rate of decay is therefore slower.

3. RESULTS

Fig. 1 compares two nonadaptive thresholding results with
the dual-threshold method. Fig. 1 b) shows a nonadaptive
thresholding using the higher threshold t̃25(u) in the en-
tire image, resulting in a low false positive rate, while c)
shows the same using the lower threshold t̃25(c), resulting
in less false negatives, but at the cost of a higher false pos-
itive rate. The dual-thresholding result in d) combines the
low false positive rate in b) with the low false negative rate
in c). Despite the lack of explicit modelling of spatial com-
pactness, the detected objects appear smoothly shaped. A
similar observation holds for the digital angiogram showing
a contrast bolus flowing through vessels in Fig. 2. While
in Fig. 1, the comparison was carried out between two suc-



cessive frames, in Fig. 2 the algorithm was always applied
to the current frame and the first frame, which served as a
reference without contrast agent showing up. Fig. 3 shows
a moving car recorded by a static camera, and the detec-
tion results. Here, the square-shaped detection errors result
from outliers caused by digitization errors of the originally
analog sequence, which are amplified by the squaring oper-
ation. As in Fig. 1, the algorithm was applied to successive
frames. In all examples, the window size was N = 25; all
other parameters were as in table 1. The variances σ2 were
estimated prior to the detection procedure from calibration
measurements. Fig. 4 shows the adaptation behaviour of the
algorithm after initialization with the lower threshold t̃25(c).
Evidently, the high false-positive rate in the first mask drops
swiftly over the next few frames.

a) b)

c) d)

Fig. 1. a) Frame 20 of a video sequence, b) non-adaptive result,
α = αu = 10

−5, c) non-adaptive result, α = αc = 0.1, d)
dual-threshold result.

a) b)

c) d)

Fig. 2. a) Frame 11 of a digital angiography, b) non-adaptive
result, α = αu = 10

−5 , c) non-adaptive result, α = αc = 0.1 ,
d) dual-threshold result.

a) b)

c) d)

Fig. 3. a) Frame 10 of a traffic scene, b) non-adaptive result,
α = αu = 10

−5, c) non-adaptive result, α = αc = 0.1, d)
dual-threshold result.

4. DISCUSSION

We have described an adaptive dual-threshold motion de-
tection algorithm. The algorithm is non-iterative, and only
marginally more complex than a non-adaptive algorithm,
but provides a visibly improved trade-off between the class
error probabilities. The algorithm can be fully implemented
in parallel, and, once the (camera) noise variance σ2 for the
null hypothesis H0 is estimated, needs only four parame-
ters, viz. the window size N , the initial significance level
α, and two transition probabilities. Decision thresholds are
calculated based on error probabilities and transition prob-
abilities. For the results shown in this paper, the transition
probabilities were determined experimentally. Essentially,
the transition probabilities determine how different the two
thresholds are. Thus, though their values are not quite un-
critical, our results show that they do not depend strongly
on the type of image sequences they are applied to. One
next step would be to compare the values used in the ex-
periments with transition measurements from sequences of
motion masks.

When deriving the decision rule (5) from the general ex-
pression in (3), we have assumed independent Gaussian dis-
tributions in the difference images. Alternative models tak-
ing into account correlations [33] or other marginal distribu-
tions, such as a Laplacian pdf to describe frame differences,
have been put forward. Our earlier experiments show that
exploiting correlations in the test statistics for motion de-
tection has only a minor influence, if at all, on the result [7,



a) b)

c) d)

Fig. 4. Adaption of the algorithm after initialization with the
lower threshold. a) motion mask 1, b) motion mask 2, c) motion
mask 3, d) motion mask 4.

Sec. 5.1], [16, App. A]. The Laplacian model can be used in
our framework as well. The major differences are that the
square sum ∆i of differences in (4) is replaced by the sum
of absolute differences, and that the number of degrees of
freedom of the χ2-pdf used to relate thresholds and signif-
icance values needs to be doubled. Details can be found in
[7, 8, 16]. In practice, decision rules based on a Gaussian
and a Laplacian model perform almost equivalently. A sim-
ilar observation was made for image restoration in [34]. The
only noticeable difference between these is that the Lapla-
cian model is less sensitive to outliers, since their values are
not squared as in the Gaussian model. Furthermore, note
that we need distributions conditioned on the hypotheses of
motion (H1) and no motion (H0), for which the Gaussian
model appears quite appropriate. The Laplacian model with
its narrow peak around zero and longer tails may be viewed
as an unconditional mixture model of the two hypotheses.

While the algorithm in its current form is sensitive to
quick illumination changes, it can also be used within the
illumination-insensitive frameworks mentioned in the intro-
duction, e.g., [10, 12].

The decision procedure in this paper essentially relies on
the observation of only a single previous label r(i). Our ap-
proach in (3), though, allows to consider a whole set of pre-
vious labels ri. A promising direction of future research is
to seek to exploit this in practice. One way to do this would
be to make the detection of, say, line-like vessels filled by
a contrast agent dependent on previously detected line-like
structures captured within ri, by specifying the transition

probabilities p(ri|Hj) appropriately.
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[13] T. Aach, L. Dümbgen, R. Mester, and D. Toth,
“Bayesian illumination-invariant motion detection,” in
Proceedings IEEE International Conference on Im-
age Processing (ICIP), Vol. III, ISBN 0-7803-6725-1,
Thessaloniki, October 7–10 2001, pp. 640–643, IEEE.

[14] T. Aach, D. Toth, and R. Mester, “Motion estimation
in varying illumination using a total least squares dis-
tance measure,” in Picture Coding Symposium, Saint
Malo, France, April 23–25 2003, pp. 145–148.

[15] B. K. P. Horn and B. G. Schunck, “Determining opti-
cal flow,” Artificial Intelligence, vol. 17, pp. 185–203,
1981.

[16] T. Aach and A. Kaup, “Bayesian algorithms for
change detection in image sequences using Markov
random fields,” Signal Processing: Image Commu-
nication, vol. 7, no. 2, pp. 147–160, 1995.

[17] T. Aach, A. Kaup, and R. Mester, “Change detec-
tion in image sequences using Gibbs random fields,”
in Proceedings International Workshop on Intelli-
gent Signal Processing and Communication Systems,
Sendai, Japan, October 1993, pp. 56–61, IEEE.

[18] M. A. Bertero, T. Poggio, and V. Torre, “Ill-posed
problems in early vision,” Proceedings of the IEEE,
vol. 76, no. 8, pp. 869–889, 1988.

[19] T. Poggio, V. Torre, and C. Koch, “Computational
vision and regularization theory,” Nature, vol. 317,
pp. 314–319, September 1985.

[20] T. Poggio, “Early vision: From computational struc-
ture to algorithms and parallel hardware,” Computer
Vision, Graphics, and Image Processing, vol. 31, pp.
139–155, 1985.

[21] A.N. Tikhonov and V. Y. Arsenin, Solutions of Ill-
Posed Problems, Winston & Sons, Washington,D.C.,
1977.

[22] A. N. Tikhonov and A. V. Goncharsky (Eds.), Ill-
Posed Problems in the Natural Sciences, Mir,
Moscow, 1987.

[23] N. B. Karayiannis and A. N. Venetsanopoulos, “Regu-
larization theory in discrete image restoration,” in Pro-
ceedings Visual Communications and Image Process-
ing 88. 1988, vol. 1001, pp. 25–36, SPIE.

[24] V. Torre and T. Poggio, “On edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 8, no. 2, pp. 147–163, 1986.

[25] R. M. Haralick, “Decision making in context,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 5, no. 4, pp. 417–429, 1983.

[26] S. Geman and D. Geman, “Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of
images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.

[27] J. Besag, “On the statistical analysis of dirty pictures,”
Journal Royal Statistical Society B, vol. 48, no. 3, pp.
259–302, 1986.

[28] G. R. Cross and A. K. Jain, “Markov random field
texture models,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 5, no. 1, pp. 25–39,
1983.

[29] T. Aach, A. Condurache, K. Eck, and J. Bredno,
“Statistical-model based identification of complete
vessel-tree frames in coronary angiograms,” in Elec-
tronic Imaging 2004: Computational Imaging II, C. A.
Bouman and E. L. Miller, Eds., San Jose, USA, Janu-
ary 18–22 2004, pp. 283–294, SPIE Vol. 5299.

[30] T. Aach, U. Schiebel, and G. Spekowius, “Digital im-
age acquisition and processing in medical x-ray imag-
ing,” Journal of Electronic Imaging, vol. 8, no. Spe-
cial Section on Biomedical Image Representation, pp.
7–22, 1999.

[31] T. Aach and D. Kunz, “Bayesian motion estimation
for temporally recursive noise reduction in x-ray fluo-
roscopy,” Philips Journal of Research, vol. 51, no. 2,
pp. 231–251, 1998.

[32] C. W. Therrien, Decision, Estimation, and Classifica-
tion, John Wiley, New York, 1989.

[33] D. J. Connor and J. O. Limb, “Properties of frame-
difference signals generated by moving images,” IEEE
Transactions on Communications, vol. 22, no. 10, pp.
1564–1575, 1974.

[34] H. Derin, “Comments on ”Restoration of noisy im-
ages modeled by Markov random fields” (with reply),”
IEEE Transactions on Circuits and Systems, vol. 38,
no. 5, pp. 566–567, 1991.


