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Abstract

Moving objects in image sequences acquired by a static
camera can be detected by analyzing the grey–level differ-
ence between successive frames. Direct motion detection,
however, will also detect fast variations of scene illumina-
tion. This paper describes a method for motion detection
that is considerably less sensitive to time–varying illumina-
tion. It is based on combining a motion detection algorithm
with a homomorphic filter which effectively suppresses vari-
able scene illumination. To this end, the acquired image se-
quence is modelled as being generated by an illumination
and a reflectance component that are approximately sepa-
rated by the filter. Detection of changes in the reflectance
component is directly related to scene changes, i.e. object
motion. Real video data are used to illustrate the system’s
performance.

1. Introduction

The detection of moving objects in image sequences
recorded with a static camera is often based in evaluating
temporal changes in intensity [2, 3, 4, 13]. Assuming that
such temporal changes are caused by motion or noise, the
purpose of change detection is to identify and label those
changes which are due to motion. Ideally, the resulting
change mask corresponds to the projection of moving ob-
jects and shadow onto the image plane, plus uncovered
background. Two error classes occur: on the one hand,
noise causes false positives in static regions (class 1 errors).
On the other hand, object motion does not always generate
distinct grey level changes, leading to “holes” in the change
mask (class 2 errors). This is typically the case when ob-
ject motion is small or spatial grey level gradients are small
(cf.[12]). Below we will review a context-adaptive change
detection algorithm which almost completely avoids such
errors.

Temporal changes are often detected by comparing con-
secutive frames of the sequence in question [7, 9], for in-

stance by calculating the grey level difference image. This
corresponds to a temporal highpass filter, which more or
less eliminates slow changes in illumination. Potential
faster changes in illumination, however, are not sufficiently
attenuated by this operation.

To eliminate the unwanted influence of a varying illu-
mination component we use a model well known in ho-
momorphic image filtering [11]. In this model the image
intensity is considered to be generated by an incoming illu-
mination, which is reflected by the surfaces of the objects
in the observed scene. For Lambertian surfaces, the relation
between observed intensityy, illuminationi and reflectance
r is multiplicative. Assuming the scene illumination as spa-
tially varying slowly and the reflectance component as con-
taining mainly spatially medium and high–frequency details
[10, 11], an approximate elimination of illumination is pos-
sible by taking the logarithm of the image before applying a
linear high–pass filter. After exponentiation, change detec-
tion is carried out on the remaining reflectance component.

In the following we first summarize our method for
context-adaptive change detection; a more detailed descrip-
tion can be found in [1, 3]. This is followed by a description
of our illumination–invariant change detection system.

2. The change detection algorithm

The goal of a change detection system is to generate a
change maskq consisting of binary labelsq(k) for each
pixel k on the image grid. The labels either take the value
”u” (’unchanged’) or ”c” (’changed’). In order to determine
the labelq(k = i) for pixel i we start with the grey–level
difference imaged(k) between two successive frames, and
compare the sum of absolute differences∆i within a sliding
windowwi with N pixels and centeri to a thresholdT :
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Here,σu is the noise standard deviation of the grey level
differences in stationary areas, which is assumed to be con-
stant over space. Normalization byσu — which is known



for a given camera or easily estimated — makesT insensi-
tive to different noise levels. Given the null hypothesisH0

(grey–level differencesd(k) in wi only due to noise), and
modelling the grey level differencesd(k) as independent
and Laplacian distributed [5],∆i obeys aχ2 distribution
with 2N degrees of freedom [4]1. Change detection can
then be formulated as a significance test, where the thresh-
old value is determined in terms of an acceptable false alarm
rateα [4]. The “significance”α is equivalent to the proba-
bility that ∆i exceeds the thresholdT , givenH0:

α = Prob(∆i > T |H0) . (2)

For a given false alarm rateα, the thresholdT is determined
from tables of theχ2-distribution. The decision rule then is

∆i

c
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Whenever∆i exceedsT , we decideq(i) = c, otherwise
q(i) = u.

As mentioned above, this global-threshold-based deci-
sion procedure is prone to two kinds of errors, false pos-
tives and false negatives. The basic idea to reduce these
is to decrease the decision threshold inside changed areas,
and to increase it outside. This exploits the prior knowl-
edge that changed and unchanged regions correspond to ob-
jects or background, which usually are of compact shape.
Formally, this prior knowledge can be expressed by mod-
elling the change masks as realizations of Gibbs/Markov-
random fields [1]. This leads to a variable thresholdt which
adapts to the label constellation within a pixel’s neighbour-
hood when making a decision. The higher the numberni
of ”changed” pixels found in this neighbourhood, the lower
the threshold is [1]:

t(ni) = T + (4− ni) ·B, (4)

with 0 ≤ ni ≤ 8 when using a3×3 neighbourhood. The pa-
rameterB is a positive–valued potential which determines
the range oft(ni). If ni = 0, the thresholdt reaches its
maximum value ofT +4B. The minimum value ofT −4B
results ifni = 8, i.e. all neighbours of pixeli are labelled as
”changed”. If there are as many “changed” as “unchanged”
labels, we haveni = 4, andt = T . Clearly, the threshold
t(ni) favours the emergence of compact, smoothly shaped
object masks, and reduces scattered decision errors caused
by noise.

The labelsq(k) necessary to calculatet(ni) can be ob-
tained as follows: assuming a raster scan from the upper left
to the lower right image corner, the labels in the causal part

1Instead of taking the absolute sum, the local squaresum of grey level
differences may similarly be used [4]. The absolute sum is, however, more
robust against outliers.

of the 3 × 3-neighbourhood of pixeli are already known.
The labels in the noncausal part of the neighbourhood are
approximated by keeping labels from the previous change
mask (see Figure 1). Note that when overwriting the pre-
vious change mask during the raster scan, this constellation
emerges automatically.

Figure 1. Label constellation in the neigh-
bourhood of pixel i. The causal part of the
neighbourhood is shown shaded.

3. Homomorphic change detection

3.1. Homomorphic filtering

The intensity of an image is generated by an incoming
illumination, which is reflected by the surfaces of the ob-
jects in the observed scene. For Lambertian object surfaces
we can model the intensity of theτ–th frame in an image
sequence by

yτ (k) = iτ (k) · rτ (k), (5)

with k being the pixel–index,i the illumination andr the
reflectance component [11]. The structure of the depicted
scene is captured in the reflectance componentr. Conse-
quently, we try to separatei from r and use only the lat-
ter for change detection. In many realistic cases the scene
illumination can be assumed to be spatially slow–varying,
whereas the reflectance component contains also medium
high–frequency details, i.e. object information [11]. There-
fore we extract the reflectance component by first applying
the logarithm and then a linear high–pass filter. The log-
arithm transforms the multiplicative relation betweeny, i
andr into an additive one, i.e.

log(yτ (k)) = log(iτ (k)) + log(rτ (k)). (6)

Although the log-nonlinearity modifies the spectral content
of illumination and reflectance components, it is in practice
often justified to assume the log-illumination to be still spa-
tially slowly varying [11].

Equation 6 holds even if we have to deal with a cam-
era nonlinearity which is often described by the following
exponential law (gamma correction):

yτ (k) = yγin(k) (7)



whereyin(k) is the detected intensity, andγ the gamma-
value. The purpose of gamma-correction is to make better
use of dynamic range, withγ typically being about 0.4 [8,
p. 38]. The multiplicative relation betweeny, i andr is not
distorted as in the log–domain the gamma value is trans-
formed to a gain factor.

Figure 2. Homomorphic filter for multiplied
signals.

The homomorphic filter is shown in Figure 2: After ap-
plying the logarithm, the image is low–pass filtered using a
binomial filter–kernel and then subtracted from the logarith-
mic original, yielding a high–pass component. Exponenti-
ation of both high-pass and low–pass components approxi-
mately separates the image into illumination and reflectance
components. For our purpose, we could omit the exponen-
tiation. However, as the non–linear log–operation makes
the camera noise varianceσ2

u signal–dependent it would be
more difficult to handle the parameterσu in equation 1.

Figure 3 illustrates the effect of homomorphic filtering.
The top image is taken from of a sequence with two moving
toy engines. Each frame is of size320× 240 pixels. In ad-
dition a spot of light crosses the scene quickly from left to
right. In the depicted image it is about in the centre of the
scene. The middle and bottom images show the reflectance
and the illumination components respectively. A binomial
lowpass kernel of size51 × 51 pixels was used in the ho-
momorphic filter. It is clearly visible that in the reflectance
imager illumination effects are strongly suppressed while
object information is preserved. In the illumination image
i, however, the light–spot is very prominent whereas object
details are blurred.

Of course, the illumination image still contains low–
frequency parts from the reflectance and thus separation of
the two components is only approximate. But in practice
the separation works efficiently, as the example in Figure 3
shows.

3.2. Illumination–invariant change detection

To obtain a change detection system which is indepen-
dent of illumination variations the algorithm described in

Figure 3. Homomorphic filtering of the image
y (top) yields the reflectance r (middle) and
the illumination component i (bottom).

section 2 is applied to the reflectance components of two
successive frames. The full algorithm is depicted in Fig-
ure 4. After calculating the reflectance componentsrτ and
rτ+1 of the corresponding input imagesyτ and yτ+1 the
change detection is carried out. The sum over the window
wi in equation 1 is implemented by using a moving average
low–pass filter (LP) of size5× 5 pixels.

Figure 4. Illumination–invariant change de-
tection.



4. Results

Figure 5 shows two successive frames taken from the se-
quence with two moving toy engines (top row), where illu-
mination from a moving real light source crosses the scene
from left to right. In direct change detection this varia-
tion of the scene illumination shows up in the∆–image
(middle left). Therefore, direct application of change de-
tection clearly meddles illumination effects with the de-
sired object mask (middle right). In the bottom row im-
ages, the moving light–spot is not visible in the∆–image,
which is now calculated for reflectance images (left). Con-
sequently, the change mask is almost unaffected by illumi-
nation changes (right). Hence, the presented illumination
insensitive system reacts only to the object motion (plus
moving shadow and uncovered background), as desired.
The significance level was set to0.0005 and the cost pa-
rameterB toB = 3.75 (cf. the values used in [1]). For the
reflectance images,σ2

u was estimated toσu = 8.

Figure 5. In plain change detection the vari-
ation of illumination (top) shows up in the
∆–image and in the change mask (middle
row). The images in the bottom row show
that the homomorphic system reacts almost
exclusively to object motion.

Figure 6 compares the grey level profiles for identical

lines in the∆-images with and without homomorphic pre-
filtering. The line is marked in white in both pictures, and
does not cross a moving object. The observations are hence
caused by noise or by the moving light–spot. As the line
profiles show, there is a strong ”response” to the moving
light–spot (top right) when no homomorphic filter is ap-
plied, whereas the∆-image computed from the reflectance
images shows no such response.

Figure 6. The grey–level values taken from a
line in the ∆–images without (top row) and
with homomorphic filtering (bottom row).

5. Discussion

In this paper we have developed a new illumination–
invariant change detection algorithm by combining the
change detection algorithm described in [1] with the ho-
momorphic filter for multiplicative signals from [10, 11].
Clearly, the image model underlying the homomorphic re-
duction of illumination is only a first-order approximation,
which, however, has also been used for other purposese
like image enhancement [11] and shadow detection [14].
In our application, results obtained so far from test image
sequences with genuinely varying illumination confirm that
homomorphic motion detection is insensitive even to fast
variations in illumination, without noticeably harming the
detection of moving objects. As homomorphic filtering re-
quires only point operations and a separable FIR filter, its
computational expense is relatively low. We currently com-
pare our method to alternative approaches (e.g. [9, 13]).
Here, the comparison to algorithms in [13] is of special in-
terest, which reduce artifacts from illumination by spatial



derivatives or subtraction of the local mean. Both imply ad-
ditive rather than multiplicative illumination.

So far, the linear lowpass in the homomorphic filter was
determined experimentally. A better separation between il-
lumination and reflectance may be obtained by using the
stochastic homomorphic filter in [6], which determines the
filter parameters based on statistical signal models.

A limitation of our approach is the assumption of spa-
tially slowly-varying illumination. While this assumption is
obviously justified in many outdoor conditions, it may not
hold for indoor scenes. More elaborate models for illumi-
nation identification will then be necessary.
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