
www.elsevier.com/locate/specom

Speech Communication 49 (2007) 763–786
Automatic speech recognition and speech variability: A review

M. Benzeghiba, R. De Mori, O. Deroo, S. Dupont *, T. Erbes, D. Jouvet, L. Fissore,
P. Laface, A. Mertins, C. Ris, R. Rose, V. Tyagi, C. Wellekens

Multitel, Parc Initialis, Avenue Copernic, B-7000 Mons, Belgium

Received 14 April 2006; received in revised form 30 January 2007; accepted 6 February 2007
Abstract

Major progress is being recorded regularly on both the technology and exploitation of automatic speech recognition (ASR) and
spoken language systems. However, there are still technological barriers to flexible solutions and user satisfaction under some circum-
stances. This is related to several factors, such as the sensitivity to the environment (background noise), or the weak representation of
grammatical and semantic knowledge.

Current research is also emphasizing deficiencies in dealing with variation naturally present in speech. For instance, the lack of robust-
ness to foreign accents precludes the use by specific populations. Also, some applications, like directory assistance, particularly stress the
core recognition technology due to the very high active vocabulary (application perplexity). There are actually many factors affecting the
speech realization: regional, sociolinguistic, or related to the environment or the speaker herself. These create a wide range of variations
that may not be modeled correctly (speaker, gender, speaking rate, vocal effort, regional accent, speaking style, non-stationarity, etc.),
especially when resources for system training are scarce. This paper outlines current advances related to these topics.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well-known that the speech signal not only conveys
the linguistic information (the message) but also a lot of
information about the speaker himself: gender, age, social,
and regional origin, health and emotional state and, with a
rather strong reliability, his identity. Beside intra-speaker
variability (emotion, health, age), it is also commonly
admitted that the speaker uniqueness results from a com-
plex combination of physiological and cultural aspects
(Garvin and Ladefoged, 1963; Nolan, 1983).

Characterization of the effect of some of these specific
variations, together with related techniques to improve
ASR robustness is a major research topic. As a first obvi-
ous theme, the speech signal is non-stationary. The power
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spectral density of speech varies over time according to
the source signal, which is the glottal signal for voiced
sounds, in which case it affects the pitch, the configuration
of the speech articulators (tongue, jaw, lips. . .). This signal
is modeled, through hidden Markov models (HMMs), as a
sequence of stationary random regimes. At a first stage of
processing, most ASR front-ends analyze short signal
frames (typically covering 30 ms of speech) on which
stationarity is assumed. Also, more subtle signal analysis
techniques are being studied in the framework of ASR.

The effects of coarticulation have motivated studies on
segment based, articulatory, context dependent (CD)
modeling techniques. Even in carefully articulated speech,
the production of a particular phoneme results from a
continuous gesture of the articulators, coming from the
configuration of the previous phonemes, going to the
configuration of the following phonemes (coarticulation
effects may indeed stretch over more than one phoneme).
In different and more relaxed speaking styles, stronger
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pronunciation effects may appear, often lead to reduced
articulation. Some of these being particular to a language
(and mostly unconscious). Other are related to regional
origin, and are referred to as accents (or dialects for the lin-
guistic counterpart) or to social groups and are referred to
as sociolects. Although some of these phenomena may be
modeled appropriately by CD modeling techniques, their
impact may be more simply characterized at the pronunci-
ation model level. At this stage, phonological knowledge
may be helpful, especially in the case of strong effects like
foreign accent. Fully data-driven techniques have also been
proposed.

Following coarticulation and pronunciation effects,
speaker related spectral characteristics (and gender) have
been identified as another major dimension of speech var-
iability. Specific models of frequency warping (based on
vocal tract length differences) have been proposed, as well
as more general feature compensation and model adapta-
tion techniques, relying on Maximum Likelihood or
Maximum a Posteriori criteria. These model adaptation
techniques provide a general formalism for re-estimation
based on moderate amounts of speech data.

Besides these speaker specific properties outlined above,
other extra-linguistic variabilities are admittedly affecting
the signal and ASR systems. A person can change his voice
to be louder, quieter, more tense or softer, or even a whisper.
Also, some reflex effects exist, such as speaking louder when
the environment is noisy, as reported in Lombard (1911).

Speaking faster or slower, also has influence on the
speech signal. This impacts both temporal and spectral
characteristics of the signal, both affecting the acoustic
models. Obviously, faster speaking rates may also result
in more frequent and stronger pronunciation changes.

Speech also varies with age, due to both generational
and physiological reasons. The two ‘‘extremes’’ of the
range are generally put at a disadvantage due to the fact
that research corpora, as well as corpora used for model
estimation, are typically not designed to be representative
of children and elderly speech. Some general adaptation
techniques can however be applied to counteract this
problem.

Emotions are also becoming a hot topic, as they can
indeed have a negative effect on ASR; and also because
added-value can emerge from applications that are able
to identify the user emotional state (frustration due to poor
usability for instance).

Finally, research on recognition of spontaneous conver-
sations has allowed to highlight the strong detrimental
impact of this speaking style; and current studies are trying
to better characterize pronunciation variation phenomena
inherent in spontaneous speech.

This paper reviews current advances related to these
topics. It focuses on variations within the speech signal that
make the ASR task difficult. These variations are intrinsic
to the speech signal and affect the different levels of the
ASR processing chain. For different causes of speech vari-
ation, the paper summarizes the current literature and
highlights specific feature extraction or modeling
weaknesses.

The paper is organized as follows. In a first section, var-
iability factors are reviewed individually according to the
major trends identified in the literature. The section gathers
information on the effect of variations on the structure of
speech as well as the ASR performance.

Methodologies that can help analyzing and diagnose the
weaknesses of ASR technology can also be useful. These
diagnosis methodologies are the object of Section 3. A spe-
cific methodology consists in performing comparisons
between man and machine recognition. This provides an
absolute reference point and a methodology that can help
pinpointing the level of interest. Man–machine comparison
also strengthens interdisciplinary insights from fields such
as audiology and speech technology.

In general, this review further motivates research on the
acoustic, phonetic and pronunciation limitations of speech
recognition by machines. It is for instance acknowledged
that pronunciation variation is a major factor of reduced
performance (in the case of accented and spontaneous
speech). Section 4 reviews ongoing trends and possible
breakthroughs in general feature extraction and modeling
techniques that provides more resistance to speech produc-
tion variability. The issues that are being addressed include
the fact that temporal representations/models may not
match the structure of speech, as well as the fact that some
analysis and modeling assumptions can be detrimental.
General techniques such as compensation, adaptation,
multiple models, additional acoustic cues and more accu-
rate models are surveyed.

2. Speech variability sources

Prior to reviewing the most important causes of intrinsic
variation of speech, it is interesting to briefly look into the
effects. Indeed, improving ASR systems regarding sources
of variability will mostly be a matter of counteracting the
effects. Consequently, it is likely that most of the variabil-

ity-proof ASR techniques actually address several causes
that produce similar modifications of the speech.

We can roughly consider three main classes of effects;
first, the fine structure of the voice signal is affected, the
color and the quality of the voice are modified by physio-
logical or behavioral factors. The individual physical char-
acteristics, the smoking habit, a disease, the environmental
context that make you soften your voice or, on the con-
trary, tense it, etc. are such factors. Second, the long-term
modulation of the voice may be modified, intentionally – to
transmit high level information such as emphasizing or
questioning – or not-to convey emotions. This effect is an
integral part of the human communication and is therefore
very important. Third, the word pronunciation is altered.
The acoustic realization in terms of the core spoken lan-
guage components, the phonemes, may be deeply affected,
going from variations due to coarticulation, to substitu-
tions (accents) or suppressions (spontaneous speech).
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As we will further observe in the following sections,
some variability sources can hence have multiple effects,
and several variability sources obviously produce effects
that belong to the same category. For instance, foreign
accents, speaking style, rate of speech, or children speech
all cause pronunciation alterations with respect to the
‘‘standard form’’. The actual alterations that are produced
are however dependent on the source of variability, and on
the different factors that characterize it.

Although this is outside the scope of this paper, we
should add a fourth class of effects that concerns the
grammatical and semantic structure of the language. Socio-
logical factors, partial knowledge of the language (non-
nativeness, childhood, etc.), may lead to important
deviations from the canonical language structure.

2.1. Foreign and regional accents

While investigating the variability between speakers
through statistical analysis methods, Huang et al. (2001)
found that the first two principal components of variation
correspond to the gender (and related to physiological
properties) and accent respectively. Indeed, compared to
native speech recognition, performance degrades when
recognizing accented speech and non-native speech
(Kubala et al., 1994; Lawson et al., 2003). In fact accented
speech is associated with a shift within the feature space
(VanCompernolle, 2001). Good classification results
between regional accents are reported in Draxler and
Burger (1997) for human listeners on German SpeechDat
data, and in Lin and Simske (2004) for automatic classifi-
cation between American and British accents which demon-
strates that regional variants correspond to significantly
different data. For native accents, the shift is applied by
large groups of speakers, is more or less important, more
or less global, but overall acoustic confusability is not chan-
ged significantly. In contrast, for foreign accents, the shift is
very variable, is influenced by the native language, and
depends also on the level of proficiency of the speaker.

Non-native speech recognition is not properly handled
by speech models estimated using native speech data. This
issue remains no matter how much dialect data is included
in the training (Beattie et al., 1995). This is due to the fact
that non-native speakers can replace an unfamiliar pho-
neme in the target language, which is absent in their native
language phoneme inventory, with the sound considered as
the closest in their native language phoneme inventory
(Flege et al., 2003). This behavior makes the non-native
alterations dependent on both the native language and
the speaker. Some sounds may be replaced by other
sounds, or inserted or omitted, and such insertion/omission
behavior cannot be handled by the usual triphone-based
modeling (Jurafsky et al., 2001).

Accent classification is also studied since many years
(Arslan and Hansen, 1996), based either on phone models
(Kumpf and King, 1996; Teixeira et al., 1996) or specific
acoustic features (Fung and Liu, 1999).
Speech recognition technology is also used in foreign
language learning for rating the quality of the pronuncia-
tion (Eskenazi, 1996; Franco et al., 2000; Neumeyer
et al., 1996; Townshend et al., 1998). Experiments showed
that the provided rating is correlated with human expert
ratings (Cucchiarini et al., 2000; Neumeyer et al., 2000;
Witt and Young, 2000) when sufficient amount of speech
is available.

Proper and foreign name processing is another topic
strongly related with foreign accent. Indeed, even if speak-
ers are not experts in all foreign languages, neither are they
linguistically naive, hence they may use different systems or
sub-systems of rules to pronounce unknown names which
they perceive to be non-native (Fitt, 1995). Foreign names
are hard to pronounce for speakers who are not familiar
with the names and there are no standardized methods
for pronouncing proper names (Gao et al., 2001). Native
phoneme inventories are enlarged with some phonemes of
foreign languages in usual pronunciations of foreign
names, especially in some languages (Eklund and Lind-
ström, 2001). Determining the ethnic origin of a word
improves pronunciation models (Llitjos and Black, 2001)
and is useful in predicting additional pronunciation vari-
ants (Bartkova, 2003; Maison, 2003).

2.2. Speaker physiology

Beside the regional origin, another speaker-dependent
property that is conveyed through the speech signal results
from the shape of the vocal apparatus which determines the
range within which the parameters of a particular speaker’s
voice may vary. From this point of view, a very detailed
study of the speech-speaker dichotomy can be found in
Mokhtari (1998).

The impact of inter-speaker variability on the automatic
speech recognition performance has been acknowledged
for years. In Huang and Lee (1991), Lee et al. (1991), Sch-
wartz et al. (1989), the authors mention error rates two to
three times higher for speaker-independent ASR systems
compared with speaker-dependent systems. Methods that
aims at reducing this gap in performance are now part of
state-of-the-art commercial ASR systems.

Speech production can be modeled by the so-called
source-filter model (Fant, 1960) where the ‘‘source’’ refers
to the air stream generated by the lungs through the larynx
and the ‘‘filter’’ refers to the vocal tract, which is composed
of the different cavities situated between the glottis and the
lips. Both of the components are inherently time-varying
and assumed to be independent of each other.

The complex shape of the vocal organs determines the
unique ‘‘timbre’’ of every speaker. The glottis at the larynx
is the source for voiced phonemes and shapes the speech
signal in a speaker characteristic way. Aside from the
long-term F0 statistics (Carey et al., 1996; Iivonen et al.,
2003; Markel et al., 1977) which are probably the most
perceptually relevant parameters (the pitch), the shape of
glottal pulse will affect the long-term overall shape of the
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power spectrum (spectral tilt) (Nolan, 1983) and the ten-
sion of vocal folds will affect the voice quality. The vocal
tract, can be modeled by a tube resonator (Fant, 1960;
Laver, 1994). The resonant frequencies (the formants) are
structuring the global shape of the instantaneous voice
spectrum and are mostly defining the phonetic content
and quality of the vowels.

Modeling of the glottal flow is a difficult problem and
very few studies attempt to precisely decouple the source-
tract components of the speech signal (Blomberg, 1991;
Bozkurt et al., 2005; Plumpe et al., 1999). Standard feature
extraction methods (PLP, MFCC) simply ignore the pitch
component and roughly compensate for the spectral tilt
by applying a pre-emphasis filter prior to spectral analysis
or by applying band-pass filtering in the cepstral domain
(the cepstral liftering) (Juang et al., 1987).

On the other hand, the effect of the vocal tract shape on
the intrinsic variability of the speech signal between differ-
ent speakers has been widely studied and many solutions to
compensate for its impact on ASR performance have been
proposed: ‘‘speaker independent’’ feature extraction,
speaker normalization, speaker adaptation. The formant
structure of vowel spectra has been the subject of early
studies (Peterson and Barney, 1952; Pols et al., 1969; Potter
and Steinberg, 1950) that amongst other have established
the standard view that the F1–F2 plane is the most descrip-
tive, two-dimensional representation of the phonetic
quality of spoken vowel sounds. On the other hand, similar
studies underlined the speaker specificity of higher for-
mants and spectral content above 2.5 kHz (Pols et al.,
1969; Saito and Itakura, 1983). Another important obser-
vation (Ladefoged and Broadbent, 1957; Nearey, 1978;
Peterson and Barney, 1952; Potter and Steinberg, 1950)
suggested that relative positions of the formant frequencies
are rather constant for a given sound spoken by different
speakers and, as a corollary, that absolute formant posi-
tions are speaker-specific. These observations are corrobo-
rated by the acoustic theory applied to the tube resonator
model of the vocal tract which states that positions of the
resonant frequencies are inversely proportional to the
length of the vocal tract (Flanagan, 1972; O’Saughnessy,
1987). This observation is at the root of different techniques
that increase the robustness of ASR systems to inter-
speaker variability (cf. 4.1.2 and 4.2.1).
1 Besides language modeling which is out of the scope of this paper.
2.3. Speaking style and spontaneous speech

In spontaneous casual speech, or under time pressure,
reduction of pronunciations of certain phonemes, or
syllables often happen. It has been suggested that this
‘‘slurring’’ affects more strongly sections that convey less
information. In contrast, speech portions where confusabil-
ity (given phonetic, syntactic and semantic cues) is higher
tend to be articulated more carefully, or even hyperarticu-
lated. Some references to such studies can be found in Bard
et al. (2001), Janse (2004), Lindblom (1990), Sotillo and
Bard (1998), and possible implications to ASR in Bell
et al. (2003).

This dependency of casual speech slurring on identified
factors holds some promises for improving recognition of
spontaneous speech, possibly by further extending the
context dependency of phonemes to measures of such
perplexity, with however very few research ongoing to
our knowledge, except maybe in the use of phonetic tran-
scription for multi-word compounds or user formulation
(Colibro et al., 2005) (cf. 4.3).

Research on spontaneous speech modeling is neverthe-
less very active. Several studies have been carried out on
using the Switchboard spontaneous conversations corpus.
An appealing methodology has been proposed in Wein-
traub et al. (1996), where a comparison of ASR accuracy
on the original Switchboard test data and on a reread ver-
sion of it is proposed. Using modeling methodologies that
had been developed for read speech recognition, the error
rate obtained on the original corpus was twice the error
rate observed on the read data.

Techniques to increase accuracy towards spontaneous
speech have mostly focused on pronunciation studies.1 As
a fundamental observation, the strong dependency of
pronunciation phenomena with respect to the syllable
structure has been highlighted in Adda-Decker et al.
(2005), Greenberg and Chang (2000). As a consequence,
extensions of acoustic modeling dependency to the pho-
neme position in a syllable and to the syllable position in
word and sentences have been proposed. This class of
approaches is sometimes referred to as long-units (Messina
and Jouvet, 2004).

Variations in spontaneous speech can also extend
beyond the typical phonological alterations outlined previ-
ously. Disfluencies, such as false starts, repetitions, hesita-
tions and filled pauses, need to be considered. The reader
will find useful information in the following papers: (Byrne
et al., 2004; Furui et al., 2004).

There are also regular workshops specifically addressing
the research activities related to spontaneous speech
modeling and recognition (Disfluency in spontaneous
speech (diss’05), 2005). Regarding the topic of pronuncia-
tion variation, the reader should also refer to (ESCA, 1998).

2.4. Rate of speech

Rate-of-speech (ROS) is considered as an important fac-
tor which makes the mapping process between the acoustic
signal and the phonetic categories more complex.

Timing and acoustic realization of syllables are affected
due in part to the limitations of the articulatory machinery,
which may affect pronunciation through phoneme reduc-
tions (typical to fast spontaneous speech), time compres-
sion/expansion, changes in the temporal patterns, as well
as smaller-scale acoustic–phonetic phenomena.
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In Janse (2004), production studies on normal and fast-
rate speech are reported. They have roughly quantified the
way people compress some syllables more than others.
Note also that the study reports on a series of experiments
investigating how speakers produce and listeners perceive
fast speech. The main research question is how the percep-
tion of naturally produced fast speech compares to the per-
ception of artificially time-compressed speech, in terms of
intelligibility.

Several studies also reported that different phonemes are
affected differently by ROS. For example, compared to
consonants, the duration of vowels is significantly more
reduced from slow to fast speech (Kuwabara, 1997).

The relationship between speaking rate variation and
different acoustic correlates are usually not well taken into
account in the modeling of speech rate variation for auto-
matic speech recognition, where it is typical that the higher
the speaking rate is, the higher the error rate is. Usually,
slow speaking rate does not affect performance; however,
when people hyperarticulate, and make pauses among
syllables, speech recognition performance can also degrade
a lot.

In automatic speech recognition, the significant perfor-
mance degradations (Martinez et al., 1997; Mirghafori
et al., 1995; Siegler and Stern, 1995) caused by speaking
rate variations stimulated many studies for modeling the
spectral effects of speaking rate variations. The schemes
presented in the literature generally make use of ROS (rate
of speech) estimators. Almost all existing ROS measures
are based on the same principle which is how to compute
the number of linguistic units (usually phonemes or sylla-
bles) in the utterance. So, usually, a speaking rate measure
based on manually segmented phones or syllables is used as
a reference to evaluate a new ROS measure. Current ROS
measures can be divided into (1) lexically-based measures

and (2) acoustically-based measures. The lexically-based

measures estimate the ROS by counting the number of lin-
guistic units per second using the inverse of mean duration
(Siegler and Stern, 1995), or mean of m (Mirghafori et al.,
1995). To reduce the dependency on the phone type, a nor-
malization scheme by the expected phone duration (Marti-
nez et al., 1997) or the use of phone duration percentile
(Siegler, 1995) are introduced. These kinds of measures
are effective if the segmentation of the speech signal pro-
vided by a speech recognizer is reliable. In practice this is
not the case since the recognizer is usually trained with nor-
mal speech. As an alternative technique, acoustically-based
measures are proposed. These measures estimate the ROS
directly from the speech signal without recourse to a preli-
minary segmentation of the utterance. In Morgan and Fos-
ler-Lussier (1998), the authors proposed the mrate measure
(short for multiple rate). It combines three independent
ROS measures, i.e., (1) the energy rate or enrate (Morgan
et al., 1997), (2) a simple peak counting algorithm
performed on the wideband energy envelope and (3) a
sub-band based module that computes a trajectory that is
the average product over all pairs of compressed sub-band
energy trajectories. A modified version of the mrate is also
proposed in Beauford (1999). In Tuerk and Young (1999),
the authors found that successive feature vectors are more
dependent (correlated) for slow speech than for fast speech.
An Euclidean distance is used to estimate this dependency
and to discriminate between slow and fast speech. In Fal-
thauser et al. (2000), speaking rate dependent GMMs are
used to classify speech spurts into slow, medium and fast
speech. The output likelihoods of these GMMs are used
as input to a neural network whose targets are the actual
phonemes. The authors made the assumption that ROS
does not affect the temporal dependencies in speech, which
might not be true.

It has been shown that speaking rate can also have a
dramatic impact on the degree of variation in pronuncia-
tion (Fosler-Lussier and Morgan, 1999; Greenberg and
Fosler-Lussier, 2000), for the presence of deletions, inser-
tions, and coarticulation effects.

In Section 4, different technical approaches to reduce the
impact of the speaking rate on the ASR performance are
discussed. They basically all rely on a good estimation of
the ROS. Practically, since fast speech and slow speech
have different effects (for example fast speech increases
deletion as well as substitution errors and slow speech
increases insertion errors (Martinez et al., 1997; Nanjo
and Kawahara, 2004)), several ROS estimation measures
are combined in order to use appropriate compensation
techniques.

2.5. Children speech

Children automatic speech recognition is still a difficult
problem for conventional automatic speech recognition
systems. Children speech represents an important and still
poorly understood area in the field of computer speech rec-
ognition. The impact of children voices on the performance
of standard ASR systems is illustrated in Elenius and
Blomberg (2004), Hagen et al., 2003, Traunmüller (1997).
The first one is mostly related to physical size. Children
have shorter vocal tract and vocal folds compared to
adults. This results in higher positions of formants and fun-
damental frequency. The high fundamental frequency is
reflected in a large distance between the harmonics, result-
ing in poor spectral resolution of voiced sounds. The differ-
ence in vocal tract size results in a non-linear increase of the
formant frequencies. In order to reduce these effects, previ-
ous studies have focused on the acoustic analysis of chil-
dren speech (Lee et al., 1999; Potamianos et al., 1997).
This work demonstrates the challenges faced by speech rec-
ognition systems developed to automatically recognize
children speech. For example, it has been shown that chil-
dren below the age of 10 exhibit a wider range of vowel
durations relative to older children and adults, larger spec-
tral and suprasegmental variations, and wider variability in
formant locations and fundamental frequencies in the
speech signal. Several studies have attempted to address
this problem by adapting the acoustic features of children
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speech to match that of acoustic models trained from adult
speech (Das et al., 1998; Giuliani and Gerosa, 2003; Pota-
mianos and Narayanan, 2003; Potamianos et al., 1997).
Such Approaches included vocal tract length normalization
(VTLN) (Das et al., 1998) as well as spectral normalization
(Lee and Rose, 1996).

A second problem is that younger children may not have
a correct pronunciation. Sometimes they have not yet
learned how to articulate specific phonemes (Schötz,
2001). Finally, a third source of difficulty is linked to the
way children are using language. The vocabulary is smaller
but may also contain words that do not appear in grown-
up speech. The correct inflectional forms of certain words
may not have been acquired fully, especially for those
words that are exceptions to common rules. Spontaneous
speech is also believed to be less grammatical than for
adults. A number of different solutions to the second and
third source of difficulty have been proposed, modification
of the pronunciation dictionary, and the use of language
models which are customized for children speech have all
been tried. In Eskenazi and Pelton (2002), the number of
tied-states of a speech recognizer was reduced to compen-
sate for data sparsity. Recognition experiments using
acoustic models trained from adult speech and tested
against speech from children of various ages clearly show
performance degradation with decreasing age. On average,
the word error rates are two to five times worse for children
speech than for adult speech. Various techniques for
improving ASR performance on children speech are
reported.

Although several techniques have been proposed to
improve the accuracy of ASR systems on children voices,
a large shortfall in performance for children relative to
adults remains. Eskenazi (1996), Wilpon and Jacobsen
(1996) report ASR performance to be around 100% higher,
in average, for children speech than for adults. The differ-
ence increases with decreasing age. Many papers report a
larger variation in recognition accuracy among children,
possibly due to their larger variability in pronunciation.
Most of these studies point to lack of children acoustic data
and resources to estimate speech recognition parameters
relative to the abundance of existing resources for adult
speech recognition.

2.6. Emotional state

Similarly to the previously discussed speech intrinsic
variations, emotional state is found to significantly influ-
ence the speech spectrum. It is recognized that a speaker
mood change has a considerable impact on the features
extracted from his speech, hence directly affecting the basis
of all speech recognition systems (Cowie and Cornelius,
2003; Scherer, 2003).

Studies on speaker emotions is a fairly recent, emerging
field and most of today’s literature that remotely deals with
emotions in speech recognition is concentrated on attempt-
ing to classify a ‘‘stressed’’ or ‘‘frustrated’’ speech signal
into its correct emotion category (Ang et al., 2002). The
purpose of these efforts is to further improve man–machine
communication. Being interested in speech intrinsic vari-
abilities, we will rather focus our attention on the recogni-
tion of speech produced in different emotional states. The
stressed speech categories studied generally are a collection
of all the previously described intrinsic variabilities: loud,
soft, Lombard, fast, angry, scared, and noise. Nevertheless,
note that emotion recognition might play a role, for
instance in a framework where the system could select dur-
ing operation the most appropriate model in an ensemble
of more specific acoustic models (cf. Section 4.2.2).

As Hansen formulates in Hansen (1996), approaches for
robust recognition can be summarized under three areas:
(i) better training methods, (ii) improved front-end process-
ing, and (iii) improved back-end processing or robust rec-
ognition measures. A majority of work undertaken up to
now revolves around inspecting the specific differences in
the speech signal under the different stress conditions. As
an example, the phonetic features have been examined in
the case of task stress or emotion (Bou-Ghazale and Han-
sen, 1995; Hansen, 1989; Hansen, 1993; Hansen, 1995;
Murray and Arnott, 1993). The robust ASR approaches
are covered by Section 4.

2.7. And more. . .

Many more sources of variability affect the speech signal
and this paper can probably not cover all of them. Let us
cite pathologies affecting the larynx or the lungs, or even
the discourse (dysphasia, stuttering, cerebral vascular
accident, etc.), long-term habits as smoking, singing, etc.,
speaking styles like whispering, shouting, etc. physical
activity causing breathlessness, fatigue, etc.

The impact of those factors on the ASR performance
has been little studied and very few papers have been pub-
lished that specifically address them.

3. ASR diagnosis

3.1. ASR performance analysis and diagnosis

When devising a novel technique for automatic speech
recognition, the goal is to obtain a system whose ASR per-
formance on a specific task will be superior to that of exist-
ing methods.

The mainstream aim is to formulate an objective mea-
sure for the comparison of a novel system to either similar
ASR systems, or humans (cf. Section 3.2). For this pur-
pose, the general evaluation is the word error rate, measur-
ing the global incorrect word recognition in the total
recognition task. As an alternative, the error rate is also
measured in smaller units such as phonemes or syllables.
Further assessments put forward more detailed errors:
insertion, deletion and substitution rates.

Besides, detailed studies are found to identify recogni-
tion results considering different linguistic or phonetic
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properties of the test cases. In such papers, the authors
report their systems outcome in the various categories in
which they divide the speech samples. The general catego-
ries found in the literature are acoustic–phonetic classes,
for example: vocal/non-vocal, voiced/unvoiced, nasal/
non-nasal (Chollet et al., 1981; Hunt, 2004). Further
groupings separate the test cases according to the physical
differences of the speakers, such as male/female, children/
adult, or accent (Huang et al., 2001). Others, finally, study
the linguistic variations in detail and devise more complex
categories such as ‘VCV’ (Vowel–Consonant–Vowel) and
‘CVC’ (Consonant–Vowel–Consonant) and all such differ-
ent variations (Greenberg and Chang, 2000). Alternatively,
other papers report confidence scores to measure the per-
formance of their recognizers (Zhou et al., 2002; Williams,
1999).

It is however more challenging to find reports on the
actual diagnosis of the individual recognizers rather than
on the abstract semantics of the recognition sets. In Green-
berg and Chang (2000), the authors perform a diagnostic
evaluation of several ASR systems on a common database.
They provide error patterns for both phoneme- and word-
recognition and then present a decision-tree analysis of the
errors providing further insight of the factors that cause the
systematic recognition errors. Steeneken et al. present their
diagnosis method in Steeneken and van Velden (1989)
where they establish recognition assessment by manipulat-
ing speech, examining the effect of speech input level, noise
and frequency shift, on the output of the recognizers. In
another approach, Eide et al. display recognition errors
as a function of word type and length (Eide et al., 1995).
They also provide a method of diagnostic trees to scrutinize
the contributions and interactions of error factors in
recognition tasks. Alongside, the ANOVA (Analysis of
Variance) method (Kajarekar et al., 1999; Kajarekar
et al., 1999; Sun and Deng, 1995) allows a quantification
of the multiple sources of error acting in the overall vari-
ability of the speech signals. It offers the possibility to cal-
culate the relative significance of each source of variability
as they affect the recognition. On the other hand, Dodding-
ton (2003) introduces time alignment statistics to reveal
systematic ASR scoring errors.

The second, subsequent, difficulty is in discovering
research that attempts to actually predict the recognition
errors rather than simply giving a detailed analysis of the
flaws in the ASR systems. This aspect would give us useful
insight by providing generalization to unseen test data.
Finally, Fosler-Lussier et al. (2005) provides a framework
for predicting recognition errors in unseen situations
through a collection of lexically confusable words estab-
lished during training. This work follows former studies
on error prediction (Deng et al., 2003; Hirschberg et al.,
2004; Printz and Olsen, 2002) and assignment of error
liability (Chase, 1997) and is adjacent to the research on
confusion networks (Goel et al., 2004; Hetherington,
1995; Mangu et al., 2000; National Institute of Standards
and Technology, 2001; Schaaf and Kemp, 1997).
3.2. Man–machine comparison

A few years ago, a publication (Lippmann, 1997) gath-
ered results from both human and machine speech recogni-
tion, with the goal of stimulating the discussion on research
directions and contributing to the understanding of what
has still to be done to reach close-to-human performance.
In the reported results, and although problems related to
noise can be highlighted, one of the most striking observa-
tion concerns the fact that the human listener far
outperforms (in relative terms) the machine in tasks char-
acterized by a quiet environment and where no long term
grammatical constraints can be used to help disambiguate
the speech. This is the case for instance in digits, letters
and nonsense sentences where human listeners can in some
cases outperform the machine by more than an order of
magnitude. We can thus interpret that the gap between
machine performance and human performance (10% vs.
1% word error rate on the WSJ large vocabulary continu-
ous speech task in a variety of acoustic conditions) is by a
large amount related to acoustico-phonetic aspects. The
deficiencies probably come from a combination of factors.
First, the feature representations used for ASR may not
contain all the useful information for recognition. Then,
the modeling assumptions may not be appropriate.
Third, the applied features extraction and the modeling
approaches may be too sensitive to intrinsic speech vari-
abilities, amongst which are: speaker, gender, age, dialect,
accent, health condition, speaking rate, prosody, emotional
state, spontaneity, speaking effort, articulation effort.

In Sroka and Braida (2005), consonant recognition
within different degradation conditions (high-pass and
low-pass filtering, as well as background noise) is com-
pared between human and automatic systems. Results are
presented globally in terms of recognition accuracy, and
also in more details in terms of confusion matrices as well
as information transfer of different phonetic features (voic-
ing, place, frication, sibilance). Although the test material
is not degraded in the exact same fashion for the compar-
ison tests, results clearly indicate different patterns of accu-
racy for human and machines, with weaker machine
performance on recognizing some phonological features,
such as voicing, especially under noise conditions. This
happens despite the fact that the ASR system training pro-
vides acoustic models that are almost perfectly matched to
the test conditions, using the same speakers, same material
(CVCs) and same conditions (noise added to the training
set to match the test condition).

In Wesker et al. (2005) (experiments under way), this
line of research is extended with the first controlled com-
parison of human and machine on speech after removing
high-level knowledge (lexical, syntactic, etc.) sources, com-
plementing the analysis of phoneme identification scores
with the impact of intrinsic variabilities (rather than high-
pass/low-pass filters and noise in the previous literature,
etc.) Another goal of the research is to extend the scope
of previous research (which was for instance mostly related
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to English) and address some procedures that can some-
times be questioned in previous research (for instance
the difference of protocols used for human and machine
tests).

Besides simple comparisons in the form of human intel-
ligibility versus ASR accuracy, specific experimental
designs can also provide some relevant insights in order
to pinpoint possible weaknesses (with respect to humans)
at different stages of processing of the current ASR recog-
nition chain. This is summarized in the next subsection.

3.2.1. Specific methodologies

Some references are given here, revolving around the
issue of feature extraction limitations (in this case the pres-
ence or absence of phase information) vs. modeling
limitations.

It has been suggested (Demuynck et al., 2004; Leonard,
1984; Peters et al., 1999) that conventional cepstral repre-
sentation of speech may destroy important information
by ignoring the phase (power spectrum estimation) and
reducing the spectral resolution (Mel filter bank, LPC,
cepstral liftering, etc.).

Phase elimination is justified by some evidence that
humans are relatively insensitive to the phase, at least in
steady-state contexts, while resolution reduction is mostly
motivated by practical modeling limitations. However, nat-
ural speech is far from being constituted of steady-state
segments. In Liu et al. (1997), the authors clearly demon-
strate the importance of the phase information for cor-
rectly classifying stop consonants, especially regarding
their voicing property. Moreover, in Schroeder and Strube
(1986), it is demonstrated that vowel-like sounds can be
artificially created from flat spectrum signal by adequately
tuning the phase angles of the waveform.

In order to investigate a possible loss of crucial informa-
tion, reports of different experiments have been surveyed in
the literature. In these experiments, humans were asked to
recognize speech reconstructed from the conventional ASR
acoustic features, hence with no phase information and no
fine spectral representation.

Experiments conducted by Leonard and reported by
Lippmann (1997), seems to show that ASR acoustic analy-
sis (LPC in that case) has little effect on human recognition,
suggesting that most of the ASR weaknesses may come
from the acoustic modeling limitations and little from the
acoustic analysis (i.e. front-end or feature extraction por-
tion of the ASR system) weaknesses. Those experiments
have been carried out on sequences of digits recorded in
a quiet environment.

In their study, Demuynck et al. re-synthesized speech
from different steps of the MFCC analysis, i.e. power spec-
trum, Mel spectrum and Mel cepstrum (Demuynck et al.,
2004). They come to the conclusion that re-synthesized
speech is perfectly intelligible given that an excitation signal
based on pitch analysis is used, and that the phase informa-
tion is not required. They emphasize that their experiments
are done on clean speech only.
Experiments conducted by Peters et al. (1999) demon-
strate that these conclusions are not correct in case of noisy
speech recordings. He suggests that information lost by the
conventional acoustic analysis (phase and fine spectral res-
olution) may become crucial for intelligibility in case of
speech distortions (reverberation, environment noise,
etc.). These results show that, in noisy environment, the
degradation of the speech representation affects the perfor-
mance of the human recognition almost in the same order
as the machine. More particularly, ignoring the phase leads
to a severe drop of human performance (from almost per-
fect recognition to 8.5% sentence error rate) suggesting that
the insensitivity of human to the phase is not that true in
adverse conditions.

In Paliwal and Alsteris (2003), the authors perform
human perception experiments on speech signals recon-
structed either from the magnitude spectrum or from the
phase spectrum and conclude that phase spectrum contrib-
ute as much as amplitude to speech intelligibility if the
shape of the analysis window is properly selected.

Finally, experiments achieved at Oldenburg demon-
strated that the smearing of the temporal resolution of con-
ventional acoustic features affects human intelligibility for
modulation cut-off frequencies lower than 32 Hz on a pho-
neme recognition task. Also, they conclude that neglecting
the phase causes approximately 5% error rate in phoneme
recognition of human listeners.

4. ASR techniques

In this section, we review methodologies towards
improved ASR analysis/modeling accuracy and robustness
against the intrinsic variability of speech. Similar tech-
niques have been proposed to address different sources of
speech variation. This section will introduce both the gen-
eral ideas of these approaches and the specific usage
regarding variability sources.

4.1. Front-end techniques

An update on feature extraction front-ends is proposed,
particularly showing how to take advantage of techniques
targeting the non-stationarity assumption. Also, the fea-
ture extraction stage can be the appropriate level to target
the effects of some other variations, like the speaker phys-
iology (through feature compensation (Welling et al., 2002)
or else improved invariance (Mertins and Rademacher,
2005)) and other dimensions of speech variability. Finally,
techniques for combining estimation based on different fea-
tures sets are reviewed. This also involves dimensionality
reduction approaches.

4.1.1. Overcoming assumptions

Most of the automatic speech recognition (ASR) acous-
tic features, such as Mel-frequency cepstral coefficients
(MFCC) (Davis and Mermelstein, 1980) or perceptual
linear prediction (PLP) coefficients (Hermansky, 1990),
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are based on some sort of representation of the smoothed
spectral envelope, usually estimated over fixed analysis
windows of typically 20 ms–30 ms (Davis and Mermelstein,
1980; Rabiner and Juang, 1993).2 Such analysis is based on
the assumption that the speech signal is quasi-stationary
over these segment durations. However, it is well-known
that the voiced speech sounds such as vowels are quasi-sta-
tionary for 40 ms–80 ms, while stops and plosive are time-
limited by less than 20 ms (Rabiner and Juang, 1993).
Therefore, it implies that the spectral analysis based on a
fixed size window of 20 ms–30 ms has some limitations,
including:

• The frequency resolution obtained for quasi-stationary
segments (QSS) longer than 20 ms is quite low compared
to what could be obtained using larger analysis
windows.

• In certain cases, the analysis window can span the tran-
sition between two QSSs, thus blurring the spectral
properties of the QSSs, as well as of the transitions.
Indeed, in theory, power spectral density (PSD) cannot
even be defined for such non-stationary segments (Hay-
kin, 1993). Furthermore, on a more practical note, the
feature vectors extracted from such transition segments
do not belong to a single unique (stationary) class and
may lead to poor discrimination in a pattern recognition
problem.

In Tyagi et al. (2005), the usual assumption is made that
the piecewise quasi-stationary segments (QSS) of the
speech signal can be modeled by a Gaussian autoregressive
(AR) process of a fixed order p as in Andre-Obrecht (1988),
Svendsen et al. (1989), Svendsen and Soong (1987). The
problem of detecting QSSs is then formulated using a
maximum likelihood (ML) criterion, defining a QSS as
the longest segment that has most probably been generated
by the same AR process.3

Another approach is proposed in Atal (1983), which
describes a temporal decomposition technique to represent
the continuous variation of the LPC parameters as a line-
arly weighted sum of a number of discrete elementary com-
ponents. These elementary components are designed such
that they have the minimum temporal spread (highly local-
ized in time) resulting in superior coding efficiency. How-
ever, the relationship between the optimization criterion
of ‘‘the minimum temporal spread’’ and the quasi-stationa-
rity is not obvious. Therefore, the discrete elementary com-
ponents are not necessarily quasi-stationary and vice-versa.
2 Note that these widely used ASR front-end techniques make use of
frequency scales that are inspired by models of the human auditory
system. An interesting critical contribution to this has however been
provided in Hunt (1999), where it is concluded that so far, there is little
evidence that the study of the human auditory system has contributed to
advances in automatic speech recognition.

3 Equivalent to the detection of the transition point between the two
adjoining QSSs.
Coifman and Wickerhauser (1992) have described a
minimum entropy basis selection algorithm to achieve the
minimum information cost of a signal relative to the
designed orthonormal basis. Svendsen and Soong (1987)
have proposed a ML segmentation algorithm using a single
fixed window size for speech analysis, followed by a cluster-
ing of the frames which were spectrally similar for sub-
word unit design. More recently, Achan et al. (2004) have
proposed a segmental HMM for speech waveforms which
identifies waveform samples at the boundaries between
glottal pulse periods with applications in pitch estimation
and time-scale modifications.

As a complementary principle to developing features
that ‘‘work around’’ the non-stationarity of speech, signif-
icant efforts have also been made to develop new speech
signal representations which can better describe the non-
stationarity inherent in the speech signal. Some representa-
tive examples are temporal patterns (TRAPs) features
(Hermansky and Sharma, 1998), MLPs and several modu-
lation spectrum related techniques (Kingsbury et al., 1998;
Milner, 1996; Tyagi et al., 2003; Zhu and Alwan, 2000). In
this approach temporal trajectories of spectral energies in
individual critical bands over windows as long as one sec-
ond are used as features for pattern classification. Another
methodology is to use the notion of the amplitude modula-
tion (AM) and the frequency modulation (FM) (Haykin,
1994). In theory, the AM signal modulates a narrow-band
carrier signal (specifically, a monochromatic sinusoidal sig-
nal). Therefore to be able to extract the AM signals of a
wide-band signal such as speech (typically 4 KHz), it is nec-
essary to decompose the speech signal into narrow spectral
bands. In Tyagi and Wellekens (2005), this approach is
opposed to the previous use of the speech modulation
spectrum (Kingsbury et al., 1998; Milner, 1996; Tyagi
et al., 2003; Zhu and Alwan, 2000) which was derived by
decomposing the speech signal into increasingly wider spec-
tral bands (such as critical, Bark or Mel). Similar arguments
from the modulation filtering point of view, were presented
by Schimmel and Atlas (2005). In their experiment, they
consider a wide-band filtered speech signal x(t) = a(t)c(t),
where a(t) is the AM signal and c(t) is the broad-band car-
rier signal. Then, they perform a low-pass modulation filter-
ing of the AM signal a(t) to obtain aLP(t). The low-pass
filtered AM signal aLP(t) is then multiplied with the original
carrier c(t) to obtain a new signal ~xðtÞ. They show that the
acoustic bandwidth of ~xðtÞ is not necessarily less than that
of the original signal x(t). This unexpected result is a conse-
quence of the signal decomposition into wide spectral bands
that results in a broad-band carrier.

Finally, as extension to the ‘‘traditional’’ AR process
(all-pole model) speech modeling, pole-zero transfer func-
tions that are used for modeling the frequency response
of a signal, have been well studied and understood (Mak-
houl, 1975). Lately, Kumaresan and Rao (1999), Kumare-
san (1998) have proposed to model analytic signals using
pole-zero models in the temporal domain. Along similar
lines, Athineos and Ellis (2003) have used the dual of the
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linear prediction in the frequency domain to improve upon
the TRAP features.

Another strong assumption that has been addressed in
recent papers, concern the worthlessness of the phase for
speech intelligibility. We already introduced in Section
3.2.1 the conclusions of several studies that reject this
assumption. A few papers have tried to reintroduce the
phase information into the ASR systems. In Paliwal and
Atal (2003), the authors introduce the instantaneous fre-
quency which is computed from the phase spectrum.
Experiments on vowel classification show that these fea-
tures contain meaningful information. Other authors are
proposing features derived from the group delay (Bozkurt
and Couvreur, 2005; Hegde et al., 2004; Zhu and Paliwal,
2004) which presents a formant-like structure with a much
higher resolution than the power spectrum. As the group
delay in inherently very noisy, the approaches proposed
by the authors mainly aims at smoothing the estimation.
ASR experiments show interesting performance in noisy
conditions.

4.1.2. Compensation and invariance

For other sources of speech variability (besides non-sta-
tionarity), a simple model may exist that appropriately
reflects and compensate its effect on the speech features.

The preponderance of lower frequencies for carrying the
linguistic information has been assessed by both perceptual
and acoustical analysis and justify the success of the non-
linear frequency scales such as Mel, Bark, Erb, etc. Simi-
larly, in Hermansky (1990), the PLP parameters present a
fair robustness to inter-speaker variability, thanks to the
low order (5th) linear prediction analysis which only mod-
els the two main peaks of the spectral shape, typically the
first two formants. Other approaches aim at building
acoustic features invariant to the frequency warping.

In Umesh et al. (1999), the authors define the ‘‘scale
transform’’ and the ‘‘scale cepstrum’’of a signal spectrum
whose magnitude is invariant to a scaled version of the ori-
ginal spectrum. In Mertins and Rademacher (2005), the
continuous wavelet transform has been used as a prepro-
cessing step, in order to obtain a speech representation in
which linear frequency scaling leads to a translation in
the time-scale plane. In a second step, frequency-warping
invariant features were generated. These include the auto-
and cross-correlation of magnitudes of local wavelet spec-
tra as well as linear and non-linear transforms thereof. It
could be shown that these features not only lead to better
recognition scores than standard MFCCs, but that they
are also more robust to mismatches between training and
test conditions, such as training on male and testing on
female data. The best results were obtained when MFCCs
and the vocal tract length invariant features were com-
bined, showing that the sets contain complementary infor-
mation (Mertins and Rademacher, 2005).

A direct application of the tube resonator model of the
vocal tract lead to the different vocal tract length normali-
zation (VTLN) techniques: speaker-dependent formant
mapping (Di Benedetto and Liénard, 1992; Wakita,
1977), transformation of the LPC pole modeling (Slifka
and Anderson, 1995), frequency warping, either linear
(Eide and Gish, 1996; Lee and Rose, 1996; Tuerk and Rob-
inson, 1993; Zhan and Westphal, 1997) or non-linear (Ono
et al., 1993), all consist of modifying the position of the for-
mants in order to get closer to an ‘‘average’’ canonical
speaker. Simple yet powerful techniques for normalizing
(compensating) the features to the VTL are widely used
(Welling et al., 2002). Note that VTLN is often combined
with an adaptation of the acoustic model to the canonical
speaker (Eide and Gish, 1996; Lee and Rose, 1996) (cf. Sec-
tion 4.2.1). The potential of using piece-wise linear and
phoneme-dependent frequency warping algorithms for
reducing the variability in the acoustic feature space of chil-
dren have also been investigated (Das et al., 1998).

Channel compensation techniques such as the cepstral
mean subtraction or the RASTA filtering of spectral trajec-
tories, also compensate for the speaker-dependent compo-
nent of the long-term spectrum (Kajarekar et al., 1999;
Westphal, 1997).

Similarly, some studies attempted to devise feature
extraction methods tailored for the recognition of stressed
and non-stressed speech simultaneously. In his paper
(Chen, 1987), Chen proposed a Cepstral Domain Compen-
sation when he showed that simple transformations (shifts
and tilts) of the cepstral coefficients occur between the dif-
ferent types of speech signals studied. Further processing
techniques have been employed for more robust speech fea-
tures (Hansen, 1996; Hermansky and Morgan, 1994; Hunt
and Lefebvre, 1989) and some researchers simply assessed
the better representations from the existing pool of features
(Hanson and Applebaum, 1990).

When simple parametric models of the effect of the var-
iability are not appropriate, feature compensation can be
performed using more generic non-parametric transforma-
tion schemes, including linear and non-linear transforma-
tions. This becomes a dual approach to model adaptation,
which is the topic of Section 4.2.1.

4.1.3. Additional cues and multiple feature streams

As a complementary perspective to improving or com-
pensating single feature sets, one can also make use of sev-
eral ‘‘streams’’ of features that rely on different underlying
assumptions and exhibit different properties.

Intrinsic feature variability depends on the set of classes
that features have to discriminate. Given a set of acoustic
measurements, algorithms have been described to select
subsets of them that improve automatic classification of
speech data into phonemes or phonetic features. Unfortu-
nately, pertinent algorithms are computationally intracta-
ble with these types of classes as stated in Kamal Omar
and Hasegawa-Johnson (2002), Kamal Omar et al.
(2002), where a sub-optimal solution is proposed. It con-
sists in selecting a set of acoustic measurement that guaran-
tees a high value of the mutual information between
acoustic measurements and phonetic distinctive features.
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Without attempting to find an optimal set of acoustic
measurements, many recent automatic speech recognition
systems combine streams of different acoustic measure-
ments on the assumption that some characteristics that
are de-emphasized by a particular feature are emphasized
by another feature, and therefore the combined feature
streams capture complementary information present in
individual features.

In order to take into account different temporal behav-
ior in different bands, it has been proposed (Bourlard and
Dupont, 1997; Tibrewala and Hermansky, 1997; Tomlin-
son et al., 1997) to consider separate streams of features
extracted in separate channels with different frequency
bands. Inspired by the multi-stream approach, examples
of acoustic measurement combination are:

• Multi-resolution spectral/time correlates (Hariharan
et al., 2001; Vaseghi et al., 1997),

• segment and frame-based acoustic features (Hon and
Wang, 1999),

• MFCC, PLP and an auditory feature (Jiang and Huang,
1999),

• spectral-based and discriminant features (Benitez et al.,
2001),

• acoustic and articulatory features (Kirchhoff, 1998;
Tolba et al., 2002),

• LPC based cepstra, MFCC coefficients, PLP coeffi-
cients, energies and time-averages (Kamal Omar et al.,
2002; Kamal Omar and Hasegawa-Johnson, 2002),
MFCC and PLP (Zolnay et al., 2005),

• full band non-compressed root cepstral coefficients
(RCC), Full band PLP 16 kHz, Telephone band PLP
8 kHz (Kingsbury et al., 2002),

• PLP, MFCC and wavelet features (Gemello et al., 2006),
• joint features derived from the modified group-delay

function (Hegde et al., 2005),
• combinations of frequency filtering (FF), MFCC,

RASTA-FF, (J)RASTA-PLP (Pujol et al., 2005).

Other approaches integrate some specific parameters
into a single stream of features. Examples of added param-
eters are:

• periodicity and jitter (Thomson and Chengalvarayan,
1998),

• voicing (Graciarena et al., 2004; Zolnay et al., 2002),
• rate of speech and pitch (Stephenson et al., 2004).

To benefit from the strengths of both MLP–HMM and
Gaussian-HMM techniques, the Tandem solution was
proposed in Ellis et al. (2001), using posterior probability
estimation obtained at MLP outputs as observations for
a Gaussian-HMM. An error analysis of Tandem MLP fea-
tures showed that the errors using MLP features are differ-
ent from the errors using cepstral features. This motivates
the combination of both feature styles. In Zhu et al.
(2004), combination techniques were applied to increas-
ingly more advanced systems showing the benefits of the
MLP-based features. These features have been combined
with TRAP features (Morgan et al., 2004). In Kleinschmidt
and Gelbart (2002), Gabor filters are proposed, in conjunc-
tion with MLP features, to model the characteristics of
neurons in the auditory system as is done for the visual sys-
tem. There is evidence that in primary auditory cortex each
individual neuron is tuned to a specific combination of
spectral and temporal modulation frequencies.

In Eide (2001), it is proposed to use mixture Gaussians
to represent presence and absence of features.

Additional features have also been considered as cues
for speech recognition failures (Hirschberg et al., 2004).

This section introduced several works where several
streams of acoustic representations of the speech signal
were successfully combined in order to improve the ASR
performance. Different combination methods have been
proposed and can roughly be classified as:

• direct feature combination/transformation such as PCA,
LDA, HDA, etc. or selection of the best features will be
discussed in Section 4.1.4;

• combination of acoustic models trained on different fea-
ture sets will be discussed in Section 4.2.2.
4.1.4. Dimensionality reduction and feature selection

Using additional features/cues as reviewed in the previ-
ous section, or simply extending the context by concatenat-
ing feature vectors from adjacent frames may yield very
long feature vectors in which several features contain
redundant information, thus requiring an additional dimen-
sion-reduction stage (Haeb-Umbach and Ney, 1992;
Kumar and Andreou, 1998) and/or improved training
procedures.

The most common feature-reduction technique is the
use of a linear transform y = Ax where x and y are the ori-
ginal and the reduced feature vectors, respectively, and A is
a p · n matrix with p < n where n and p are the original and
the desired number of features, respectively. The principal
component analysis (PCA) (Duda and Hart, 1973; Fuku-
naga, 1972) is the most simple way of finding A. It allows
for the best reconstruction of x from y in the sense of a
minimal average squared Euclidean distance. However, it
does not take the final classification task into account
and is therefore only suboptimal for finding reduced
feature sets. A more classification-related approach is the
linear discriminant analysis (LDA), which is based on Fish-
er’s ratio (F-ratio) of between-class and within-class covari-
ances (Duda and Hart, 1973; Fukunaga, 1972). Here the
columns of matrix A are the eigenvectors belonging to
the p largest eigenvalues of matrix ½S�1

w Sb�, where Sw and
Sb are the within-class and between-class scatter matrices,
respectively. Good results with LDA have been reported
for small vocabulary speech recognition tasks, but for
large-vocabulary speech recognition, results were mixed
(Haeb-Umbach and Ney, 1992). In Haeb-Umbach and
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Ney (1992) it was found that the LDA should best be
trained on sub-phone units in order to serve as a preproces-
sor for a continuous mixture density based recognizer. A
limitation of LDA is that it cannot effectively take into
account the presence of different within-class covariance
matrices for different classes. Heteroscedastic discriminant
analysis (HDA) (Kumar and Andreou, 1998) overcomes
this problem, and is actually a generalization of LDA.
The method usually requires the use of numerical optimiza-
tion techniques to find the matrix A. An exception is the
method in Loog and Duin (2004), which uses the Chernoff
distance to measure between-class distances and leads to a
straight forward solution for A. Finally, LDA and HDA
can be combined with maximum likelihood linear trans-
form (MLLT) (Gopinath, 1998), which is identical to
semi-tied covariance matrices (STC) (Gales, 1999). Both
aim at transforming the reduced features in such a way that
they better fit with the diagonal covariance matrices that
are applied in many HMM recognizers (cf. (Pitz, 2005),
Section 2.1). It has been reported (Saon et al., 2000) that
such a combination performs better than LDA or HDA
alone. Also, HDA has been combined with minimum pho-
neme error (MPE) analysis (Zhang and Matsoukas, 2005).
Recently, the problem of finding optimal dimension-reduc-
ing feature transformations has been studied from the
viewpoint of maximizing the mutual information between
the obtained feature set and the corresponding phonetic
class (Kamal Omar and Hasegawa-Johnson, 2002; Padma-
nabhan and Dharanipragada, 2005).

A problem of the use of linear transforms for feature
reduction is that the entire feature vector x needs to be
computed before the reduced vector y can be generated.
This may lead to a large computational cost for feature
generation, although the final number of features may be
relatively low. An alternative is the direct selection of fea-
ture subsets, which, expressed by matrix A, means that
each row of A contains a single one while all other elements
are zero. The question is then the one of which features to
include and which to exclude. Because the elements of A

have to be binary, simple algebraic solutions like with
PCA or LDA cannot be found, and iterative strategies have
been proposed. For example, in Abdel-Haleem et al.
(2004), the maximum entropy principle was used to decide
on the best feature space.

4.2. Acoustic modeling techniques

Concerning acoustic modeling, good performance is
generally achieved when the model is matched to the task,
which can be obtained through adequate training data (see
also Section 4.4). Systems with stronger generalization
capabilities can then be built through a so-called multi-
style training. Estimating the parameters of a traditional
modeling architecture in this way however has some limita-
tion due to the inhomogeneity of the data, which increases
the spread of the models, and hence negatively impacts
accuracy compared to task-specific models. This is partly
to be related to the inability of the framework to properly
model long-term correlations of the speech signals.

Also, within the acoustic modeling framework, adapta-
tion techniques provide a general formalism for reestimat-
ing optimal model parameters for given circumstances
based on moderate amounts of speech data.

Then, the modeling framework can be extended to allow
multiple specific models to cover the space of variation.
These can be obtained through generalizations of the
HMM modeling framework, or through explicit construc-
tion of multiple models built on knowledge-based or
data-driven clusters of data.

In the following, extensions for modeling using addi-
tional cues and features is also reviewed.

4.2.1. Adaptation

In Section 4.1.2, we have been reviewing techniques that
can be used to compensate for speech variation at the fea-
ture extraction level. A dual approach is to adapt the ASR
acoustic models.

In some cases, some variations in the speech signal could
be considered as long term given the application. For
instance, a system embedded in a personal device and
hence mainly designed to be used by a single person, or a
system designed to transcribe and index spontaneous
speech, or characterized by utilization in a particular envi-
ronment. In these cases, it is often possible to adapt the
models to these particular conditions, hence partially fac-
toring out the detrimental effect of these. A popular tech-
nique is to estimate a linear transformation of the model
parameters using a maximum likelihood (ML) criterion
(Leggetter and Woodland, 1995). A maximum a posteriori
(MAP) objective function may also be used (Chesta et al.,
1999; Zavaliagkos et al., 1996).

Being able to perform this adaptation using limited
amounts of condition-specific data would be a very desir-
able property for such adaptation methodologies, as this
would reduce the cost and hassle of such adaptation
phases. Such ‘‘fast’’ (sometimes on-line) adaptation
schemes have been proposed a few years ago, based on
the clustering of the speakers into sets of speakers which
have similar voice characteristics. Inferred acoustic models
present a much smaller variance than speaker-independent
systems (Naito et al., 1998; Padmanabhan et al., 1996). The
eigenvoice approach (Gales, 1998; Nguyen et al., 2000)
takes from this idea by building a low dimension eigen-
space in which any speaker is located and modeled as a lin-
ear combination of ‘‘eigenvoices’’.

Intuitively, these techniques rest on the principle of
acquiring knowledge from the training corpora that repre-
sent the prior distribution (or clusters) of model parameters
given a variability factor under study. With these adapta-
tion techniques, knowledge about the effect of the inter-
speaker variabilities are gathered in the model. In the
traditional approach, this knowledge is simply discarded,
and, although all the speakers are used to build the model,
and pdfs are modeled using mixtures of gaussians, the ties
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between particular mixture components across the several
CD phonemes are not represented/used.

Recent publications have been extending and refining
this class of techniques. In Kim and Kim (2004), rapid
adaptation is further extended through a more accurate
speaker space model, and an on-line algorithm is also pro-
posed. In Wu and Yan (2004), the correlations between the
means of mixture components of the different features are
modeled using a Markov Random Field, which is then
used to constrain the transformation matrix used for adap-
tation. Other publications include (Kenny et al., 2005; Mak
and Hsiao, 2004; Tsakalidis et al., 2005; Tsao et al., 2005;
Wu and Yan, 2004; Zhou and Hansen, 2005).

Other forms of transformations for adaptation are also
proposed in (Padmanabhan and Dharanipragada, 2004),
where the Maximum Likelihood criterion is used but the
transformations are allowed to be nonlinear. Let us also
mention alternate non-linear speaker adaptation para-
digms based on connectionist networks (Abrash et al.,
1996; Watrous, 1993).

Speaker normalization algorithms that combine fre-
quency warping and model transformation have been
proposed to reduce acoustic variability and significantly
improve ASR performance for children speakers (by 25–
45% under various model training and testing conditions)
(Potamianos and Narayanan, 2003; Potamianos et al.,
1997). ASR on emotional speech has also benefited from
techniques relying on adapting the model structure within
the recognition system to account for the variability in
the input signal. One practice has been to bring the training
and test conditions closer by space projection (Carlson and
Clements, 1992; Mansour and Juang, 1989). In Kubala
et al. (1994), it is shown that acoustic model adaptation
can be used to reduce the degradation due to non-native
dialects. This has been observed on an English read speech
recognition task (Wall Street Journal), and the adaptation
was applied at the speaker level to obtain speaker depen-
dent models. For speaker independent systems this may
not be feasible however, as this would require adaptation
data with a large coverage of non-native speech.

4.2.2. Multiple modeling

Instead of adapting the models to particular conditions,
one may also train an ensemble of models specialized to
specific conditions or variations. These models may then
be used within a selection, competition or else combination
framework. Such techniques are the object of this section.

Acoustic models are estimated from speech corpora, and
they provide their best recognition performances when the
operating (or testing) conditions are consistent with the
training conditions. Hence many adaptation procedures
were studied to adapt generic models to specific tasks and
conditions. When the speech recognition system has to
handle various possible conditions, several speech corpora
can be used together for estimating the acoustic models,
leading to mixed models or hybrid systems (Das et al.,
1999; Mokbel et al., 1997), which provide good perfor-
mances in those various conditions (for example in both
landline and wireless networks). However, merging too
many heterogeneous data in the training corpus makes
acoustic models less discriminant. Hence the numerous
investigations along multiple modeling, that is the usage
of several models for each unit, each model being trained
from a subset of the training data, defined according to a
priori criteria such as gender, accent, age, rate-of-speech
(ROS) or through automatic clustering procedures. Ideally
subsets should contain homogeneous data, and be large
enough for making possible a reliable training of the acous-
tic models.

Gender information is one of the most often used crite-
ria. It leads to gender-dependent models that are either
directly used in the recognition process itself (Odell et al.,
1994; Konig and Morgan, 1992) or used as a better seed
for speaker adaptation (Lee and Gauvain, 1993). Gender
dependence is applied to whole word units, for example
digits (Gupta et al., 1996), or to context dependent pho-
netic units (Odell et al., 1994), as a result of an adequate
splitting of the training data.

In many cases, most of the regional variants of a lan-
guage are handled in a blind way through a global training
of the speech recognition system using speech data that
covers all of these regional variants, and enriched modeling
is generally used to handle such variants. This can be
achieved through the use of multiple acoustic models
associated with large groups of speakers as in Beattie
et al. (1995), VanCompernolle et al. (1991). These papers
showed that it was preferable to have models only for a
small number of large speaker populations than for many
small groups. When a single foreign accent is handled,
some accented data can be used for training or adapting
the acoustic models (Aalburg and Hoege, 2004; He and
Zhao, 2003; Liu and Fung, 2000; Uebler and Boros, 1999).

Age dependent modeling has been less investigated, may
be due to the lack of large size children speech corpora. The
results presented in D’Arcy et al. (2004) fail to demonstrate
a significant improvement when using age dependent
acoustic models, possibly due to the limited amount of
training data for each class of age. Simply training a con-
ventional speech recognizer on children speech is not suffi-
cient to yield high accuracies, as demonstrated by Wilpon
and Jacobsen (1996). Recently, corpora for children speech
recognition have begun to emerge. In Eskenazi (1996) a
small corpus of children speech was collected for use in
interactive reading tutors and led to a complete children
speech recognition system. In Shobaki et al. (2000), a more
extensive corpus consisting of 1100 children, from kinder-
garten to grade 10, was collected and used to develop a
speech recognition system for isolated word and finite state
grammar vocabularies for US English.

Speaking rate notably affects the recognition perfor-
mances, thus ROS dependent models were studied
(Mirghafori et al., 1996). It was also noticed that ROS
dependent models are often getting less speaker-indepen-
dent because the range of speaking rate shown by different
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speakers is not the same (Pfau and Ruske, 1998), and that
training procedures robust to sparse data need to be used.
In that sense, comparative studies have shown that rate-
adapted models performed better than rate-specific models
(Wrede et al., 2001). Speaking rate can be estimated on line
(Pfau and Ruske, 1998), or computed from a decoding
result using a generic set of acoustic models, in which case
a rescoring is applied for fast or slow sentences (Nanjo and
Kawahara, 2002); or the various rate dependent models
may be used simultaneously during decoding (Chesta
et al., 1999; Zheng et al., 2004).

The signal-to-noise ratio (SNR) also impacts recogni-
tion performances, hence, besides or in addition to noise
reduction techniques, SNR-dependent models have been
investigated. In Song et al. (1998) multiple sets of models
are trained according to several noise masking levels and
the model set appropriate for the estimated noise level is
selected automatically in recognition phase. In contrast,
in Sakauchi et al. (2004) acoustic models composed under
various SNR conditions are run in parallel during
decoding.

The same way, speech variations due to stress and
emotions has been addressed by the multi-style training
(Lippmann et al., 1987; Paul, 1987), and simulated stress
token generation (Bou-Ghazale and Hansen, 1994, 1995).
As for all the improved training methods, recognition per-
formance is increased only around the training conditions
and degradation in results is observed as the test conditions
drift away from the original training data.

Automatic clustering techniques have also been used for
elaborating several models per word for connected-digit
recognition (Rabiner et al., 1989). Clustering the trajecto-
ries (or sequences of speech observations assigned to some
particular segment of the speech, like word or subword
units) deliver more accurate modeling for the different
groups of speech samples (Korkmazskiy et al., 1997); and
clustering training data at the utterance level provided
the best performances in Shinozaki and Furui (2004).

Multiple modeling of phonetic units may be handled
also through the usual triphone-based modeling approach
by incorporating questions on some variability sources in
the set of questions used for building the decision trees:
gender information in Neti and Roukos (1997), syllable
boundary and stress tags in Paul (1997), and voice charac-
teristics in Suzuki et al. (2003).

When multiple modeling is available, all the available
models may be used simultaneously during decoding, as
done in many approaches, or the most adequate set of
acoustic models may be selected from a priori knowledge
(for example network or gender), or their combination
may be handled dynamically by the decoder. This is the
case for parallel hidden Markov models (Brugnara et al.,
1992) where the acoustic densities are modulated depend-
ing on the probability of a master context HMM being in
certain states. In Zolnay et al. (2005), it is shown that
log-linear combination provides good results when used
for integrating probabilities provided by acoustic models
based on different acoustic feature sets. More recently
dynamic Bayesian networks have been used to handle
dependencies of the acoustic models with respect to auxil-
iary variables, such as local speaking rate (Shinozaki and
Furui, 2003), or hidden factors related to a clustering of
the data (Korkmazsky et al., 2004; Matsuda et al., 2004).

Multiple models can also be used in a parallel decoding
framework (Zhang et al., 1994); then the final answer
results from a ‘‘voting’’ process (Fiscus, 1997), or from
the application of elaborated decision rules that take into
account the recognized word hypotheses (Barrault et al.,
2005). Multiple decoding is also useful for estimating
reliable confidence measures (Utsuro et al., 2002).

Also, if models of some of the factors affecting speech
variation are known, adaptive training schemes can be
developed, avoiding training data sparsity issues that could
result from cluster-based techniques. This has been used
for instance in the case of VTL normalization, where a spe-
cific estimation of the vocal tract length (VTL) is associated
with each speaker of the training data (Welling et al.,
2002). This allows to build ‘‘canonical’’ models based on
appropriately normalized data. During recognition, a
VTL is estimated in order to be able to normalize the fea-
ture stream before recognition. The estimation of the VTL
factor can either be perform by a maximum likelihood
approach (Lee and Rose, 1996; Zhan and Waibel, 1997)
or from a direct estimation of the formant positions (Eide
and Gish, 1996; Lincoln et al., 1997). More general normal-
ization schemes have also been investigated (Gales, 2001),
based on associating transforms (mostly linear transforms)
to each speaker, or more generally, to different clusters of
the training data. These transforms can also be constrained
to reside in an reduced-dimensionality eigenspace (Gales,
1998). A technique for ‘‘factoring-in’’ selected transforma-
tions back in the canonical model is also proposed in Gales
(2001), providing a flexible way of building factor-specific
models, for instance multi-speaker models within a partic-
ular noise environment, or multi-environment models for a
particular speaker.

4.2.3. Auxiliary acoustic features

Most of speech recognition systems rely on acoustic
parameters that represent the speech spectrum, for example
cepstral coefficients. However, these features are sensitive
to auxiliary information inherent in the speech signal such
as pitch, energy, rate-of-speech, etc. Hence attempts have
been made in taking into account this auxiliary informa-
tion in the modeling and in the decoding processes.

Pitch, voicing and formant parameters have been used
since a long time, but mainly for endpoint detection
purposes (Atal and Rabiner, 1976) making it much more
robust in noisy environments (Martin and Mauuary,
2003). Many algorithms have been developed and tuned
for computing these parameters, but are out of the scope
of this paper.

For what concerns speech recognition itself, the most
simple way of using such parameters (pitch, formants
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and/or voicing) is their direct introduction in the feature
vector, along with the cepstral coefficients, for example
periodicity and jitter are used in Thomson and Chengalv-
arayan (2002) and formant and auditory-based acoustic
cues are used together with MFCC in Holmes et al.
(1997), Selouani et al. (2002). Correlation between pitch
and acoustic features is taken into account in Kitaoka
et al. (2002) and an LDA is applied on the full set of fea-
tures (i.e. energy, MFCC, voicing and pitch) in Ljolje
(2002). In de Wet et al. (2004), the authors propose a 2-
dimension HMM to extract the formant positions and
evaluate their potential on a vowel classification task. In
Garner and Holmes (1998), the authors integrate the for-
mant estimations into the HMM formalism, in such a
way that multiple formant estimate alternatives weighted
by a confidence measure are handled. In Tolba et al.
(2003), a multi-stream approach is used to combine MFCC
features with formant estimates and a selection of acoustic
cues such as acute/grave, open/close, tense/lax, etc.

Pitch has to be taken into account for the recognition of
tonal languages. Tone can be modeled separately through
specific HMMs (Yang et al., 1988) or decision trees (Wong
and Siu, 2004), or the pitch parameter can be included in
the feature vector (Chen et al., 1997), or both information
streams (acoustic features and tonal features) can be
handled directly by the decoder, possibly with different
optimized weights (Shi et al., 2002). Various coding and
normalization schemes of the pitch parameter are generally
applied to make it less speaker dependent; the derivative of
the pitch is the most useful feature (Liu et al., 1998), and
pitch tracking and voicing are investigated in Huank
and Seide (2000). A comparison of various modeling
approaches is available in Demeechai and Mäkeläinen
(2001). For tonal languages, pitch modeling usually con-
cerns the whole syllable; however, limiting the modeling
to the vowel seems sufficient (Chen et al., 2001).

Voicing has been used in the decoder to constrain the
Viterbi decoding (when phoneme node characteristics are
not consistent with the voiced/unvoiced nature of the seg-
ment, corresponding paths are not extended) making the
system more robust to noise (O’Shaughnessy and Tolba,
1999).

Pitch, energy and duration have also been used as pro-
sodic parameters in speech recognition systems, or for
reducing ambiguity in post-processing steps. These aspects
are out of scope of this paper.

Dynamic Bayesian networks (DBN) offer an integrated
formalism for introducing dependence on auxiliary fea-
tures. This approach is used in Stephenson et al. (2004)
with pitch and energy as auxiliary features. Other informa-
tion can also be taken into account such as articulatory
information in Stephenson et al. (2000) where the DBN uti-
lizes an additional variable for representing the state of the
articulators by direct measurement (note that these experi-
ments require a very special X-ray microbeam database).
As mentioned in previous section, speaking rate is another
factor that can be taken into account in such a framework.
Most experiments deal with limited vocabulary sizes; exten-
sion to large vocabulary continuous speech recognition is
proposed through an hybrid HMM/BN acoustic modeling
in Markov and Nakamura (2003).

Another approach for handling heterogeneous features
is the TANDEM approach used with pitch, energy or rate
of speech in Magimai-Doss et al. (2004). The TANDEM
approach transforms the input features into posterior
probabilities of sub-word units using artificial neural
networks (ANNs), which are then processed to form input
features for conventional speech recognition systems.

Finally, auxiliary parameters may be used to normalize
spectral parameters, for example based on measured pitch
(Singer and Sagayama, 1992), or used to modify the
parameters of the densities (during decoding) through
multiple regressions as with pitch and speaking rate in
Fujinaga et al. (2001).

4.3. Pronunciation modeling techniques

As mentioned in the introduction of Section 2, some
speech variations, like foreign accent or spontaneous
speech, affect the acoustic realization to the point that their
effect may be better described by substitutions and deletion
of phonemes with respect to canonical (dictionary)
transcriptions.

As a complementary principle to multiple acoustic
modeling approaches reviewed in Section 4.2.2, multiple
pronunciations are generally used for the vocabulary
words. Hidden model sequences offer a possible way of
handling multiple realizations of phonemes (Hain and
Woodland, 1999) possibly depending on phone context.
For handling hyper articulated speech where pauses may
be inserted between syllables, ad hoc variants are necessary
(Matsuda et al., 2004). And adding more variants is usually
required for handling foreign accents.

Modern approaches attempt to build in rules underlying
pronunciation variation, using representations frameworks
such as FSTs (Hazen et al., 2005; Seneff and Wang, 2005),
based on phonological knowledge, data and recent studies
on the syllabic structure of speech, for instance in English
(Greenberg and Chang, 2000) or French (Adda-Decker
et al., 2005).

In Adda-Decker et al. (2005), an experimental study of
phoneme and syllable reductions is reported. The study is
based on the comparison of canonical and pronounced
phoneme sequences, where the latter are obtained through
a forced alignment procedure (whereas (Greenberg and
Chang, 2000) was based on fully manual phonetic annota-
tion). Although results following this methodology are
affected by ASR errors (in addition to ‘‘true’’ pronuncia-
tion variants), they present the advantage of being able
to benefit from analysis of much larger and diverse speech
corpora. In the alignment procedure, the word representa-
tions are defined to allow the dropping of any phoneme
and/or syllable, in order to avoid limiting the study to
pre-defined/already know phenomena. The results are
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presented and discussed so as to study the correlation of
reduction phenomena with respect to the position of the
phoneme in the syllable, the syllable structure and the
position of the syllable within the word. Within-word and
cross-word resyllabification (frequent in French but not
in English) is also addressed. The results reinforce previous
studies (Greenberg and Chang, 2000) and suggest further
research in the use of more elaborate contexts in the defini-
tion of ASR acoustic models. Context-dependent pho-
nemes could be conditioned not only on neighboring
phones but also on the contextual factors described in this
study. Such approaches are currently being investigated
(Lamel and Gauvain, 2005; Messina and Jouvet, 2004).
These rely on the modeling capabilities of acoustic models
that can implicitly model some pronunciation effect
(Dupont et al., 2005; Hain, 2005; Jurafsky et al., 2001),
provided that they are represented in the training data.
In Hain (2005), several phone sets are defined within the
framework of triphone models, in the hope of improving
the modeling of pronunciation variants affected by the
syllable structure. For instance, an extended phone set that
incorporates syllable position is proposed. Experimental
results with these novel phone sets are not conclusive how-
ever. The good performance of the baseline system could
(at least partly) be attributed to implicit modeling, espe-
cially when using large amounts of training data resulting
in increased generalization capabilities of the used models.
Also it should be considered that ‘‘continuous’’ (or ‘‘sub-
tle’’) pronunciation effects are possible (e.g. in spontaneous
speech), where pronunciations cannot be attributed to a
specific phone from the phone set anymore, but might
cover ‘‘mixtures’’ or transitional realizations between
different phones. In this case, approaches related to the
pronunciation lexicon alone will not be sufficient.

The impact of regional and foreign accents may also be
handled through the introduction of detailed pronuncia-
tion variants at the phonetic level (Adda-Decker and
Lamel, 1999; Humphries et al., 1996). Introducing multiple
phonetic transcriptions that handle alterations produced
by non-native speakers is a usual approach, and is gener-
ally associated with a combination of phone models of
the native language with phone models of the target lan-
guage (Bartkova and Jouvet, 1999; Bonaventura et al.,
1998; Witt and Young, 1999). However adding too many
systematic pronunciation variants may be harmful (Strik
and Cucchiarini, 1999).

Alteration rules can be defined from phonetic knowl-
edge or estimated from some accented data (Livescu and
Glass, 2000). Deriving rules using only native speech of
both languages is proposed in Goronzy et al. (2004). Raux
(2004) investigates the adaptation of the lexicon according
to preferred phonetic variants. When dealing with various
foreign accents, phone models of several languages can
be used simultaneously with the phone models of the target
language (Bartkova and Jouvet, 2004), multilingual units
can be used (Uebler and Boros, 1999) or specialized models
for different speaker groups can be elaborated (Cincarek
et al., 2004). Multilingual phone models have been investi-
gated for many years in the hope of achieving language
independent units (Bonaventura et al., 1997; Dalsgaard
et al., 1998; Köhler, 1996; Schultz and Waibel, 1998).
Unfortunately language independent phone models do
not provide as good results as language dependent phone
models when the latter are trained on enough speech data,
but language independent phone models are useful when
little or no data exists in a particular language and their
use reduces the size of the phoneme inventory of multilin-
gual speech recognition systems. The mapping between
phoneme models of different languages can be derived
from data (Weng et al., 1997) or determined from
phonetic knowledge (Uebler, 2001), but this is far from
obvious as each language has his own characteristic set
of phonetic units and associated distinctive features. More-
over, a phonemic distinguishing feature for a given
language may hardly be audible to a native of another
language.

As mentioned in Section 2.4, variations of the speaking
rate may deeply affect the pronunciation. Regarding this
source of variability, some approaches relying upon an
explicit modeling strategy using different variants of pro-
nunciation have been proposed; a multi-pass decoding
enables the use of a dynamically adjusted lexicon employed
in a second pass (Fosler-Lussier and Morgan, 1999). The
acoustic changes, such as coarticulation, are modeled by
directly adapting the acoustic models (or a subset of their
parameters, i.e. weights and transition probabilities) to
the different speaking rates (Bard et al., 2001; Martinez
et al., 1998; Morgan et al., 1997; Shinozaki and Furui,
2003; Zheng et al., 2000). Most of the approaches are based
on a separation of the training material into discrete speak-
ing rate classes, which are then used for the training of rate
dependent models. During the decoding, the appropriate
set of models is selected according to the measured speak-
ing rate. Similarly, to deal with changes in phone duration,
as it is the case for instance for variation of the speaking
rate, alteration schemes of the transition probabilities
between HMM states are proposed (Martinez et al.,
1997; Mirghafori et al., 1995; Morgan et al., 1997). The
basic idea is to put high/low transition probability (exit
probability) for fast slow/speech. These compensation
techniques require a priori ROS estimation using one of
the measures described in Section 2.4. In Zheng et al.
(2000), the authors proposed a compensation technique
that does not require ROS estimation. This technique used
a set of parallel rate-specific acoustic and pronunciation
models. Rate switching is permitted at word boundaries
to allow within-sentence speaking rate variation.

The reader should also explore the publications from
(ISCA Tutorial and Research Workshop, 2002).

4.4. Larger and diverse training corpora

Driven by the availability of computational resources,
there is a still ongoing trend in trying to build bigger and
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hopefully better systems, that attempt to take advantage of
increasingly large amounts of training data.

This trend seems in part to be related to the perception
that overcoming the current limited generalization abilities
as well as modeling assumptions should be beneficial. This
however implies more accurate modeling whose parameters
can only be reliably estimated through larger data sets.

Several studies follow that direction. In Nguyen et al.
(2003), 1200 h of training data have been used to develop
acoustic models for the English broadcast news recognition
task, with significant improvement over the previous 200 h
training set. It is also argued that a vast body of speech rec-
ognition algorithms and mathematical machinery is aimed
at smoothing estimates toward accurate modeling with
scant amounts of data.

More recently, in Lamel and Gauvain (2005), up to
2300 h of speech have been used. This has been done as part
of the EARS project, where training data of the order of
10,000 h has been put together. It is worth mentioning that
the additional very large amounts of training data are usu-
ally either untranscribed or automatically transcribed. As a
consequence, unsupervised or lightly supervised approaches
(e.g. using closed captions) are essential here.

Research towards making use of larger sets of speech
data are also involving schemes for training data selection,
semi-supervised learning, as well as active learning (Venk-
ataraman et al., 2004). These allow to minimize the manual
intervention required while preparing a corpus for model
training purposes.4

A complementary perspective to making use of more
training data consists in using knowledge gathered on
speech variations in order to synthesize large amounts of
acoustic training data (Girardi et al., 1998).

Finally, another approach is proposed in Dupont et al.
(2005), with discriminant non-linear transformations based
on MLPs (multi-layer perceptrons) that present some form
of genericity across several factors. The transformation
parameters are estimated based on a large pooled corpus
of several languages, and hence presents unique generaliza-
tion capabilities. Language and domain specific acoustic
models are then built using features transformed accord-
ingly, allowing language and task specificity if required,
while also bringing the benefit of detailed modeling and
robustness to any tasks and language. A important study
of the robustness of similarly obtained MLP-based acous-
tic features to domains and languages is also reported in
Stolcke et al. (2006).
5. Conclusion

This paper gathers important references to literature
related to the endogenous variations of the speech signal
4 Tur et al. (2005) combining active and semi-supervised learning for
spoken language understanding. Methods of similar inspiration are also
used in the framework of training models for spoken language
understanding.
and their importance in automatic speech recognition.
Important references addressing specific individual speech
variation sources are first surveyed. This covers accent,
speaking style, speaker physiology, age, emotions. General
methods for diagnosing weaknesses in speech recognition
approaches are then highlighted. Finally, the paper pro-
posed an overview of general and specific techniques for
better handling of variation sources in ASR, mostly tack-
ling the speech analysis and acoustic modeling aspects.
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