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Abstract

Biorthogonal modulated "lter banks, when compared to paraunitary ones, provide the advantage that the overall
system delay can be chosen independently of the "lter length, thus allowing to design low delay "lter banks. They have
recently been studied by several authors. In this paper, we connect two di!erent design methods, namely the quadratic
constrained least-squares optimization and the principle of cascading sparse self-inverse matrices. Moreover, we show
how factorizations into zero-delay and maximum-delay matrices can be utilized in order to achieve desirable features
such as structure-inherent perfect reconstruction, no DC leakage of the "lter bank, and a low implementation
cost. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Modulated "lter banks have been studied extensively in the literature within the last 10 years. They have
shown to provide a very e$cient implementation based on a prototype "lter and a fast transform. The most
popular modulation scheme is cosine modulation. However, other modulation schemes based on the discrete
Fourier transform (DFT) also exist. Historically, the "rst modulated "lter banks with perfect reconstruction
were designed such as to be paraunitary [2,5,9}11]. In this special case, the impulse responses of the synthesis
"lters are #ipped versions of the analysis ones and all "lters are derived from one common prototype.
However, since the overall system delay of such "lter banks is directly related to the "lter length, the desired
features of a high stopband attenuation and a short overall system delay are contradictory. This problem has
partly been overcome with the design of low-delay biorthogonal "lter banks, where the delay can be chosen
independently (within some fundamental limits) of the "lter length and the number of subbands. In this class
of "lter banks, the synthesis "lters are no longer #ipped versions of the analysis "lters*the analysis and
synthesis "lters may even be derived from di!erent prototypes.
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Two principal approaches can be stated for the design of biorthogonal cosine-modulated "lter banks with
perfect reconstruction. The approach by Schuller et al. [12}15] uses "lter bank realizations that structurally
guarantee perfect reconstruction for arbitrary system delays. It is mainly based on a factorization of the
analysis polyphase matrix into a transform and special sparse matrices which are easy to invert. The inverse
matrices, which are also sparse, are then used on the synthesis side. Completeness of the factorization has
been shown for all contiguous prototype "lters, i.e. prototype "lters that do not have any zero taps within
their region of support. Prototype "lters with desired features such as a high stopband attenuation are found
by optimizing the free design parameters based on unconstrained nonlinear optimization methods.
The second approach is due to Nguyen et al., who derived explicit perfect reconstruction (PR) constraints

for the polyphase components of the prototype "lters [1,6,8]. The "lter design is carried out by a quadratic-
constrained least-squares (QCLS) optimization algorithm using the stopband energy of the prototypes'
frequency responses as a cost function and the PR conditions as constraints. In [1] it has been shown that the
same PR constraints also hold true for the DCT-II modulation scheme proposed in [3].
Both approaches provide certain advantages. Since in the latter case, the PR constraints are directly

formulated, it can easily be veri"ed whether or not a given pair of prototype "lters yields perfect reconstruc-
tion. Necessary relations between the analysis and synthesis prototypes are also stated [1]. Furthermore, it
gives good insight into the properties of PR prototypes. For example, based on this approach it can be shown
that for certain combinations of "lter lengths and overall system delay, some polyphase "lters can only have
one non-zero coe$cient. This special case is not treated in the factorization proposed in [12}14]. However,
the factorization approach from Schuller et al. o!ers many advantages concerning the implementation of the
"lter bank. First of all, the structure automatically guarantees PR. This also holds true when using
integer-valued coe$cients, because the same factorization coe$cients are used on the analysis and synthesis
side. Even for coe$cients with in"nite precision, it turns out that the implementation cost is nearly halved
when compared to the direct realization of the polyphase "lters as assumed by Nguyen et al. Another
advantage of the approach is that it can be extended to time-varying "lter banks [13] without much e!ort.
Which of the two optimization methods (unconstrained and non-linear or constrained and quadratic) results
in better "lter designs, highly depends on the chosen optimization procedures and the complexity of the
problem (i.e. "lter length, number of subbands, etc.).
In this paper, we connect both approaches and show that all PR cosine-modulated "lter banks with the

modulation scheme considered by Nguyen et al. can be realized in a factorized form which shares similarities
with the method proposed by Schuller et al. The factorization is derived directly from the PR constraints and
also treats the general case where some polyphase "lters contain coe$cients being equal to zero, which is not
covered by the approach in [12}14]. Instead of dealing with size M�M matrices as in [12}15], where
M denotes the number of subbands of the "lter bank, we just have to deal with size 2�2 matrices and realize
�M/2� of them in parallel. Using this factorization, we show that the implementation cost can be
signi"cantly reduced (compared to a direct implementation of the polyphase "lters). Furthermore, we show
how to include certain useful features in the implementation. Such features can be the use of equal prototypes
for analysis and synthesis, prototype "lters with speci"ed zeros at certain frequencies in order to yield "lter
banks without DC leakage, and integer coe$cient prototypes.
The outline of the paper is as follows. After providing some de"nitions, we recall in Section 2 the PR

constraints of cosine-modulated "lter banks as derived by Nguyen et al. In Section 3, we derive from the PR
constraints how to realize the "lter bank using zero-delay and maximum-delay matrices. Section 4 shows
that we can easily design "lter banks with identical analysis and synthesis prototype "lter by imposing
constraints on the "rst matrix of the factorization. Section 5 shows how "lter banks without DC leakage can
be obtained by choosing the "rst matrix of the factorization appropriately. Section 6 compares the
implementation cost of the new factorization with a direct implementation of the polyphase "lters. In Section
7 we present design examples for low-delay prototype "lters as well as for "lter banks without DC leakage.
Finally, Section 8 gives some conclusions.

998 T. Karp et al. / Signal Processing 81 (2001) 997}1016



Fig. 1. Biorthogonal cosine-modulated "lter bank.

1.1. Notation and dexnitions

Boldface letters denote matrices or vectors. Symbols I
�
and J

�
denote the M�M identity and counter-

identity matrix, respectively.
The symbol [F]

���
denotes the element at the nth row and kth column of the matrix F. �x� is the smallest

integer greater than or equal to x, �x� is the biggest integer smaller than or equal to x, and
��

���
L
�
"L

�
) 2 ) L� , where the ordering is important. The notation x� denotes the transpose of a vector x. If

the z-transform of a "lter is given by H(z), the corresponding impulse response in the time domain is denoted
by h(n).
The "lter bank structure is shown in Fig. 1. The analysis "lter bank consists of M parallel analysis "lters of

length N
�
with impulse responses h

�
(n) and z-transforms H

�
(z), k"0,2,M!1, n"0,2,N

�
!1, and

subsequent downsampling by M. The input signal is x(n), and the subband signals are
y
�
(m), k"0,2,M!1, where m is the time index at the reduced sampling rate. The synthesis "lter bank

consists of upsamplers by M followed by M synthesis "lters of length N
�
with impulse responses f

�
(n) and

z-transforms F
�
(z), k"0,2,M!1, n"0,2,N

�
!1. The "lter outputs are summed to form the recon-

structed signal x( (n). The "lter bank provides perfect reconstruction if the output signal is a delayed version of
the input signal, x( (n)"x(n!D), where D is the system delay, i.e. the integer number of sampling periods that
the output signal is delayed to the input signal, assuming that the subband signals are directly passed from
the analysis to the synthesis bank. In the following, the system delay will be expressed as of D"2sM#d
where s denotes the integer multiples of 2M and d the remainder of D and 2M.

2. Cosine-modulated 5lter banks with perfect reconstruction

In this section, we recall the PR constraints from [1,8] for biorthogonal cosine-modulated "lter banks. In
[1] the generation of the M analysis and synthesis "lters from the lowpass prototypes H(z) and F(z),
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respectively, has been chosen according to

h
�
(n)"2h(n) cos�

�
M
(k#0.5)(n!D/2)#�

��, n"0,1,2,N
�
!1, (1)

f
�
(n)"2f (n) cos�

�

M
(k#0.5)(n!D/2)!�

��, n"0,1,2,N
�
!1, (2)

where �
�
"(!1)��/4. The "lter lengths N

�
and N

�
, the number of subbands M, and the system delay

D belong to the set of free parameters that has to be selected by the system designer according to the
application.
We now express the analysis and synthesis prototype "ltersH(z) and F(z) by type-1 polyphase components

Gl (z) and Kl(z), respectively, with l"0,2,2M!1:

H(z)"
����

�
l��

z�lGl (z��), gl (m)"h(2mM#l), (3)

F(z)"
����

�
l��

z�lKl (z��), kl(m)"f (2mM#l). (4)

Using these polyphase components, it has been demonstrated in [1] that the constraints mentioned below,
which depend on the delay parameters d and s, have to be satis"ed for the cosine-modulated "lter bank to
provide PR. See [1] for a more detailed derivation.
PR constraints for 0)d(M: The relation between the polyphase components of the analysis and

synthesis prototype is

Kl (z)"�lz��lGl (z), Kl��
(z)"�lz��lGl��

(z), 0)l(M, lO

M#d

2
, (5)

where �l denotes a non-zero, real valued scaling factor and al an integer value describing a possible delay
between the corresponding polyphase components of the analysis and synthesis prototype "lters. They
jointly have to satisfy

(1) Gl (z)K	�l (z)#z��G
��l(z)K��	�l (z)"

z�


2M
, 0)l)d, (6)

(2) Gl (z)K���	�l (z)#G
��l (z)K��	�l (z)"

z��
���

2M
, d(l(2M, lO

M#d

2
, (7)

(3) l"(M#d)/2:

G��	
�

(z)K	��	
�

(z)"
z��
���

4M
, K��	

�

(z), G	��	
�

(z) arbitrary for s odd, (8)

G	��	
�

(z)K��	
�

(z)"
!z��
���

4M
, K	��	

�

(z), G��	
�

(z) arbitrary for s even. (9)

PR constraints for M)d(2M: The PR constraints for M)d(2M can be expressed in a similar way:

Kl (z)"�lz��lGl (z), Kl��
(z)"�lz��lGl��

(z), 0)l(M, lO

d!M

2
(10)
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and

(1) Gl (z)K	�l (z)#G
��l (z)K	�l��

(z)"
z�


2M
, 0)l)d!M, lO

d!M

2
, (11)

(2) Gl (z)K	�l (z)#z��Gl��
(z)K

��	�l (z)"
z�


2M
, d!M(l(2M, (12)

(3) l"(d!M)/2:

G��	
�

(z)K	��
�

(z)"
!z�


4M
, K��	

�

(z), G	��
�

(z) arbitrary for s odd, (13)

G	��
�

(z)K��	
�

(z)"
z�


4M
, K	��

�

(z), G��	
�

(z) arbitrary for s even. (14)

Some remarks on the PR constraints: From (5) and (10), it can be seen that the polyphase components of the
analysis and synthesis prototype "lters are strictly connected. I.e., they have to be equal up to the scale factors
�l and the delays al . The value d of the overall system delay determines which polyphase "lters are connected
in the PR constraints (6)}(9) and (11)}(14), respectively, while s determines the delay on the right-hand side of
the upper equations (remember that the overall system delay was given by D"2sM#d). Note that for
d"2M!1 and M being even, all PR constraints are given by (10) and (11).

3. Filter bank realization using zero-delay and maximum-delay matrices

A straightforward implementation of the biorthogonal cosine-modulated "lter bank can be derived from
the polyphase matrices. In [1] it has been shown that the analysis and synthesis polyphase matrices E(z) and
R(z), respectively, can be written as

E(z)"C
��

u
�
(!z�)

z��u
�
(!z�)�, R(z)"[z��k

�
(!z�) k

�
(!z�)]C �

�
(15)

with

[C
�
]
��l

"2 cos�(k#0.5)
�

M�l!

D

2 �#�
��, 0)k(M, (16)

[C
�
]
��l

"2 cos�(k#0.5)
�

M�2M!1!l!

D

2 �#�
��, 0)l(2M (17)

and

u
�
(!z�)"diag[G

�
(!z�),2,G

���
(!z�)], u

�
(!z�)"diag[G

�
(!z�),2,G

����
(!z�)],

k
�
(!z�)"diag[K

���
(!z�),2,K

�
(!z�)], k

�
(!z�)"diag[K

����
(!z�),2,K

�
(!z�)].

The corresponding polyphase realization of the "lter bank is shown in Fig. 2. The input signal is split into
M polyphase components. These components are fed into the 2M upsampled and modulated polyphase
"ltersGl (!z�). Their outputs are then transformed by the 2M�M transformmatrix C

�
and yield the vector

ofM subband signals. On the synthesis side, mainly the inverse steps are performed. A similar realization has
been derived in [2,16] for the paraunitary case.
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Fig. 2. Filter bank realization using polyphase "lters Gl (z) and Kl (z), respectively, and cosine transform.

From the "lter bank structure in Fig. 2, the following ideas arise for a more e$cient realization:
1. The modulation matrices C

�
and C

�
are of size M�2M and not of size M�M as in [4,12}15], which

means that the complexity could be reduced by exploiting the properties of the modulation matrices.
2. The polyphase components Gl(!z�) and Gl��

(!z�) are fed with the same input signal, so that one
could think of realizing always two polyphase "lters jointly. Accordingly, on the synthesis side, the
outputs ofKl(!z�) andKl��

(!z�) are added, and both synthesis polyphase "lters may also be realized
jointly.

In the following, we show how these ideas result in an e$cient realization. For simplicity, we only consider
the case where d is in the range M)d(2M. We have to treat the di!erent PR constraints (11)}(14)
separately. The derivations for 0)d(M can be performed in an analog way.

3.1. Case1, 0)l)d!M, lO

d!M

2

In the following, we regard the range 0)l((d!M)/2. The results for (d!M)/2(l)d!M can be
obtained from the ones derived here by substituting l by d!M!l. By having a closer look at the
modulation matrices C

�
and C

�
from (16)}(17) one can verify that

[C
�
]
��	���l"(!1)
[C

�
]
��l
, [C

�
]
������l"(!1)
[C

�
]
�������	�l , (18)

[C
�
]
��l��

"(!1)
��[C
�
]
��	�l , [C

�
]
��	����	�l"(!1)
��[C

�
]
�������l . (19)

The polyphase matrices in (15) are now divided into subsystems El(z) and Rl (z) that contain the columns of
the modulation matrices which are connected by the upper equations. For the analysis side we obtain

El (z)"�
c�
��l

c�
��	�l��

c�
��l��

c�
��	�l

c�
��l

c�
��	�l��

c�
��l��

c�
��	�l

� �

c�
����l

c�
����	�l��

c�
����l��

c�
����	�l

��
Gl (!z�) 0

0 G
	�l��

(!z�)

z��Gl��
(!z�) 0

0 z��G
	�l(!z�)�

"�
c�
��l

c�
��	�l

c�
��l

c�
��	�l

� �

c�
����l

c�
����	�l

� �
Gl (!z�) (!1)
G

	�l��
(!z�)

(!1)
��z��Gl��
(!z�) z��G

	�l(!z�) �
:"Gl ���

(20)
���������������������
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Fig. 3. New realization of analysis and synthesis "lter bank.

with c�
��l

"[C
�
]
��l
. Similarly, the subsystem Rl (z) of the synthesis polyphase matrix writes

Rl (z)"�
z��K

	�l (!z�) 0 K
	�l��

(!z�) 0

0 z��Kl��
(!z�) 0 Kl (!z�)�

��
c�
�������	�l 2 c�

���������	�l

c�
������l c�

��������l

c�
��	����	�l c�

����	����	�l

c�
�������l 2 c�

���������l
�

"�
z��K

	�l (!z�) (!1)
��K
	�l��

(!z�)

(!1)
z��Kl��
(!z�) Kl (!z�) �

:"Kl ���

�
c�
�������	�l c�

���������	�l

c�
�������l 2 c�

���������l �
���������������������

(21)

with c�
��l

"[C
�
]
��l
. The analysis and synthesis "lter bank now can be realized as shown in Fig. 3. The

modulation cost of this realization is reduced, because we have suppressed half the columns of the analysis and
synthesis modulation submatrices. Note, however, that some further arrangements of the rows and columns of
the new modulation matrices are needed before obtaining a form that can be realized by fast DCT. Also the
polyphase "ltering part has become more e$cient, because we only have to compute the sum of two outputs of
the analysis polyphase "lters, instead of computing the output of all four polyphase "lters explicitly.
When calculating Kl (z)Gl (z) with Kl (z) and Gl (z) from (21) and (20), respectively, substituting !z� by

z into the result and comparing the four entries of the matrix with the constraints for perfect reconstruction
(10) and (11), it can be veri"ed that the following relationship has to hold true for PR:

Kl (z)Gl (z)"
(!1)
z��
��

2M
I
�
, 0)l)d!M, lO

d!M

2
. (22)

We may state the result as a theorem.
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Theorem. Given a set of polyphase xlters satisfying the PR constraint expressed by (22) the following realization
for Gl (z) dexned in (20) and Kl (z) according to (21) always exists:

Gl (z)"
��
�
���

Dl��
(z)

��
�
���

Bl��
(z) ) Gl����

(z), Kl(z)"Kl����
(z)

�
�
����

B��l��
(z)

�
�
����

(z��l����D��l��
(z)), (23)

where j
�
can be computed from s"0.5���

���
(�l��

#1) for a "xed value of s in (22). The matrices in (23) are
called zero-delay matrices, maximum-delay matrices, and initialization matrices.

� Zero-delay matrices:

Bl��
(z)"�

0 1

1 bl��
z��l���, B��l��

(z)"�
!bl��

z��l�� 1

1 0�. (24)

� Maximum-delay matrices:

Dl��
(z)"�

dl��
z��

z��l�� 0 �, z��l����D��l��
(z)"�

0 z��

z��l�� !dl��
�. (25)

� Initialization matrices:

Gl����
(z)"�

gl��
gl��

z��gl��
z��gl�	

�, Kl����
(z)"

1

2M
)

(!1)


gl��
gl�	

!gl��
gl��
�

gl�	
z�� !gl��

!gl��
z�� gl��

�. (26)

The variables bl��
, dl��

, gl��
, gl��

, gl��
, gl�	

are real valued coe$cients and �l��
, �l��

non-negative integer
values.

The names of the matrices as well as their forms are adopted from [12}14]. However, we have newly
introduced the variables �l��

and �l��
that allow the factorization of non-contiguous prototype impulse

responses which was not the case in [12}14] where they were forced to be �l��
"�l��

"1. The zero-delay
matrices increase the "lter length but not the delay. Thus, when creating new polyphase matrices G���l (z) and
K���l (z) from given ones Gl (z) and Kl (z) according to

G���l (z)"Bl��
(z) ) Gl(z), K���l (z)"Kl(z) ) B��l��

(z), (27)

where Gl(z) and Kl(z) satisfy (22), the polyphase components in the new polyphase matrices are longer than
the original ones, but the delay s on right-hand side of (22) does not change: K���l (z) ) G���l (z)"Kl (z) ) Gl (z).
Introducing maximum delay matrices according to

G���l (z)"Dl��
(z) ) Gl (z), K���l (z)"Kl (z) ) z��l����D��l��

(z), (28)

not only increases the length of the polyphase "lters but also the delay on the right-hand side of (22) resulting
in

K���l (z)G���l (z)"z��l����Kl(z)Gl (z)"
(!1)
z��
����l��

2M
I
�
. (29)

3.1.1. Factorization of Gl(z) and Kl (z) into zero-delay, maximum-delay, and initialization matrices

� Starting point: We start with polyphase matrices Gl(z) and Kl (z) satisfying (22). Thus, the polyphase
components in the matrices as described by (20) and (21), respectively, belong to PR analysis and synthesis
prototype "lters H(z) and F(z), respectively, designed for a cosine-modulated "lter bank with overall
system delay D"2sM#d, where s and d have been "xed in the design process with M)d(2M.
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For reasons of conciseness, we just consider the case where al"0 in (10) since all other choices for
al simply lead to a zero padding. The analysis and synthesis polyphase components Gl (z) and Kl (z),
l"0,2,2M!1 then are identical up to a scalar factor.
For the following derivation, we de"ne two counting variables i and j which are initialized as i"j"1

and temporary matrices V

�l

(z) and V
��l

(z) which at the end of the derivation will contain the factor-
izations of Gl (z) and Kl (z), respectively. They are initialized as V


�l
(z)"V

��l
(z)"I

�
. Furthermore, we call

s
�
"s the starting value of the delay parameter s.

� Step 1: Factorization of Gl (z) and Kl(z) into maximum-delay matrices
If the delay parameter s

�
satis"es s

�
'0, Gl(z) and Kl(z) can be factorized as

Gl (z)"D
�
(z)G

	

(z), Kl (z)"K

	

(z)D��

�
(z) ) z�����, (30)

where Gl (z) is as in (20), Kl (z) is as in (21) and D
�
(z) and D��

�
(z) ) z����� are as in (25). Note that for reasons

of conciseness, we have dropped the subscript l for the maximum delay matrices. G
	

(z) and K

	

(z)

correspond to polyphase submatrices of shorter polyphase "lters and are of temporary use during the
factorization algorithm. They can be calculated as

G
	

(z)"D��

�
(z)Gl (z), K

	

(z)"Kl(z)D�

(z) ) z���� (31)

and write

G
	

(z)"�

z��[Gl (z)]���
z��[Gl(z)]���

z[Gl(z)]���
!d

�
z����[Gl(z)]���

z[Gl (z)]���
!d

�
z����[Gl (z)]���

�, (32)

K
	

(z)"�

d
�
z����[Kl(z)]���

#z[Kl (z)]���
z��[Kl (z)]���

d
�
z����[Kl(z)]���

#z[Kl (z)]���
z��[Kl (z)]���

�. (33)

Let us denote by g��� (n) and k���(n) the inverse z-transforms of [Gl (z)]��� and [Kl (z)]��� , respectively, with
�,�"0,1. The matrices G

	

(z) and K

	

(z) have to be causal, which is satis"ed if �

�
and d

�
are chosen in the

following way:

g
���

(n)"g
���

(n)"k
���

(n)"k
���

(n)"0 ∀n"0,1,2,�
�
!1, (34)

g
���

(�
�
)O0, g

���
(�

�
)O0, k

���
(�

�
)O0, k

���
(�

�
)O0, (35)

d
�
"

g
���

(0)

g
���

(�
�
)
"

g
���

(0)

g
���

(�
�
)
"!

k
���

(0)

k
���

(�
�
)
"!

k
���

(0)

k
���

(�
�
)
, �

�
)2s

�
!1. (36)

In the appendix we show that all parts of the upper equalities hold true if the prototypes satisfy the PR
constraints given in (10) and (11), which connects the PR constraints on the polyphase "lters as given in [1]
with the coe$cients of the maximum-delay matrices introduced in [14]. The shorter polyphase matrices
G	
l (z) and K	
l (z) satisfy

K	
l (z)G	
l (z)"(!1)

z����
�����

2M
(37)

which means that their entries can again be interpreted as polyphase "lters satisfying the PR constraints
but now for a shorter delay s

�
!(�

�
#1)/2 which always is an integer value since �

�
can only take odd

values. We now set

V

�l

(z) :"D
�
(z)V


�l
(z), V

��l
(z) :"V

��l
(z)z�����D��

�
(z), (38)
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Gl (z) :"G
	

(z), Kl(z) :"K

	

(z), (39)

s
�
:"s

�
!(�

�
#1)/2, j :"j#1 (40)

and restart from the top of Step 1 as long as s
�
'0.

� Step 2: Once we arrive at s
�
"0 we cannot reduce the delay any further. We now set j

�
"j!1. The

matrices V

�l

(z) and V
��l

(z) by now write

V

�l
(z)"

��
�
���

D
�
(z), V

��l
(z)"

�
�
����

(D��
�
(z)z�����) (41)

and the product Kl (z) ) Gl (z) is given by

Kl (z) ) Gl(z)"
(!1)
z��

2M
I
�
. (42)

� Step 3: Factorization of Gl (z) and Kl(z) into zero-delay matrices
As long as Gl (z) and Kl (z) have more than one non-zero entry (which for [Gl(z)]��� are g

���
(0), g

���
(0),

g
���

(1), g
���

(1) and for [Kl(z)]��� k
���

(1) k
���

(0), k
���

(1) k
���

(0)), we can still factor Gl (z) and Kl(z) into
zero-delay matrices and thus reduce the "lter length (otherwise we directly proceed to Step 4).
We perform in the same way as before with the only di!erence that we now split zero-delay matrices

B
�
(z) from Gl (z) and Kl (z). The index i is the counting variable de"ned at the starting point. Again, we omit

the subscript l for the zero-delay matrices. Gl (z) and Kl (z) are factorized as

Gl (z)"B
�
(z)G

	

(z), Kl(z)"K

	

(z)B��

�
(z), (43)

G
	

(z) and K

	

(z) can be written as

G
	

(z)"�

[Gl(z)]���
!b

�
z���[Gl (z)]���

[Gl(z)]���
!b

�
z���[Gl (z)]���

[Gl(z)]���
[Gl(z)]���

�, (44)

K
	

(z)"�

[Kl (z)]���
[Kl(z)]���

#b
�
z���[Kl(z)]���

[Kl (z)]���
[Kl(z)]���

#b
�
z���[Kl(z)]���

�. (45)

Since our aim in this step is to shorten the length of the entries in Gl(z) and Kl (z), the matrices G
	

(z) and

K
	

(z) must not contain longer entries than Gl (z) and Kl (z). Denoting byN

����� the length of [Gl (z)]��� and by
N

����� the length of [Kl(z)]��� , we obtain for the parameters �
�
and b

�
the following solution:

�
�
"N

�����
!N

�����
"N

�����
!N

�����
"N

�����
!N

�����
"N

�����
!N

�����
"N

�����
!N

�����
, (46)

b
�
"

g
���

(N
�����

!1)

g
���

(N
�����

!1)
"

g
���

(N
�����

!1)

g
���

(N
�����

!1)
"!

k
���

(N
�����

!1)

k
���

(N
�����

!1)
"!

k
���

(N
�����

!1)

k
���

(N
�����

!1)
. (47)

We show in the appendix that all parts of the upper two equations are ful"lled for PR prototypes satisfying
the constraints from [1] given in (10) and (11). Thus, (47) establishes the relationship between the direct
formulation of the PR constraints on the polyphase "lters from [1] and the coe$cients of the zero-delay
matrices from [14]. Note that we only get a causal solution for �

�
*0. If it turns out that �

�
(0 in (46) we

choose b
�
"0 and thus B

�
(z)"J

�
, which means that we just #ip the position of the entries in Gl (z) and Kl (z).

Then, in the next iteration we obtain a positive �
�
. Finally, we can set

V

�l

(z)"B
�
(z)V


�l
(z), V

��l
(z)"V

��l
(z)B��

�
(z), (48)

Gl (z)"G
	

(z), Kl(z)"K

	

(z), i"i#1. (49)
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While the new matrices Gl (z) and Kl (z) still have more than one non-zero entry at each position, we can
still continue factorizing the matrices into zero-delay matrices and restart from the top of Step 3.

� Step 4: The polyphase matrices Gl (z) and Kl (z) now have one of the following forms:

Gl (z)"�
g
���

(1)z�� g
���

(1)z��

g
���

(0) g
���

(0) �, Kl(z)"�
k
���

(1)z�� k
���

(0)

k
���

(1)z�� k
���

(0)� (50)

or

Gl (z)"�
g
���

(0) g
���

(0)

g
���

(1)z�� g
���

(1)z���, Kl(z)"�
k
���

(0) k
���

(1)z��

k
���

(0) k
���

(1)z���. (51)

The matrices in (51) already have the form of the initialization matrices given in (26). If Step 3 ends with the
matrices i (50) we introduce, in an additional step, a counter identity matrix to bring them in the desired
form (51), i.e. we perform

V

�l

(z) :"J
�
V

�l

(z), V
��l

(z) :"V
��l
(z)J

�
, (52)

Gl (z) :"Gl (z)J�
, Kl(z) :"J

�
Kl (z), i :"i#1. (53)

Setting i
�
"(i!1), the matrices V


�l
(z) and V

��l
(z) then can be written as

V

�l

(z)"
���
�
���

B
�
(z)

��
�
���

D
�
(z), V

��l
(z)"

�
�
����

D��
�
(z)z����

�
�

�����

B��
�
(z). (54)

Thus, they contain the desired factorization. In a terminating step we set the initialization matrices to

Gl����
(z)"Gl(z), Kl����

(z)"Kl (z). (55)

Note. We have derived the factorization for a certain sequence of zero-delay and maximum-delay matrices.
However, a factorization is guaranteed for any arbitrary order of zero-delay and maximum-delay matrices.

3.2. Case 2, d!M(l(2M

The derivation for this case is very similar to the one described above and will therefore only be sketched.
Again, we just regard the range d!M(l)d/2, because the other half can easily be obtained when
substituting l by d!M!l.
The modulation matrices C

�
and C

�
here satisfy

[C
�
]
����	�l"(!1)
��[C

�
]
��l
, [C

�
]
������l"(!1)
[C

�
]
�������	�l , (56)

[C
�
]
��l��

"(!1)
��[C
�
]
��	�l , [C

�
]
������	�l"(!1)
[C

�
]
�������l . (57)

We see that always two columns of these matrices are identical up to the sign, so that the submatrices of the
analysis and synthesis polyphase matrices can be written as

El (z)"�
c�
��l

c�
��	�l

c�
��l

c�
��	�l

� �

c�
����l

c�
����	�l

�� Gl (!z�) (!1)
��z��G
��	�l (!z�)

(!1)
��z��Gl��
(!z�) G

	�l (!z�) �
:"Gl ���

(58)

�����������������������
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and

Rl (z)"�
K

	�l (!z�) (!1)
z��K
��	�l (!z�)

(!1)
z��Kl��
(!z�) Kl (!z�) �

:"Kl ���

�
c�
�������	�l c�

���������	�l

c�
�������l 2 c�

���������l �.
���������������������

(59)

The matrices Gl (z) and Kl (z) are slightly di!erent from the ones in Case 1, because here the delays z�� are
placed on the anti-diagonal. Furthermore, the signs of the terms on the anti-diagonal are equal. Comparing
the result for the product Kl (z)Gl(z) with the PR constraints (10) and (12), we obtain the following
relationship:

Kl (z)Gl (z)"
(!z��)


2M
I
�
, d!M(l(2M. (60)

The factorization into maximum-delay and zero-delay matrices is mostly the same as in Case 1 using the
same argumentation for the choice of �

�
, b

�
, �

�
, and d

�
. Due to the di!erent structure of Gl (z) and Kl (z) also

the initializationmatricesGl����
(z) and Kl����

(z) di!er from the ones in Case 1. In the most general formGl����
(z)

and its inverse can be written as

Gl����
(z)"�

gl��
z��gl��

z��gl��
gl�	

�, G��l����
(z)"

1

gl��
gl�	

!z��gl��
gl��
�

gl�	
!gl��

z��

!gl��
z�� gl��

�, (61)

Kl����
(z) is a delayed version of G��l����

(z), scaled by (!1)
/2M. Since we restrict ourselves to the case where
all "lters in Kl����

(z) are causal and FIR, we see from (61) that at least one of the coe$cients in Gl����
(z) has to

be zero. Thus, we obtain the following solutions for Kl����
(z).

� If gl��
"0 or gl�	

"0:

Kl����
(z)"

(!1)
��

2Mgl��
gl��
�

gl�	
!gl��

z��

!gl��
z�� gl��

�, Kl����
(z)Gl����

(z)"(!1)
z��I
�
. (62)

� If gl��
"0 or gl��

"0:

Kl����
(z)"

(!1)


2Mgl��
gl�	
�

gl�	
!gl��

z��

!gl��
z�� g

�
�, Kl����

(z)Gl����
(z)"(!1)
I

�
. (63)

For the upper solution we have to stop factorizing maximum-delay matrices when s"1 and keep the last
delay for the initialization matrices.
The case l"d/2 with d being even needs special consideration. In this case, the matricesG

	
�
(z) and K

	
�
(z)

can be written as

G
	
�
(z)"�

G
	
�
(!z�) (!1)
��z��G

	
���
(!z�)

(!1)
��z��G
	
���

(!z�) G
	
�
(!z�) �, (64)

K
	
�
(z)"�

K
	
�
(!z�) (!1)
z��K

	
���
(!z�)

(!1)
z��K
	
���

(!z�) K
	
�
(!z�) �. (65)
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Both matrices are Toeplitz and the only possible cascades that keep this structure using the matrices Gl����
(z)

and Kl����
(z) in (61)}(63) and the zero-delay and maximum-delay matrices in (24) and (25) are given by

Gl����
(z)"�

0 gl��
z��

gl��
z�� 0 �, Kl����

(z)"
(!1)
��

2Mg�l�� �
0 !gl��

z��

!gl��
z�� 0 �,

Dl��
(z)"�

0 z��

z��
�� 0 � (66)

and

Gl����
(z)"gl��

I
�
, Kl����

(z)"
(!1)


2Mgl��

I
�
, Dl��

(z)"�
0 z��

z��
�	 0 �. (67)

3.3. Case 3, l"(d!M)/2

For l"(d!M)/2, the PR constraints, as given in (14), do not have the same form as in the other cases
discussed above. Here two polyphase components can be chosen arbitrarily. This is due to the fact that the
output of these analysis polyphase components will be multiplied with zero in the transform and the
synthesis polyphase component is fed with a subband signal which is identically zero. Thus, these two
polyphase "lters do not have any in#uence in the "lter bank and can be omitted in the realization, resulting in
the lowest implementation cost. The remaining two "lters can only have one non-zero coe$cient each.

3.4. Notation for the special case D"2sM#2M!1

In this special case, the PR constraints for all polyphase components can be expressed by (10) and (11).
Using the modi"cations discussed in this section, the analysis and synthesis polyphase matrices E(z) and R(z)
can be written as

E(z)"CI
�
G(z), R(z)"K(z)CI �

�
(68)

with

[CI
�
]
��l

"[C
�
]
��l
, [CI

�
]
������l"[C

�
]
�������l , 0)k(M, 0)l(M/2, (69)

[CI
�
]
��l

"[C
�
]
��l
, [CI

�
]
������l"[C

�
]
�������l , 0)k(M, 0)l(M/2, (70)

G(z)"diag([G
�
(!z�),2,G

�
���
(!z�), z��G

	�
�
(!z�),2, z��G

����
(!z�)])

#(!1)
J
�

)diag([!z��G
�
(!z�),2,!z��G

	�
���
(!z�),G

�
�
(!z�),2,G

���
(!z�)]) (71)

K(z)"diag([z��K
����

(!z�),2, z��K
	�
�

(!z�),K
�
���

(!z�),2,K
�
(!z�)])

#(!1)
J
�

) diag([K
�
(!z�),2,K

	�
���
(!z�),!K

�
�
(!z�),2,!K

���
(!z�)]). (72)

We have CI
�
"(!1)
CI

�
and CI ��

�
�2M"CI �

�
. However, similar results can be obtained for arbitrary delays

when taking into consideration the results obtained from (12) and (14).

4. Design of identical analysis and synthesis 5lters

We started with a general approach where two di!erent prototypes were considered: one for the analysis
and one for the synthesis side. However, from (10) we have seen that both prototypes are highly related to
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each other in the case of a PR "lter bank. In fact, the prototypes' polyphase components have to be equal up
to a scalar factor and a delay. Thus, the design freedom for obtaining di!erent analysis and synthesis "lters
which both have the desired frequency responses is relatively small. Therefore, one often only considers the
case where the analysis and synthesis prototypes are identical:

Kl (z)"Gl(z), l"0,2,2M!1. (73)

Then, for Case 1, (11) can be expressed by the analysis polyphase "lters only:

z��Gl (!z�)G
	�l(!z�)#z��G

	�l��
(!z�)Gl��

(!z�)"det(Gl(z))"
(!z��)
z��

2M
. (74)

Realizing Gl (z) as in (23), we may write det(Gl(z)) as

det(Gl(z))"
��
�
���

det(Dl��
(z)) )

��
�
���

det(Bl��
(z)) ) det(Gl����

(z)). (75)

Using the properties det(Bl��
(z))"1 and det(Dl��

(z))"z��l����, we obtain

det(Gl(z))"
��
�
���

(z��l��!1) det(Gl����
(z)) r"

z��(!z��)


2M
. (76)

From �
�
(�

�
#1)"2s we "nally get

det(Gl����
(z))"z��(gl��

gl�	
!gl��

gl��
) r" (!1)


z��

2M
. (77)

The relationship (77) is satis"ed with

Gl����
(z)"

(!1)


2M �
1 0

g	 l��z�� z����
1 g	 l��
0 1 ��

1 0

g	 l�� 1�. (78)

In this case, we have the advantage that Kl����
(z) contains the same coe$cients as Gl����

(z). It writes

Kl����
(z)"

1

2M�
1 0

!g	 l�� 1��
1 !g	 l��
0 1 ��

z�� 0

!g	 l��z�� 1�. (79)

5. Biorthogonal cosine-modulated 5lter banks without DC leakage

When processing signals with a DC component (e.g. images), it is important to use "lter banks without DC
leakage, meaning that the DC component of the input signal only a!ects the lowpass subband signal.
Otherwise, artifacts such as the checkerboard e!ect may occur when quantizing the subband signals. Fig. 4
demonstrates this phenomenon for a gray scale image containing only a DC component. The input signal is
split into M"8 subbands using two di!erent sets of analysis "lters (with and without DC leakage, see
Section 7 for the prototype "lters). Then, all subbands apart from the lowpass band, where we expect the
signal to be located, are suppressed and the image is reconstructed, resulting once in an image with visible
checkerboard artifacts and once in a perfectly reconstructed single color image.
A "lter bank is free of DC leakage if all analysis "lters apart from the lowpass "lter have at least one zero at

z"1. For the biorthogonal cosine-modulated "lter bank this means that H
�
(1)"0 for k"1,2,M!1,

while the lowpass "lter has to satisfy H
�
(1)"1.
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Fig. 4. Original image and reconstructed images using "lter banks with and without DC leakage.

Let us consider the vector h(z)"[H
�
(z),2,H

���
(z)]�, which can be obtained from the analysis polyphase

matrix as

h(z)"E(z�)[1, z��,2, z������]�. (80)

We are interested in the DC behavior (z"1), for which the upper equation can be written as

[1,0,2,0]�"E(z�)[1,1,2,1]�

���

. (81)

For the reason of conciseness we only consider the case D"2sM#2M!1. The analysis polyphase matrix
has the form (68). Thus, we get the following linear system of equations:

CI ��
�
[1,0,2,0]�"G(z)[1,1,2,1]�


���
. (82)

Splitting G(z) into its submatrices Gl(z), l"0,2,M/2!1, and taking into consideration that Gl(z) can be
realized by the cascade (23), Eq. (82) yields

�
[CI ��

�
]l��

[CI ��
�

]
	�l��

�"
��
�
���
�
dl��

1

1 0�
��
�
���
�
0 1

1 bl��
� )�

gl��
gl��

gl��
gl�	
��

1

1� (83)

and thus

�
gl��

#gl��
gl��

#gl�	
�"

�
�
����
�

!bl��
1

1 0�
�
�
����

�
0 1

1 !dl��
� )�

[CI ��
�
]l��

[CI ��
�
]
�����l��

�. (84)

We see that designing "lter banks without DC leakage is possible by imposing constraint (84) on Gl����
(z).

This only slightly reduces the parameter space for the "lter optimization.

6. Implementation cost

In this section, we compare the implementation cost for the direct implementation of the polyphase
components to the cost for an implementation by cascading zero-delay and maximum-delay matrices. We
start with looking at the cost for the direct polyphase "lter implementation as shown in Fig. 2, considering an
overall system delay of the form D"2sM#2M!1. In this case we need 2mM multiplications and
2(m!1)M additions for a prototype "lter of length N"2mM. When realizing the polyphase "lters with
zero-delay and maximum-delay matrices, we need M/2 matrices Gl (z) in parallel for l"0,2,M/2!1. We
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here assume that the prototype impulse response is contiguous, i.e. that all �
�
and �

�
have been chosen equal

to 1 which is the worst case in terms of implementation cost. The implementation cost for each Gl then is as
follows: The "rst step of the iteration, i.e. the product of Gl����

(z) from (26) with the input samples needs four
multiplications and two additions. In order to obtain polyphase "lters of length m, the cascade contains
j
�
#i

�
"2(m!1) zero-delay and maximum-delay matrices that each can be realized with 1 multiplication

and 1 addition. Thus, the implementation cost for the "ltering part using zero-delay and maximum-delay
matrices is

(4#2m!2)M/2"(m#1)M multiplications, (85)

(2#2m!2)M/2"mM addition (86)

which is approximately half the implementation cost of the original polyphase "ltering. Since the same
matrix coe$cients are found in the analysis and in the synthesis cascade, a coe$cient quantization does not
change the inherent PR property of the realization. Thus, we have the freedom to optimize the coe$cients
not only with regard to the frequency response, but also with regard to an e$cient hardware (e.g. VLSI)
implementation.

7. Prototype 5lter design using zero-delay and maximum-delay matrices

In this section we show, how the polyphase "lter implementation using a cascade of zero-delay and
maximum-delay matrices can be applied to the design of low-delay prototype "lters as well as prototype
"lters without any DC leakage.

7.1. Analysis xlters without DC leakage

In the "rst example we demonstrate how to apply the new "lter implementation in order to achieve
a cosine-modulated "lter banks without DC leakage. For the image compression example in Fig. 4 we used
a PR linear-phase prototype "lter that was designed using the quadratic-constrained least-squares (QCSL)
algorithm from [7] for the "lter bank with DC leakage. The number of subbands is M"8, the "lter length is
N"32 and the same prototype "lter is applied on the analysis and synthesis sides. Since the prototype is
linear phase, the overall system delay writes D"N!1"31. The frequency response of the cosine-
modulated "lter bank derived from this prototype is shown in the left-hand side of Fig. 5. To obtain a cosine-
modulated "lter bank without DC leakage, we take this prototype "lter as a starting point. Since the delay is
D"31"2M#15, we get s"1 and d"15 and have to consider the PR constraints (10) and (11), which are
in this case valid for all l"0,2,2M!1. This implies that we have to use the factorization into zero-delay
and maximum-delay matrices as given in (23), calculating its coe$cients according to (36), (47), and (55) from
the given polyphase "lters. The factorization can be written as

Gl (z)"Dl��
(z) ) J

�
) Bl��

(z) ) J
�

) Gl����
(z) (87)

with coe$cients given in Table 1. Then, changing the initialization matrices Gl����
(z) from their general form

in such a way that they satisfy (84) and keeping all the other matrices identical we obtain the analysis "lters as
shown in the right-hand side of Fig. 5 and the coe$cients for the initialization matrices in Table 1. It can be
easily seen that all analysis "lters but the lowpass "lter have a zero at frequency zero. Apart from this, the
frequency responses are very similar to the starting point with DC leakage. Thus, the frequency selectivity
does not worsen when imposing the zeros at frequency zero.

1012 T. Karp et al. / Signal Processing 81 (2001) 997}1016



Fig. 5. Prototype "lters with DC leakage (left) and without DC leakage (right); M"8, N"32, D"31.

Table 1
Factorization of prototype into zero-delay, maximum-delay, and initialization matrices for prototypes with and without DC leakage

Both Both DC leakage No DC leakage
l �l��

dl��
�l��

bl��
gl��

gl��
gl��

gl�	
gl��

gl��
gl��

gl�	

0 1 !0.2499 1 0.2352 !0.2421 0.0881 0.0830 0.2279 !0.2427 0.0867 0.0816 0.2284
1 1 !0.1601 1 0.1561 !0.2261 0.1138 0.1110 0.2205 !0.2276 0.1109 0.1081 0.2219
2 1 !0.0882 1 0.0875 !0.2084 0.1398 0.1387 0.2068 !0.2101 0.1373 0.1362 0.2085
3 1 !0.0280 1 0.0280 !0.1880 0.1649 0.1648 0.1879 !0.1888 0.1640 0.1639 0.1887

7.2. Low-delay prototype xlters

We now give an example for the design of low-delay prototype "lters. Again, we start from a PR
linear-phase prototype "lter (M"8, N"16, D"15) designed with the QCLS algorithm and design
prototype "lters of greater length, resulting in the same system delay by adding successively zero-delay
matrices to the factorization of our starting point prototype and using non-linear optimization for the
calculation of the coe$cients. The frequency responses of the resulting "lters of lengthsN"32 and 48 as well
as the starting point with N"16 are depicted in Fig. 6. Increasing the "lter length signi"cantly improves the
stopband attenuation while keeping the system delay constant.

8. Conclusions

In this paper, we have connected two di!erent approaches for the design of biorthogonal cosine-
modulated "lter banks with perfect reconstruction. Based on the PR constraints we have shown how the
polyphase "lters can be realized using zero-delay and maximum-delay matrices. Especially, we have shown
that all PR prototypes are covered by the new approach, which was not the case for the method in [12]. The
proposed implementation structure has the advantage that it automatically guarantees PR even after
coe$cient quantization, so that it is suitable for VLSI designs. Furthermore, the implementation cost is
nearly halved, when compared to a direct realization of the polyphase "lters. We can design di!erent
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Fig. 6. Low-delay prototype "lters of lengths N"16, 32, 48 for a biorthogonal cosine-modulated "lter bank with system delay D"15
in all cases.

prototype "lters for the analysis and synthesis bank, and we can also include restrictions in order to obtain
one common prototype. Using a modi"ed set of constraints for the "rst matrix, we can also design and
implement biorthogonal cosine-modulated "lter banks without DC leakage in an e$cient way.

Appendix A

A.1. Calculation of maximum-delay matrices

We here show that (34)}(36) hold true for every set of PR prototype "lters satisfying (10) and (11).
Substituting (20) and (21) into (32) and (33), respectively, we obtain

G
	

(z)"�

z����(!1)
��Gl��
(!z�) z����G

	�l (!z�)

zGl (!z�)!d
�
z�� (!1)
��Gl��

(!z�) (!1)
zG
	�l��

(!z�)!d
�
z��G

	�l(!z�)�, (A.1)

K
	

(z)"�

d
�
z��K

	�l(!z�)#(!1)
��zK
	�l��

(!z�) z����K
	�l(!z�)

d
�
z�� (!1)
Kl��

(!z�)#zKl (!z�) z����(!1)
Kl��
(!z�)�. (A.2)

Eqs. (34)}(36) can be rewritten as

gl��
(n)"g

	�l (n)"k
	�l (n)"kl��

(n)"0 ∀n with n*0 and n)(�
�
!3)/2, (A.3)

gl��
((�

�
!1)/2)O0, g

	�l((��
!1)/2)O0, k
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k((�

�
!1)/2)O0, (A.4)
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�
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��gl��
((�

�
!1)/2)

"

(!1)
g
	�l��

(0)

g
	�l ((��!1)/2)

"
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(!1)
��kl��
((�

�
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"

(!1)
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	�l��

(0)

k
	�l ((��!1)/2)

. (A.5)
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Eqs. (A.3) and (A.4) can be seen as equations to determine a value of �
�
that ensures that no division by zero

occurs in (A.5). The structures of (A.1) and (A.2) show that �
�
needs to be odd. The value of �

�
is to be chosen

to shorten the delay as much as possible, and for contiguous prototypes �
�
"1 provides the solution. If

a prototype is non-contiguous, one needs to evaluate (A.3) and (A.4) in order to "nd an appropriate �
�
. It

remains to show that (A.5) is satis"ed by all PR prototypes. For this we look at the time-domain formulation
of (11):

gl(m)*k	�l (m)#g
��l (m)*k

	�l��
(m)"

1

2M
�(m!s) 0)l)d!M, lO

d!M

2
. (A.6)

It can be veri"ed that arbitrary parts of the equalities in (A.5) satisfy (A.6) with m"(�
�
!1)/2Os. For the

most common case of contiguous prototype "lters where �
�
"1 the result is

gl(0)k	�l(0)#gl��
(0)k

	�l��
(0)"0, kl (0)g	�l (0)#kl��

(0)g
	�l��

(0)"0, (A.7)

gl(0)kl��
(0)!gl��

(0)kl(0)"0, g
	�l (0)k	�l��

(0)!g
	�l��

(0)k
	�l (0)"0. (A.8)

Note that no other constraints than those in (A.6) are imposed by (A.5). Thus, also (36) holds true, and it is
clear that the factorization can be performed for every PR prototype satisfying (10) and (11) which were
orginally derived in [1].

A.2. Calculation of zero-delay matrices

Here we show that (46)}(47) hold true for every set of PR prototype "lters satisfying (10) and (11).
Substituting (20) and (21) into (44) and (45), respectively, we obtain

G
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�
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(!z�) !b
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The delay �
�
plays the same role as �

�
in the above derivation, and from the form of (A.9) and (A.10) it is

evident that �
�
will always have an odd value. Denoting by Nl , Nl��

, N
	�l , and N

	�l��
the lengths of the

polyphase "lters Gl(z), Gl��
(z), G

	�l(z), and G
	�l��

(z), Eq. (47) can be written as

b
�
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��gl��
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"
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��kl��
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. (A.12)

Using the fact that the polyphase "lters belong to PR prototypes, one can derive from (A.6) that the following
relationship for lengths of the polyphase "lter holds true:

Nl#N
	�l"Nl��

#N
	�l��

� Nl��
!Nl"N

	�l!N
	�l��

. (A.13)
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A relationship equivalent to (46), expressed by the polyphase components lengths, writes

�
�
"2(Nl��

!Nl )#1"2(N
	�l!N

	�l��
)#1. (A.14)

The constraints imposed by (A.11) on the polyphase "lters are no other than those imposed by the PR
constraint (A.6) and are thus automatically satis"ed for every PR prototype.
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