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ABSTRACT

This paper proposes a new technique for blind source separation
(BSS) in the subband domain using an extended lapped transform
(ELT) decomposition for nonstationary, convolutively mixed sig-
nals. As identified in [1] the motivation for subband-based BSS
is the drawback of frequency domain BSS when dealing with sep-
arating mixed speech signals over a few seconds resulting with
few samples in individual frequency bins leading to poor sepa-
ration performance. In the proposed approach mixed signals are
decomposed into subband components by an ELT and within each
subband a time domain Newton BSS algorithm is employed based
on the nonstationarity property of the input signals and the joint
diagonalization of output correlation matrices with time varying
second order statistics (SOS). This subband version is compared
to a fullband version using the same BSS algorithm.

1. INTRODUCTION

Blind source separation (BSS) is a problem that estimates unob-
served source signals using only information contained in mixtures
of these source signals. Neither signal sources nor the mixing sys-
tem are known a priori. With the advent of more powerful DSP
chipsets, BSS has found useful purpose in speech enhancement
applications including speech recognition, hearing aids and hands
free telephony.

Where signal sources are speech and the observed signals are
the mixture of those sources in a reverberant environment, to esti-
mate the underlying sources from the resulting observed signals
one needs to estimate unmixing FIR filters of several thousand
taps. A commonly used approach to solve such problems with
a high number of dimensions is to transform the problem to the
frequency domain using a discrete Fourier block transform [2, 3].
However the problem with this is that when a long frame is used
to estimate a long unmixing filter to cover realistic reverberation,
after transforming to the frequency domain the number of samples
in each frequency bin becomes small, and separation performance
is degraded [1]. In addition, with simple blockbased DFTs the out-
puts of the system may exhibit click artifacts at block boundaries.
This may be alleviated by using overlapping blocks with the sub-
band synthesis filters based on lapped transform basis functions
[4].

By performing subband decomposition on the mixed signals
before applying the time domain BSS algorithm, we are reducing
a problem that in the fullband has a high number of parameters, to
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a set of BSS problems in the respective subbands with fewer un-
knowns in each subband. We use a uniform FIR filterbank and also
utilize oversampling to avoid aliasing influence caused by separa-
tion processing within subbands.

The subband-based BSS approach, using the fast Newton-type
algorithm from [5] within each subband, is compared with the
fullband-based BSS approach. The algorithm in [5] is a modifi-
cation of the method in [6] and is applicable to convolutive mix-
ing. In this paper, we restrict ourselves to real-valued signals and
systems. With all closed form expressions of first and second or-
der information, this fast method converges much better than the
otherwise used gradient-type methods.

The paper is organized as follows. Section 2 gives a brief
description of modelling BSS in a convolutive environment and
also defines the basic BSS algorithm used to perform separation
in the various subbands. In Section 3 the general framework for
subband decomposition is investigated with a direct form imple-
mentation. Factors such as the design of analysis and synthesis
stages of the filterbank as well as the oversampling factor will be
discussed. Section 4 looks at the integration of the time domain
Newton BSS algorithm from [5] performed within all respective
subbands of the mixed signals. Section 5 provides the simulation
results focusing on a comparison between the convergence behav-
ior in the fullband of the BSS method and the proposed subband
method in this paper. Real filter mixing responses are used and
these are measured from a typical reverberant office environment
with speech segments taken from the TIMIT corpus of speech used
as the input sources. Finally, a conclusion is provided in Section 6.

The following notations are used in this paper. Vectors and
matrices are printed in boldface. Matrix and vector transpose
are denoted by (-)”. E(-) means the expectation operation, and
vec(+) stacks the columns of a matrix to a column vector. || - ||¢
is the Frobenius norm of a matrix. With a = diag(A) we ob-
tain a vector whose elements are the diagonal elements of A
and diag(a) is a square diagonal matrix which contains the el-
ements of a. ddiag(A) is a diagonal matrix where its diago-
nal elements are the same as the diagonal elements of A and
of f(A) £ A — ddiag(A). 1nxn~ isan N x N matrix of ones
and Iy is the N x N identity matrix.

2. CONVOLUTIVE BSS IN THE TIME DOMAIN
Suppose we have N discrete time sources

s(t) = [s1(t), ..., sn ()], (1)
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Fig. 1. Fullband TITO BSS system

where we assume that the individual sources are independent of
each other. These sources are mixed in a reverberant environment
using a convolutive model providing M sensor or observed sig-
nals:

x(t) = [z1(t), ..., xae (1)) ®))

If H(t) is an M x N mixing matrix with its element h;; (¢) being
the impulse response from jth source signal to ith measurement
then assuming the multiple input multiple output (MIMO) mixing
channels can be modelled as FIR filters with length P, the mixed
signals can be written as:

H(7)s(t — 7). 3)

The M observed signals x(t) are coupled to the N reconstructed
signals §(¢) via the demixing system. The demixing system has
a similar structure to the mixing system. It contains N x M FIR
filters of length @Q,where @ > P. The demixing system can also
be expressed as an N X M matrix W (), with its element w;; (¢)
being the impulse response from jth measurement to ith output.
The reconstructed signal can be obtained as:

o
-

5(t) =

T

W(r)x(t —7) @

where 8(t) = [31(t),...,4n5(t)]T. For the case of N = M = 2
(the two input two output (TITO) case) the mixing and unmixing
system are shown in Fig. 1.

Equation (4) can be written as the following matrix form

§(n) = WX(n) )
where Wis a (N x QM) matrix given by
and X(n) is a (QM x 1) vector defined as
x(n)
x(n —1)
X(n) = : . @)

x(n — (Q — 1))

Correlation matrices for the recovered sources, at time frame
k, for all necessary time lags 7 can be obtained as

Risn(1) = WE{X (k)X (k 4+ 7)}W7T
(8
= WRXX,k(T)WT.

Considering the correlation matrices with all different time lags we
obtain the following cost function:

Tmaz K

72 Y S BlloffOVRxa k(W) )

T=—Tmin k=1

The values (3, are positive weighting normalization factors defined
as:

Tmax K
Be=( > D IRxar(®)lz)" (10)
T=—Tmin k=1

Each value of k represents a different time window frame where
the SOS are considered stationary over that particular time frame.
In adjacent non-overlapping time frames & and k + 1, the SOS are
changing due to the nonstationarity assumption. To solve for the
unknown demixing system we must solve a nonlinear constrained
optimization problem with NQ M unknowns:
Wopt = argmin J1 (W)
w an
s/t ||ddiagOWWT — IN)H? =0.

Here we use a constraint implemented as a penalty term in the cost
function with a fixed « to prevent the trivial solution and we em-
ploy the Newton method using the closed form analytical first and
second order expressions given in Table 1. Rxx 1 (7) is denoted
as R y ;. The Newton method from [5] using weighted penalty
terms is summarized in Table 2. The closed form expression Ho
is a new addition to [5]. The matrices Py, Paiag, and P,(J]:C’m
in Table 1 are mainly defined in accordance with [6]. P, and

P iy are given by
P,s; = diag(vec(off(1nxn))),

Paiqg = diag(vec(In)).

The matrix PS,Ieng is the permutation matrix defined by

PE) vec(WT) = vec(W)
for N x L matrices W. Note that for N # L the matrix Py
is, in general, not self-inverse like the one that occurs is [6].

3. SUBBAND MODEL

There are three stages to the model. A subband analysis stage
consisting of a uniform bank of FIR filters, the subband process-
ing stage which performs the separation in the respective subband,
and a synthesis stage which is used to reconstruct the separated
subband signals back into their fullband versions. An M channel
uniform oversampled analysis ELT filter bank is employed for de-
composition of the M observed mixed signals into M subbands.
An ELT is a filter bank in which the impulse responses of the syn-
thesis filters are the ELT basis functions, and the impulse responses
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Table 1. Closed form analytical expressions for the gradient and
Hessian of the cost function and constraints.

Cost function - Jyy
iy llof fOVRE W)

Gradient - Gy,

Tw L ZTma.n:

T="Tmin

‘ 2
F

GW =92 Z"'maac

T=—"Tmin

YR {of fOVRY x JWVT)WRE o T
+of VR » , TWT)WRE . 1.}

Hessian - Hyy,
Hy =2Y7me YK {(RY oy, @ of fOVRE 4 W)

+ R"?—(X,kT ® Off(WR}X,kTWT))
Ry W@ IN)Poss(WRY y ), @ In)

(
+(
(REx VT @IN)Posr(WRE y " ©1IN)
(
(

+

+Ry 2 W @ INPRN P (WRY 4, @ 1y)

+(R 4, TWT @ In)Pos PO WRE, T @ 1)}

Row-normalized Constraint

o = |ddiagOWWT —1x)|[7

Constraint Gradient

Ga = 4ddiagOWWT —In)W

Constraint Hessian

H; = 4 (Iyg ® ddiagOWWT — 1))

+4 (WT ® IN)Pdia,g (W ® IN)

+2 PN (Iy @ WP giag(W @ I)
(N,MQ)

+2 (WT ® IN)Pdiag (IN ® W) [P'uec }T

of the analysis filters are the time-reversed basis functions. A sub-
sampling factor of R = M /4 was used. The purpose of over-
sampling as opposed to critical sampling is to reduce the aliasing
effects introduced via subband processing with the BSS algorithm
described in Section 2.

The direct form uniform FIR filterbank provides a general and
flexible framework to use. This flexibility comes with how we
choose to design the impulse responses of the analysis and syn-
thesis filters. Obviously, perfect reconstruction (PR) and minimal
aliasing are fundamental criteria. The traditional spectral decom-
position used for convolutive BSS is designing the impulse re-
sponses of the synthesis FIR filters to be the basis functions that
define the DFT. Being a block transform the length L of each of
the analysis and synthesis filters is equal to the number of subbands
M. The benefit of using an ELT to design the filter bank is that not
only do we alleviate the “boundary problems” [4] associated with
block transforms, the length of the FIR filters is not restricted thus
allowing a better frequency selectivity for each subband filter. The
impulse responses of the synthesis FIR filters f(n) based on the
ELT are defined by using the cosine modulation function:

fem) = hlmy| Zeos(in+ LD Ty any

Table 2. Newton-type algorithm for the joint-diagonalization task
with a weighted constraint. The operator maty, a7 (x) reshapes a
vector x of length NM Q) to an N X M Q) matrix, where the vector
elements are entered column-wise into the matrix.

Initialization (r = 0) : Wy
Forr=1,2,...
w, = p(Hw + oHz) tvec(Gwy + aG2)

AW, = maty,mq(Wr)
Wit1 = Wr — AW,

where k = 0,1,...,M —1,andn = 0,1, ..., L — 1. For PR of the
filterbank a scalar of 4/ % must be multiplied with each fi(n).

For our ELT, L. = 4M. The impulse responses of the analysis
filters hx(n) are simply the time-reversed versions. The prototype
filter h(n) is defined as:

1 1 1, =

4. TIME DOMAIN BSS ALGORITHM IN THE SUBBAND
DOMAIN

After decomposing the mixed signals x(¢) into M subbands, we
get the subband signals X g7 (k, m) where m is the time index
and k = 0,1,...M — 1 is the subband index. The BSS algorithm
described in Section 2 can be used on each of the correspond-
ing subbands of the M mixed signals. As opposed to trying to
solve an optimization problem for the fullband unmixing system
where there are N M @ free parameters, shorter FIR filter systems
can be solved for each subband where the number of parameters
NMQ/R is smaller due to the down sampling factor R. To in-
tegrate the algorithm described in Section 2 we simply substitute
the subband versions of the mixed signals Xgr7(k, m) and the
unknown system Wgrr(k, m), for the fullband versions of the
mixed signals x(¢) and unknown system W, and solve the sep-
aration problem for k = 0,1,..., M — 1. This will provide the
respective unmixed signals for each subband gELT(k, m). These
unmixed signals in each subband can then be passed through the
synthesis stage for reconstruction of the fullband version of the
unmixed recovered signals §().

5. SIMULATION RESULTS

To obtain the mixing system of a real reverberant office room,
two loudspeakers and two microphones were set up. A maximum
length sequence (MLS) of pseudo-random numbers was produced
through each speaker and recorded through each microphone si-
multaneously. The cross-correlation of the generated and ob-
served signals produces the required impulse responses of the mix-
ing channels. The impulse responses had a reverberation time of
Tr = 200ms corresponding to P = 1600 FIR filter coefficients.
Solving the Wiener-Hopf equations and using optimal filtering the-
ory an unmixing system with @ = 2048 > P was found. The
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Fig. 2. Comparison of convergence graphs for subbands vs. full-
band BSS algorithm.

reverberation time of these unmixing responses is Tr = 250ms.
In the fullband BSS problem, we would need to solve a nonlinear
constrained optimization problem with 8196 unknown variables.
By decomposing the unknown system W into M = 64 subbands
with a subsampling factor R = 16 we have in each subband 512
variables to solve. Time for convergence is relatively long in the
fullband however by effectively solving more problems with fewer
dimensions, the problem can be solved with a lower convergence
time. Two four-second segments of 8kHz speech taken from the
TIMIT corpus of speech were mixed together using the mixing
system of the office room to produce two mixed signals. These
fullband mixed signals were passed through the analysis bank to
provide the Xgr7(k,m) subband mixed signals. The Newton
time domain BSS for convolutive mixtures algorithm was used
to solve for the subband unknown demixing system. Initial val-
ues of each subband unknown demixing system were randomly
generated by adding Gaussian random variables with standard de-
viation 0 = 0.1 to the coefficients of the true subband system
WELT,; 4o, (k, m). This is derived by passing the fullband unmix-
ing system responses through the analysis bank. In realistic scenar-
ios where the true system is unknown, but some prior information
on the location of sources is available, beamforming techniques
can be utilized for initialization and prevention of the permutation
problem, similar to the method in [1]. The weighting factor for
the penalty term through empirical analysis was set to v = 0.2
while the learning coefficient was set to i = 0.8 and the number
of time frames was set to K = 128 thus taking into account the
quasi-stationary nature of speech over approximately 20 — 30 ms.
If the scalar weighting factor is chosen too small then the trivial
solution is not prevented where a value too large would lead to a
non-optimal solution. Fig. 2 shows the convergence of the ob-
jective function of the first four subbands in comparison with the
objective function in the fullband version. The summation of iter-
ations till convergence over all subbands is less than the iteration
time for convergence in the fullband version. Iterations r is de-
fined as passing through the entire set of data. Fig. 3 shows good
reconstruction of TIMIT speech signals up to a global permutation
after synthesizing the separated mixed signals for all subbands M.
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Fig. 3. (a) and (b) are the two original signals, (c) and (d) are the
separated results after synthesis of subband solutions.

6. CONCLUSION

This paper has provided a new method of solving a convolutively
mixed nonstationary BSS problem with real data in a reverberant
environment by employing subband decomposition based on an
ELT FIR filterbank. Computational overhead is reduced by solving
many problems in the subband domain with fewer dimensions as
opposed to one problem in the fullband domain.
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