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ABSTRACT 
In this paper, oversampled channel FIR filter banks us- 
ing both DFT modulation and cosine modulation designs 
are used in conjunction with a time domain blind sourcc 
separation (BSS) algorithm [ l ] .  This BSS algorithm has 
been shown to blindly separate the fullband versions of non- 
stationary convolutively mixed sources in the time domain. 
However further savings on convergcncc and computational 
complexity can be made by using subband decomposition on 
the mixed signals before implementation of the time domain 
BSS algorithm in each subband. An extended lapped trans- 
form (ELT) prototype is modulated using a cosine-modulated 
(CM) FIR filter hank and then with a DFT modulated FIR f i l -  
ter bank. Both of these designs are comparcd to the typical 
frequency domain BSS approach to solving these convolu- 
live non-stationary BSS problems such as in [Z]. The signal 
to intcrrcrence ratio (SIR) is used as the performance metric 
to evaluate and analyse the comparison of the three separa- 
tion methods. 

1. INTRODUCTION 

Multiplc acoustic signals including speech, rccordcd simul- 
taneously in a reverberant environment by multiple micro- 
phones, have a mixing system that can be modelled as a con- 
volutivc n~ultiple-input-multiplc-output (MIMO) system of 
FIR filters. The problem of blind source scparation (BSS) 
is to idcntify the respective multiple convolutive unmixing 
channels using a FIR backward model, which generates the 
separated non-stationary acoustic sources. There are numer- 
ous techniques to achieve this including the use of higher or- 
der statistics (HOS), maximum likelihood and mutual infor- 
mation and an extensive review can be found on these meth- 
ods in  131. The time domain convolutive BSS algorithm in  
[ I ,  41 uses the non-stationarity property of the input sources. 
The process involves joint diagonalization of output correla- 
tion matrices with time varying sccond order statistics (SOS). 

Applications in  which this problem is prevalently ap- 
plied include speech enhancement with multiple micro- 
phones for improved speech recognition, high-quality hear- 
ing aids, hands free telephony, EEG, MRI and other biomed- 
ical and neurological signals, cross-media retrieval in multi- 
media modelling [5] and multipath channel identification and 
equalization in wireless-communications [6]. 

For BSS problems that have convolutive mixing systems 
that model real environments using MIMO FIR filters, the 
number of unknown variables that must be estimated is in 
the order of several thousand. Traditionally these convolu- 
tive BSS models are solved by transforming to the frequency 

domain such as i n  [ 2 ] .  As an alternative, we are motivated 
to investigate different methods of separation by inchding a 
subband preprocessor before implementing the time domain 
BSS algorithm given in [ I ,  41. To reduce the convcrgence 
time for solving the total number of unknown parameters in 
the fullband model, subband decomposition is performed as 
a preprocessor to the time domain BSS algorithm thus solv- 
ing in  the subband domain as opposed to the fullband. This 
is implemented using oversampled uniform tilter bank mod- 
els satisfying perfect reconstruction (PR), including DFT and 
CM FIR filter banks such as in 17, 81. These two models 
are then compared to Ihc traditional frequency domain BSS 
method given in [2] and the separation performance for each 
model is measured. 

In Section 2 we briefly describe the convolutive BSS 
model and summarise the fullband version of the timc do- 
main BSS algorithm used in [ I ,  41. In Section 3 the over- 
sampled uniform filter bank models including the CM and 
DFT modulated filter banks based on an ELT prototype are 
defined. Section 4 integrates the filter banks with the full- 
hand timc domain convolutive BSS algorithm to allow sub- 
band BSS. Additionally, a brief review of a traditional fre- 
quency domain BSS approach used in [ 2 ]  is given. Section 5 
gives a comparative analysis of thc subband based BSS mod- 
els with the traditional method with focus on the separation 
performance using the SIR BSS mctric. The real mixing re- 
sponse of a typical office room is measurcd and identified. 
This identified system is mixed synthetically with segments 
of real speech signals taken from the TIMIT corpus of speech 
to produce some mixed signals. These mixed signals are used 
as input to each of thc three convolutive BSS models and in i -  
tialization of the unknown unmixing system to he identified 
is a perturbed version of the known unmixing system. Fi- 
nally, a conclusion is provided in Section 6. 

The following notations are used in this paper. We use 
bold upper and lowercase letters to show matrices and vec- 
tors, respectively in the time and frequency domains, e.g., 
A(t),A(w) for matrices and a(f) for vectors. Matrix and 
vector transpose, complex conjugation, and Hermitian trans- 
pose are denoted by (.)7,(-)*, and (.)" !! ( ( . ) * ) T ,  respec- 
tively. E { . }  means the expectation operation. 1 1  f 1 1 ~  is the 
Frobenius norm of B matrix. @ is the kronecker product and 
Tracr(A) is the Trace of matrix A. With a = d iag(A)  we 
obtain a vector whose elements are the diagonal elements of 
A and diag(a) is a square diagonal matrix which contains 
the elements of a. ddiag(A) is a diagonal matrix where its 
diagonal elements are the same as the diagonal elements of 
A and 

o f f ( A )  A -dd iag(A) .  (1) 
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~ N ~ N  is an N x N matrix of ones, O N ~ N  is an N x N matrix 
of zeros, and IN is the N x N identity matrix. vec(A) forms 
a column vector by stacking the columns of A. The operator 
mafiy.,$$Q(a) reshapes a vector a of length N M Q  to an N x 
MQ matrix. The matrices Po,-f, Prficrg, and PtLL) in Table 1 
are defined as follows. P,ff and Pc!jUs are given by 

(2) poff = diag( Ye.(.ff ( I N  X N  ) ) ) I 

The matrix P!::') is the permutation matrix defined by 

PLf;L)vec(AT) = vec(A), (4) 

for N x L matrices A. Note that for N # L the matrix Pst;Lf 
is, in  general, not self-inverse. 

2, BSS CONVOLUTIVE MODEL 
The convolutive BSS model assumes IV statistically inde- 
pendent sources, s ( t )  = [SI ( t ) ,  ..., s N ( l ) l T .  Due to multipath 
propagation in a reverberant environment, thcsc signals are 
convolutively mixed to provide A4 observed signals, x ( t )  = 
[xi ( t ) ,  ..., x ~ ( t ) ] ~ .  The relationship between the source and 
observed signals can be written as: 

P-1 

x{t) = H(T)s ( t  - T) ( 5 )  
? E O  

where H(r) is a M x N matrix of FIR filters of length P .  Thc 
BSS algorithm in [ 1,4] uses a backward model for separation 
and so we are more interested in the demixing system which 
couples the M observed signals to N reconstructed signals 
s ( t )  = [ ~ I ( c ) ,  ..., f ~ ( t ) ] ~ .  This relationshipcan be written as: 

e- 1 

r=0 
q f )  = c W ( T ) X ( t  - T). (6)  

The demixing system is an N x M matrix W(Z), with each 
matrix element being a FIR filter of lenglh Q. 

The fullhand convolutively mixed BSS time domain al- 
gorithm based on nonstationary sources is summarized as 
follows. For a more detailed description of the algorithm and 
notation refer to [ 1, 41 and references therein. The objective 
function of the algorithm is written as: 

rmur K 

r=-7 min k= 1 
21 4 Pk,rll.ff(jlYR~..~-,to:'YH)II:. (7) 

Separation of the N reconstructed nonstationary signals $(t)  
from the M convolutively mixed signals x(f), up to an arbi- 
trary global permutation and scaling factor, is obtaincd when 
the scalar objective value yl from Equation (7) is min- 
imised. In  Equation (7), Pk,=  is a nomilization factor defined 
in [I, 41. Ideally 21 should have a value of 0. Basically we 
perform joint diagonalization to minimise or effectively zero 
the off-diagonal elements of the correlation matrices for the 
recovered sources, at time frame k ,  over all necessary time 
lags z. Each value of k represents a different time window 
frame where the SOS are considered stationary over that par- 
ticular time frame. In adjacent non-overlapping time frames 

Analysis Stage Synlhesis Stage 
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Figure 1 :  General subband MIMO BSS model with oversam- 
pling factor g. 

k and k + 1 ,  the SOS are changing due to the non-stationarity 
assumption [4]. The correlation matrices of the recovered 
sources are given as: 

> (8 )  

where ;/Y is a (N x Q M )  matrix given by W' = 
[W(O),W(l) ,..., W(Q- I ) ] ,  and 3" is a (QM x 1) vector 
used to perform convolution in  the time domain using ma- 
trix multiplication and is defined in [ l ,  41. W represents the 
unknown demixing system which must be solved. To avoid 
a trivial solution we must solvc lhc nonlincarly constrained 
optimization problem given hy Equation (9). 

R.:.<:~(T) = WE(X(k)XH(k + 7 ) } W H  
?flR!?.-?,.!k( 7)yflH 

%pt = argmin /1("/y) 

;lY (9) 
s / t  I ldd ing( ; / fYP  - I)\l; = 0. 

I n  Table 1 ,  ctoscd form analytical expressions of the gradient 
and Hessian matrices of the objective function given in  Equa- 
tion (7) and the nonlinear constraint specified in Equation (9) 
are provided. Note the  22 defines the constraint given in 
Equation (9) and expresses the unit energy of the rows of YY. 
Table 2 describes the Newton method of optimization used 
For the BSS time domain algorithm. The steps in this algo- 
rithm will be describcd whcn integrating the subband domain 
in  Section 4. 

3. MODULATED FIR FILTERBANKS WITH 
PERFECT RECONSTRUCTION 

To utilize BSS in the subband domain we must perform sub- 
band decomposition using some type of uniform or non- 
uniform FIR filter bank. As Figure 1 shows, we have cho- 
sen an oversampled uniform A? channel modulated FIR filter 
bank in  direct form based on the modulation of an ELT pro- 
totype function h ( n )  [9] given by: 

1 K  
(10) 

h(n) = --+-cos[(n+-)-I. 1 1  
2& 2 2 2M 
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Two designs of modulated FIR filter banks that exhibit per- 
fect reconstruction (PR) are investigated for subband BSS 
and these are cosine modulated (CM) filter banks and dis- 
crete Fourier transform (DFT) modulated filter banks. With- 
out performing any subband processing on the decomposed 
mixed sign& ‘ ~ ~ ~ ( e , . , , ~ ( p , m ) ,  where ni is the time index and 
p = 0, I ,..., R - 1 is the subband index, we obtain PR. Per- 
forming subband BSS using the algorithm referred to in  Sec- 
tion 2, aliasing is introduced and so we must oversample by 
the factor $ to minimise this. Direct form versions of the 
filter banks are used here for simplicity however equivalent 
polyphase structures for both types filter banks can improvc 
efficiency [7, XI. 

3.1 Cosine Modulated FB 
A filter bank is said to be cosine modulated if  all analysis 
and synthesis films are generated by cosine modulation of 
one or two prototype filters. The prototype lowpass filter has 
a cutoff of *n/Zfi for h? filters. Individual analysis and 
synthesis filters have real coefficients and are ofequal length. 
The impulse response of the synthesis FIR filter is defined as: 

and the analysis filters arc related as: 

&, (J l )  =A&- I -n), (12) 

wherep=0,1 ,  ..., M - I , a n d n = O , l ,  ..., L-1.ForthcELT 
prototype defined i n  Equation (IO), L = 4M. Due to the over- 
sampling factor + to obtain PR of thc filter bank a scalar of 

fi must be multiplied with cach &,(it). 

3.2 DFT Modulated FB 

This filter bank uses exponential modulation. The individ- 
ual analysis and synthesis filters have complex coefficients 
in the DFT filter design. The prototype lowpass filter has a 
cutoff of *n/f i  for M filters, Note that we consider a 2M- 
band DFT and band cosinc-modulated filter bank so that 
the subbands are of equal spectral width in both tiltcr bank 
designs. The impulse response of the synthcsis FIR filter is 
defined as: 

and the analysis filters are related as: 

fi,(4 = h,>(4 ,  (14) 

where p = 0, I ,  ..., - 1, and n = O , l ,  ..., L-  1 with L = 

2h?. The scalar factor fi again must be added due to the 
oversam pl ing factor. 

4. SUBBAND BSS ALGORITHM 

There are three stages to the model as shown in  Figure 1. 
Firstly we decompose the M fuIlband mixed signals x(t) into 
A? subbands via the analysis stage ofthe tilter bank to obtain 
the subband signals x$’,.,,~~~ ( p ,  m) where m is the time in- 
dex and p = 0,1, ...,A? - I is the subband index. With the 

cosine modulated design, the fullband mixed signals are con- 
volved with the respective impulse responses of the analysis 
filters defined in Equation ( 1  2) and then oversampled by the 
factor $ while convolution with the impulse responses de- 
fined in Equation (1 3 )  provides the DET modulated result for 
each subband also after subsampling by R. In [ I ]  we solve a 
problem in the fullband domain where there exist ’NMQ‘ free 
parameters. Shorter FIR filters of length Q,, can be solved for 
each subband which effectively reduces the overall conver- 
gence time of the algorithm to find the unknown demixing 
system. Note that each subband BSS problem is a MIMO 
problem where there are M input signals from each respec- 
tive subband of the mixed signals and N separated output 
signals for each respective subband. In the second stage, in- 
tegration of the fullband time domain BSS algorithm given 
in  [ l ,  41 is simply made by substituting the subband ver- 
sions of the mixed signals x$‘l ( p ,  or) and the unknown 
demixing system P’“”(p,m), for the fullband versions of the 
mixed signals x(t) and thc unknown demixing system W ,  
and solve p separation problems where p = 0,1, ..., M - 1 .  
For simplicity, %:‘ M ( p , m )  is denoted ~ 1 s  XI’, W S i r b ( p , n ~ )  is 
denoted as W/’,  and R$.9,..k(t) is denoted as R>,’’3,.,,. Sub- 
stituting Wj’, Qp and R&,.sk for W,Q and R;, y,.:k in all 
expressions in Table I respectively, will provide correct sub- 
band expressions for f l P , G j P , H ~ l ’ ,  2#IG.$’ and H+’ in 
Table 2. It should he noted that the value of Qp will be deter- 
mined by the decided valuc of Q in the fullband domain, the 
number of subbands A, the lcngth of the analysis FIR filters 
L and the oversampling ratio f .  The final stagc of the model 
is the synthesis stage and involves upsampling the separated 
subband signals 9’’’ i o , l ~ ~ ~ , ~ , ~ ( p , m )  by R and convolving this 
result with the respcctivc impulse responses of the synthe- 
sis filters defined in Equation (1 I ,  14) for cach design. This 
will provide thc N fullband separated signals S ( t ) .  To avoid 
the local permulation prohlem within the adjacent subhands, 
initialization using a perturbed version of the true unmixing 
system after subband decomposition will be used to mitigale 
this. Where this is unknown in  a practical environment, gco- 
metric beamforming andor  other priori knowledge of either 
,the mixing system or the input signals is madc. Alternatively 
BIdbal optimization techniques can be used to solve each sub- 
hand without initialization and a dyadic sorting routine used 
to align all subhands to thc same permutation could be used 
to avoid this inherent problem although the use of global op- 
timization remains an open problem. Obviously when deal- 
ing with blind separation in any transform domain we will 
always need to address the permutation issue. Separation al- 
gorithms which incorporate sorting routines that utilize cor- 
relation between adjacent frequency bins are available with 
one example given i n  [lo]. However the focus of this paper 
is not on the permutation solution but rather the quality of 
separation betweenthe proposed separation algorithm and a 
typically used lrequency domain separation algorithm. For 
our comparison we use a perturbed system which is close 
to the ideal system and use the same initialization for each 
algorithm. Admittedly the frequency domain algorithm de- 
scribed below has to work harder as it solves the permutation 
problem but the performance of separation in  Section 5 in- 
dicates the proposed algorithm in this instance obtains better 
separation as measured with the performance metric defined 
also in Section 5.  

, :...: 
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Table 1 : Closed form analytical expressions for the gradient 
and Hessian of the cost function and constraints. 

Table 2:  Newton-type subband BSS algorithm for the joint- 

I Cost function - ,/il 

I Constraint Gradient G2 

To obtain the performance of the suhhand based BSS 
algorithm using the two designs described above, we com- 
pare them with a typical BSS frequency domain algorithm 
used in [2]. This algorithm directly estimates a stable multi- 
path backward FIR modcl for a MIMO system where there 
is assumed to bc at least as many sensors as sources present. 
The algorithm uses gradient descent to find the optimal value 
which minimises the  weighted constrained Least Squares 
(LS) cost function given below: 

E (  W ,  k )  = W ( w)/?~(  O ,  k )  W H (  W )  - A,T( W ,  k )  . ( 15) 

2 
W ! A ,  arg min L Z E , l l m , k ) l I  

W,&, 
W(z)=O,.c.Q<<T, 

Wji(W) = I 
(14) 

This algorithm essentially attempts to minimise the differ- 
ence between the cross-powcr-spectra of the estimated recov- 
ered sources and the actual diagonalised recovered sources. 
It is essentially performing the same task in the frequency 
domain as the joint diagonalization used in our time domain 
BSS algorithm [ 1,4]. For this algorithm only consistent per- 
mutations for all frequencies will correctly reconstruct the 
sources and the first constraint on filter size Q versus the fre- 
quency resolution 1 / T  given in Equation ( 16) links the oth- 
erwise independent frequencies and solves this problem. 

diagonalization task with a weighted c&stra. 

F o r p = O , l ,  ...,&?- 1 subbands 

Initialization ( r  = 0 )  : Yh'' 

For r = 1,2, ... 

= ~ ( H ~ P ~ ~ H ~ ) - ' v ~ ~ ( G ~ ' + ~ G ~ )  
= matN.MQp(w{) 

YK!, = -fl/ - AY' 

It. 

5. SIMULATION RESULTS 

In this section we report the results of separation of two 
mixed signals in a realistic environment such as an office 
room, with dimensions 2.28m x 5.21m x 3.45m, using the 
three different models described in Sections 3 and 4. As in 
[4] we identify the MIMO convolutive mixing impulse re- 
sponses HkrmwrZ(~) coupling two loudspeakers and two mi- 
crophones in a reverhcrant environment. The technique used 
to obtain the corresponding known dcmixing impulse re- 
sponses for separation Wk,zo,l.,, (T), or equivalently ;/i,ln,r,,Ir 
is dcscribed in [4]. Using 8kHz  as the sampling rate, Y~,,o,,.,z 
has a FIR filter length of Q = 2048 for a response time of 
TR = 250ms. The two input signals s ( t )  are speech scgments 
taken from the TIMIT corpus of speech. These signals arc 
convolutivcly mixed with Hk,zo,,,,, ( 7 )  and provide the mixed 
signals x ( t )  which are observed by the two cardioid micro- 
phones that havc an inter-element spacing o f  38cnr. Thcsc 
mixed signals arc uscd for each particular algorithm. 

For the  cosine modulated FIR filter bank model we dc- 
compose the unknown fullband demixing system 7 ,  into 
fi = 256 subbands with a subsampling factor of R = 64. 
This will mean that instead of trying to solve the nonlinearly 
constrained optimization problem given in Equation (5) for 
'NMQ' = 8196 unknown variables we have in each suhband 
only I92 variablcs to solve for. Similarly for the DFT modu- 
laled model we decompose the unknown fullband demixing 
system into fi = 5 12 suhbands with a subsampling Factor of 
R = 128. This ensures that the spectral width of the analysis 
and synthesis filters in the DFT modulated case is the same as 
that for the cosine modulated case. The Newton method time 
domain BSS algorithm for convolutive mixtures [I .  41 was 
used to solve for each subband unknown demixing system. 
To achieve this the fullband mixed signals x(t) were passed 
through the analysis stage shown in Figure 1 for each sub- 
band model to obtain the xyhf, ( p ,  m )  subband signals 
respectively. Initial values of each subband unknown demix- 
ing system were set to a perturbed version of thc known 
demixing subband system Y$:$,l(p,m). This is derived by 
adding Gaussian random variables with standard deviation 
o = 0. I to the coefficients of the known fullband demixing 
system Y!,,,, and passing this through the analysis stage 
of the filter bank to obtain the perturbed subband demixing 
systems. In most cases information on the demixing system 
is unknown and geometric beamforming [ 1 11 is used to pro- 
vide initialization information for the optimization process 

I..., 
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Figure 2 :  Separation performance using three different BSS 
techniqucs for two TIMIT speech segments recorded with 
two cardioid microphones in a reverberant ofice environ- 
ment. 

howcver in this case we are comparing the separation perfor- 
mance of the algorithms and initialization is the same for all 
three algorithms. Thc weighting factor for the penalty term 
for the constraint in  the Newton update from Tablc 2 is sct to 
(y: = 0.2 and the learning coefficient is p = 0.8. The number 
of timc Frames over which joint diagonalization IS  performed 
is K = 128 which corrcsponds to a non-stationary rime period 
for speech of 20 - 70 ms. The typical BSS frequency domain 
approach also sets the required variables of the algorithm to 
be Q = 2048, T = 4096, K = 128 and an initial valuc for the  
unknown system in each frequency bin T that is derived by 
simply taking a T-point Fouricr transform of the perturbed 
known fullband demixing system Y4t,q,,br,. In order to cvalu- 
ate the performance of the proposed BSS methods we used 
the signal LO interference ratio SIR; = SIRoi -SIR/;, defined 
below as: 

where A(w) = W(o)H(o) and i # j .  SIR means the ra- 
tio of a target-originated signal to a jammer-originated signal 
[2 ] .  For the subband BSS models the fullband converged 
solutions for YY after the synthesis stage arc then converted 
to the frcquency domain via a T-point DFT to allow com- 
parison with the BSS frequency domain approach using the 
SIR metric. Figure 2 shows the performance comparison of 
the two proposed methods with the typical frequency domain 
method. After each iteration through the algorithms wc mea- 
sure the SIR in  decibels for each method. We only look at 
the tirst 10 iterations for the three methods. Initially we see 
that the subband based BSS that uses the DFT FIR filterbank 
has the highest SIR at 14.85 dB. After the 6th iteration the 
subband based BSS algorithm using the ELT prototype with 
CM is better with a higher SIR than the other two methods. 

6. CONCLUSION 
The main contributions of this paper demonstrate a general 
framework to approaching BSS utilizing the subband do- 
main. Two -oversampled uniform FIR filter bank designs 
using modulation with an ELT prototype have been used 
to decompose convolutively mixed non-stationary sources 
and perform BSS using a time domain algorithm exploit- 
ing changing SOS. In the fullband domain with a realistic 
mixing environment this algorithm would pose convergence 
problems due to the high order of variables, however using 
subband decomposition this problem is mitigated. The sepa- 
ration performance of subband BSS using the FIR filter bank 
designs defined in Section 3 shows better separation than the 
typical frequency domain method described in [ 2 ]  as seen by 
the results in  Figure 2. 
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