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Abstract— Constructions_of square, maximum rate Complex It is important to clarify that, according to Liang’s paper
Orthogonal Space-Time Block Codes (CO STBCs) are well [2], the maximum achievable rate for CO STBCs of orders
known, however codes constructed via the known methods = 2;m — 1 or n = 2m is (see Eq. (130) in [2)):
include numerous zeros, which impede their practical imple-
mentation. By modifying the Williamson and Wallis-Whiteman R = (m+1)/2m 1)
arrays to apply to complex matrices, we propose two methods of max
construction of square order-4n CO STBCs from square order-  However, note that this maximum rate is only achievable for

codes which satisfy certain properties. Applying the proposed : ;
7nl1ethods, we construfgsquare ngameum ratepgr)c/ierqg COpS‘IpBCs rectangular constructions, except for the special case when
with no zeros, such that the transmitted symbols equally disperse 7 = L, I-€. Whgnn = 1 orn = 2. For squareconstructions
through transmit antennas. Those codes, referred to as the Of ordersn = 2%(2b + 1), the maximum achievable rate is:

improved square CO STBC#ave the advantages that the power u
is equally transmitted via each transmit antenna during every Riaw = (a+1)/2°(2b+ 1) (2
symbol time slot and that a lower peak-to-mean power ratio per .
each antenna is required to achieve the same bit error rates as Whenm = 1, (]8 and (2) provide the same results. Readers
the conventional CO STBCs with zeros. should refer to oroIIar?/ 2 and Section Il D in [2], or Section
IV in [5] for more details.
|. INTRODUCTION Particularly, forn = 8, i.e., m =4, a = 3 andb = 0, the
) maximum achievable rate ofctangularCO STBCs following
Complex Orthogonal Space-Time Block Codes (C%% is 5/8, while the maximum achievable rate safuareCO
STBCs) have been intensively examined, as they provide lailg€BCs according to (2) is 1/2 only. In Liang’s paper, the
transmit diversity and increase the capacity of wireless chaiuthors made aminclear statement in the abstract that the
nels, while re umn%avery simple Maximum Likelihood (ML)achievable maximum rate for = 2m — 1 andn = 2m
decoding method [1], [2], [3] [4] [5]. Ap x n CO STBC over 'is (m + 1)/2m, but did not state if this maximum rate is
k variables is corresponding totransmit antennas, decodingachievable byectangularor squareconstructions. This easily
delay (or memory length) o, and rateR = £. Givenn and makes readers confused, except when readers go deeply into

. LS ; the Liang'’s paper.
gbthse_lgoal is to minimize the decoding delayHence square S uareC(g STBCs have a great advantage aeetangular

BCs are particularly interesting because they requi
the minimum processing anIay (minimum memory length Igs% TBCs that they require a much smaller length of the
well) for the same rate and the same number of transrhRdes. i-e., much smaller processing delay, with the conse-

i i ioal i :guence of the slightly smaller maximum code rate compared to
%”Eﬁg”ﬁjmﬁgftgfe ;gﬁ,@s'iﬂegagggef%g{ﬁcgﬁgé '{gp;ergoednéa&\',@p achievable maximum code raterettangularCO STBCs.
fewer zeros, a code with more zeros results in & higher peak-t&!_Us CO”S'?GVT%O ,[STBCIS fgg) g.l_gér?rrl‘stm't hantenn%s
mean power rat|(() for t)he transmit antennas to achlelve the Sa%ae%?nﬁ)r(narpaptg' 5/8 Eragq%?r%usatrhe length of Elilgcs;?r\w/ggl tirene
Bit Error Rates (BER). Having many zeros can also impe : ) ; .
Bractlcal implementation since some transmit antennas maQts:, The [1122-8'70] co STEI’C fg'Vﬁ? n Appindlx E '!}
e turned off during transmission. Turning transmit antennasid > Paber éé |§TaE§1Cexamp ec% S_'I_SB(C:ase- o> abhosite
off during transmission is inconvenient, especially in high da relctanﬂu E}VS bol s_,,sque}re b S 0?]3’ require
rate wireless communication systems. Furthermore, it wo ength of 8 symbol time slots to achieve the maximum
be more practical if the power of signals can be equal te 1/2, which is slightly smaller than the maximum rate of

transmitted via each transmit antenna during every symigetangularCO STBCs. ClearlysquareCO STBCs require a
time slot. Given the above considerations fg, COyS gchiuch shorter length, especially for a large number of transmit
this paper focuses on constructisquare CO STBCs with antennas, with the consequence of a slightly lower maximum

maximum rate, minimum decoding delay, no zero entries, afgde rate. For this reason, in this paper, we only consider

iagi i i areCO STBCs.
gg#]at\)lof)gvr:/]eerstlgat.nsmlss,lon per transmit antenna during ealﬁ'nguare CO STBCs with no zero entries have been proposed

; ; i the literature, such as [1] and [4], for orders 2, 4. In [7], we
The simplest square CO STBCs is the Alamouti code [1 nstructed two square, order 8 ClO STBCs wétver zeros

which achieves a rate one for two transmit antennas. : :
: \an the conventional codes [2], [5]. Later, in [8] and [9], we
contrast, square CO STBCs for more than two transmit a nstructed a square, order % CE) STRGwithout any zero

tennas cannot achieve rate one [2], [6], but they can siiff .~ 5> >

achieve full diversity for a given nur[nt])er[o]f 'gransmit}éntenna .r:A'\Ch IS glvedn in (3). 8l th , | - s g
Constructions ofsquareCO STBCs for a higher number of, AS 1p0|nt% Of“tz'” [8], the e”dt”eflt’% ( 2 ot of )
transmit antennas, e.g. 4 and 8, have been well exammed“Fgr ;.5 8) 0 q har_e composed o ¢ e rﬁa .pgr or one
literature, such as [2] and [5]. These structures yield squafé'eterminate and the imaginary part of another indeterminate,
CO STBCs ofmaximum ratewhich is, for instance, 1/2 for 8 €.9., 251 = —s§' + is3. This observation means that if the
transmit antennas. However, these maximum rate codes h#@eterminatess . ..,s4 are chosen from the complex signal
many zero entries, which are undesirable. constellations Wheresf or s§ (j=1...4) can be equal to
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zero, e.g., the QPSK constellation (1i;%) then, some of methods is to find two sub-matrices of size2which satisfy
the entries of the matriZ can be equal to zero dependingertain g(ropertles, rather than finding 8 weighting matrices
on the transmitted data. Therefore, such constellations shoafdsize 8<8 simultaneously as in the AOD approaches, such
be avoided. An example of the constellation where the powas in [10]. More importantly, our methods give a transition
is evenly spread among the Tx antennas independently of them square, order- CO STBCs satisfying certain properties
transmitted data is the QPSK constellation#1+,-1+i,-14). to square, ordetn CO STBCs. Our proposed methods might
The square CO STBC in (3) has the following advantagesven lead to the constructions of square CO STBCs of higher
1) It is not required to turn off any transmit antenna duringrders, such as 16 or 32, with fewer zeros or even without
transmission, unlike in the conventional CO STBC [2]zeros. ] ] ) .
% The paper is organized as follows. In Section Il, we provide
2) en the indeterminates are chosen from a suitatefinitions and notations used throughout the paper. In Section
constellation,Z has no zero entries, hence, it requires #l, we propose two methods for constructing high-rate, square
smaller peak power per Tx antenna to achieve the safd® STBCs of orderV = 4n from sub-matrices of ordet. In
BER as Iin the conventional square CO STBCs with zeré&ction 1V, we use the proposed methods to construct square,
[2], [5]. Equivalently, it provides a better BER comparednaximum rate order 8 CO STBCs, which are superior in
to the conventional square CO STBCs with the sanseveral aspects to other known codes to date. The paper is

peak power at transmit antennas. concluded by Section V.
Independently, fromAmicable Orthogonal DesignéAODS),
C. Yuen et al. [10] constructed the followirsplitary, square, 1. DEFINITIONS AND NOTATIONS
order-8 CO STBC with no zeros: Our proposed constructions in this paper are based on the
. . . . . . following matrices, which are the variations of the Williamson
L SR TS SRS T S S and Wallis-Whiteman arrays mentioned in [11] (pp. 121 and
—sy s2 s of si —si -3 oS3 99, respectively), modified to apply to complex matrices:
Go=| iR IR omoimgm am Tis T i )
—J -% - 7i§ —J €4 4 - 14g 4 J S11 - .il-§ 1 J 92 2 J 52z A B (; Q
:;:42 —';iii J:§3 ::33 :1?2 *?;2 ;51 *511;1 (91 = _g % ]2 _BC (5)
wherej = /—1. The background knowledge on AODs can -D C -B A
be found in [11]. This square CO STBC has an advantage over - -
our codeZ in that it does not require the restriction on signal _ -
constellations. However, from amicable orthogonal designs, A B C D
it is difficult to construct square CO STBCs, especially for 0, — -B A -D C 6
those codes of high orders, since we have to incorporate 2= | -c D A -B (6)
many weighting matrices. For instance, to construct a square, D - c B A

maximum ratéCO STBC of order 8, we have to find 8 matrices
of size 8 x 8 54 weighting matrices for the real parts ofyhereX is the matrix derived from a matriX by replacing
variables and 4 other weighting matrices for the magmarag ; . ; . o H o
parts) which simultaneously satisfy several strong conditiodd variables inX by their conjugates, i.eX=(X")". (.)
of AODs [11], [12%), [10]. . _ denotes the Hermitian transposition while” denotes the
In this paper, by modifying the Williamson and Wallis-transposition (but not conjugatel, B, C andD aren x n,
Whiteman arrays to apply to complex matrices, we proposguare, orthogonal matrices of complex variables. Hefige,
two novel methods of construction ofquare orderdn CO  and O, are4n x 4n matrices of complex variables.
STBCs_ from square ordern codes which satisfy certain Let O be a general notation representing eitliar or O-.
properties. Applying the proposed methods, we construoefine N=4n and presenfV as N=2¢(2b+ 1), wherea andb
square maximum rate order-8 CO STBCs with no zeros,are integers. Let(N) be the maximum number of variables
such that the transmitted symbols equally disperse througho. It is well known that the maximum number of variables
transmit antennas. Besides having the maximum rate, {R&he squareCO STBC of ordetN is ;(N) = a+ 1. Readers
minimal decoding delay, and no zero entries, the resultaRy refer to [5], [11], or Corollary 2 in 82] for more details.
codes, referred to as thenproved sc&uare CO STBChave et up, pe andup be the number of variables iA, B,
the following practical advantages: a) They do not require aiy andD, respectively.
restriction on allowable signal constellations; b) It is possible’| gt {7 éndz% be the set of all variables i® and the set

to transmit symbols with equal power for any STS at anyt all indices of elements i/, respectively. Similarly, let:
transmit antenna; and c) A lower peak power per transmi

antenna is required to achieve the same bit error rates as 8r = {sa1, sa2 Saus ;U = {spB1,s s }
A . R o 2 Bl1y9B2y---,9Bpu
the conventional CO STBCs with zeros. _ _ T }’, Us = { o )
As mentioned in more details later in this paper, in order tH3 = 15C1,502, -+ 5Cuc };Ut = {8D1,5D2, -+, $Dup

construct, for instance,>8 CO STBCs, thanaintask in our (7



be the sets of variables iA, B, C, andD, respectively, and wherel; are definitely positive, real coefficients, and the
let Zy,, for i=1...4, be the sets of indices of variables in the complex variables; may be inU;, Us, Us or Uy which
sub-matricesA, B, C, andD, respectively. are defined in (7).

We require that the sub-matrices, B, C, andD satisfy: 2) The matrices @' = [ 1}3 E ] and O —
Koo izt ® A B Complex Orthogonal Desi
AUU, =0 i#j _B A | are square Complex Orthogonal Designs
where @ is the empty set. COD) of order2n.

With the condition (8), clearly, i©) comprises the maximum  3) B&'Bs andB. B, are symmetric for any possible pair

number of variables, we have: of vectorss ands’ of complex variables, wherBs and
By are shorthand foB(s) andB(s’), respectively.
pa+pp + pe +pp = p(N) 9) 4) C andD are of similar form toB and B, respectively,
Since A is a matrix on variable$s 1, 542, - . ., 54, }, We g andB, rt'_esqecylvegB adn[(;B repreCtheW, tmlé” and
i = ite: , respectively, i.e.C an can be presented as one
define the vectosa = (sa1,542,...,54,4), and write of the Tollowing forms:
A = A(SA):A(5A173A27~-~>5AMA)- C k B( ) C k B( *)
. . . = kKcb(sc = RcD(Sc
Similarly, we denote the matricd3, C andD as: { D — kpBl(sp) { D = kpB(sp)
5 E(SB) - 2“81»532»---’53#3) " C=tcB(sc) [ C=heBlsz) (1
= C(sc)=C(sc1,502;---,8Cuc) (10) D = kpB(s}) D = kpB(sp)
D = D(sp)=D(sp1,5p2,---,5Dupn) ) » .
L . . : where ko and kp are arbitrary (positive or negative),
For simplicity of notation, we sometimes write, for example, real coefficients, ange< pg, Up< fig
A, to representA(sa). then ’ - ree
Recall that the matrixA is derived fromA by replacing
each variables 4;, for 1 < i < u4, by its conjugate. Denote A B C D
the conjugate of each variable By;,, for 1 < i < pyu, and B A D -C
denote the vector of these conjugatessiy. Now, we write: 0= C D A B (13)
A = A(sa®) = A(s%y,5%9, .- Y. -D C -B A
and similarly forB, C, andD. is a CO STBC of orderN=4n. If all coefficients /;= 1,

We state that a matriX(sx ) is of similar formto a matrix for ¢ € Zy, then O is called square CO STBC without
Y (sy) (or justX is of similar formto Y, for short) if X = Linear Processing (LP) (or just square CO STBC for short%.
kxY (sx), wheresx is a vector containing distinct complexOtherwise,O is considered as a square CO STBC with LP. |
variablessy, sxa, - -, Sxux, and similarly,sy is a vector (#a +uB 1+ fig +qu):M(N), thenO is a square, maximum
containing distinct complex variables 1, sy, . . ., sy, , and rate CO S_TBC of ordetn.

k s an arbitrary, non-zero, real coefficient. In this notatior, Proof: We prove Theorem 1 for the case th@tand
we stipulate that the number of variables; in X is at are of similar form toB and B, respectively. Similar

i i i arguments can be applied to three other cases. From (13), we
most equal to the number of variables in Y. To illustrate have Equation (14), wheré in the matrix M denotes the

an example withux = py = 2, X(sx)={ SX1 S } lower triangular part under the main diagonal whose elements

; ; s CS are the Hermitian transposes of the corresponding elements in
(which presents the Alamouti code with two varléi)]les) Hhe upper triangular part. For instance, we have the element

of similar form to Y(sY):{ _‘95*;2 ggf } since X = [(2,1)=B”A — A”B+ D"C - C"D.
Y (sx) = Y(sx1,5x2). To illustrate the case whepex = 1 First, we prove the following equalities:
and puy = 2, X(sx)= f;ill iil } (which presents the BB _ BEB (15)
Alamouti code with only one varlal}.)Ie) is also of similar form CHG — CHC (16)
to Y sinceX =Y (sx) = Y(sx1)- B "

By this notation, when we state that the mai€ixin (10) is D”"D = D"D (17)

of similar form to the matrixB, for instance, we imply that _. . ]

C can be represented &= k-B(sc) where the number of SinceB is orthogonal, we have:

complex variablegic in C is at most equal to the number of

complex variableg:z in B, i.e., uc < up. B”B = BB = Z li]si|*1,
Finally, we denotd,, to be an identity matrix of orden.

Ill. DESIGNMETHODS

In this_section, we provide two new methods to construi¢hich implies thatB”B is a real, diagonal matrix and
square CO STBCs. In each case, we use sub-matricestiirefore:
ordern to build CO STBCs of ordeN = 4n. Our methods

€Ty,

generalize the Williamson and Wallis-Whiteman arrays, which BB = [B"B)"" (18)
were originally used to build real orthogonal designs [11] (pp. . )
121 and 99, respectively). Using Eg. (18), it follows that:
Theorem 1:If the sub-matricesA, B, C andD of ordern
satisfy the following necessary conditions: BB = [BTB]H — BH(BT)H _BEB

1) A, B, C, andD are orthogonal themselves and:

" H " " 9 Therefore, (15) has been proved. The same arguments can be
A"A+B"B+C"C+D"D = Z li|s;]"L, (11) applied to prove (16) and (17). Hence Af, B, C andD are
iy orthogonal themselves and satisfy (11), then all elements (i.e.



ofo

AHAa 4+ BHpycHe 1 pHp aH

L

sub-matrices) on the main diagonal of the maiik= O 0O
are equal to:

AYA+B"B+CYC+D"D =) 1]si|’1,

€Ty
Second, we prove the following equalities:
APB-BfA = O, (19)
Afc-cfA = 0, (20)
APD —DHA 0, (21)

whereO,, is a zero matrix of orden. Eq. (19) holds a®)’ is

a COD. Additionally, becaus€ andD are of similar form to 2r4 1
B (see %12)?,_ the equalities (20) and (21) are straightforwardly Similarly, we derived the fol S
tiplication with real coefficients- andkp does Variation of the Wallis-Whiteman array [11] (pp. 99), modified

proved (mu
not change the pro%ert%/ (19)). -
Third, we prove the following equalities:

BAC-ciB =0, (22)
BD -D”B =0, (23)
cfp-bpfc=0, (24)

SinceBI By is symmetric for any pair of vectorsands

of complex variables, it follows thatBI By )¥ = BngT
is also symmetric. Using this symmetry, it follows that:

& BHB,=BFBH'
< BIB,=BfB,

T
BYBE' — BYBH]

In other words, we have:
BB, - BB, =0, (25)

air of vectorss ands’. Due to the fact thaC and

for any
s and By in (25)

D are of similar form toB, by replacin

by B, C or D, the equalities (22), (23) and (243 are proved.

From (19)—(24), we see that the elemeli$1, 2), M(1, 3)

andM(1,4) of the matrixM = O O are zero matrices.
Fourth, we prove the following equalities:

Bic-CcfB = 0, (26)
B”D -DYB = O, 27)
c’D-DC 0, (28)

Due toB B, being symmetric, the following equalities hold:

BB, = [B"B,]" © BB, = BB,
& BIB, =BIB, < BYB, - B/B, = 0,,(29)
for any pair of vectorss ands. Due to C and D being of

similar form toB, by replacingBs and By in (29) by B, C
or D, the equalities ﬁG)—(ZS) are proved.

Finally, we prove that:
APB-BYA = 0, (30)
AfCc-CcHfA = O, (31)
APD -DFA 0, (32)

Eg. (30) holds sinc&” is a COD. Becaus€ andD are of
similar form to B, by replacingB in (30) by C or D, the
equalities (31) and (32) are proved.

B-BHacHp _pHe
AHa4BHpycHe + DHD

AHp _pHyypHe _cHp
BHp —pHp _ aAH¢c 4 cHy
cHp _pHc y AHp — pH 4y
AHa+BHB+cHG +DHD

AHo _cHy_pHp 4 pHp
BHc —cHp 4 aHp _pHy

c B b4 14)
AHAa 4+ BHBycHe + DHD o

From (26)—(28) and (30)—(32), it follows that the elements
M(2,3) =M(2,4) =M(3,4) = O,. Since the lower triangular
partL is the Hermitian transpose of the upper part, all elements
In £ are also zero matrices. Hendel can be presented as:

M = Z li|3i|2dia9(1n71n71n71n) = Z lz|sz|2IN
i€y i€Zy

where diag denotes a diagonal matrix. In other words, the

matrix O in (13) is a square COD (also CO STBC) of order

N=4n with (ua + up + pc + pp) variables. Note that, if

O comprises the maximum number of variables, i.e., Eq. (9)

is satisfied, ther© is a square, maximum rate CO STBC of

order4n. Theorem 1 has been Proved. [ ]
owing theorem, which is a

to apply to complex matrices:
Theorem 2:1f the sub-matricesA, B, C andD of ordern
satisfy the following necessary conditions:

1) A, B, C andD are orthogonal themselves and:

A"A+B"B+CC+D'D =" 15,
i€y

wherel; are definitely positive, real coefficients, and the
complex variables; may be inU;, Uz, Us or Uy, which
are defined in (7). c A

2) The matrices O' = {—A C

c A are square Complex Orthogonal Designs

l —-A C

COD) of order2n.

3) AZA, andAT A, are symmetric for any possible pair
of vectorss ands’ of complex variables, wherd ; and
Ay are shorthand foA%s) and A(s’), respectively.

4) B andD are of similar form toA and A, respectively,
A andA, respectively,A and A respectively, orfA and

A, respectively, i.e.B andD can be presented as one
of the following forms:

} and 0"

B = kBA(SB) B= kBA(S*B
{ D= kDA(SD) { D= kDA(SD)

B = kpA(sp) B = kpA(sy)
{ D = kpA(s}) { D =kpA(sp)

where kg and kp are arbitrary (positive or negative),
real coefficients, anghg< pa, up< pa

then
A B C D
-B A -D C
0= —C D A _B (33)
-D -C B A

is a CO STBC of orderN=4n. If all coefficients /;= 1
for ¢ € Zy, then O is called square CO STBC without
Linear Processing (LP) (or just square CO STBC for short).
Otherwise O is considered as a square CO STBC with LP. If
(A + pB + po + pp)=p(N), thenO is a square, maximum
rate CO STBC of ordetn.

Proof: The proof of Theorem 2 is similar to the proof
of Theorem 1. ]



IV. EXAMPLES OF MAXIMUM RATE, SQUARE, ORDER-8
CO STBG WITH NO ZERO ENTRIES

In order to construct 88 CO STBCs of maximum rates
using the proposed methods in Theorems 1 and 2, the mdin
certain

task is to find two %2 sub-matrices which satisfy
properties. This is easier than findin% eight 8 weighting
matrices simultaneously as in the AOD approach [10].

Theorem 1 and Theorem 2, we construct here some

Usin
square(gjo STBCs of orderN=8 (with or without LP) with the
maximum number of variableg(8)=4. The sub-matrices\,
B, C, D are of ordern = 2 and each sub-matrix comprise
one variable. From Theorem 1 (correspondingly, Theorem

it is clear that the mostrucial task for constructing square CO

STBCs of orderdn in our proposed methods is to find twofOf @ny complex signal constel
Properties (2) ransmitted_via each transmit antenna during_ever
[

tgne slot. For these reasons, the proposed CO STBCs are
those conditions, and€ferred to as th@mproved, square CO STBCs

matricesA and B (A and C) satisfying the
and (3) in Theorem 1 S’heorem 2). We rea
matricesA, B, C, andD can satis

derive here some of those cases for illustration.

Example 1:The following sub-matrices satisfy Theorem 1:

_ s1 s1 ) . —S* S*
A= | % ]Bok[ T
—s% s ] .~ _ —si s
C = k| 2 B|iD=m| 0 3]
for anﬁlreal coefficientd;, (i =1...4). )
In this example,A is a variation of the Alamouti code

with only one variable, whileC and D are each of similar
form to B. Then,O in (13) satisfies?? 0=25"7 | k2|s;|*1g

and, consequently) is a maximum rate, square, order-8 CQ

STBC (with or without LP dependin% oR;). If k;=1, for
1=1,...,4, from (13), we have the following code:
51 51 —S5 55 —sj 55 —sj sh
—s7 5] So So S3 S3 Sa S4
55 —85 S1 S1 —84 S4 S3  —S3
* * * * * *
—S3 —Sz —S] S1 EN Sy —S3 —S3 (34)
S3  —S83 S4 —84 S1 S1 —S82 S92
—83 —S3 —S; —s5 —S] s7 s5 55
sy} —sp —S3 S3 S9  —So S1 S1
—54 —84 83  §3 —Sy —s3 —8] 8]
Examples with various other structures are given below.

Example 2: This example using Theorem

proposed methods. Let:

* *
S S S2  —382
= 1 1 |.B=
A kl[sl *51}’]3 kQ[SE 55 ]
s3 —S§ S84 —S
CcC = k3 |: SL:) 8*3 :| ,D = ]€4 |: Si 5*4 i|
3 3 4 4
If £, =1fori=1,...,4, from (13), we have the following
code:
s7 s1 S9 —S9 S3 —S83 S4 —S4
s1 —s1 S5 55 s§ 53 s4 54
—83 82 57 s7 s, —8; —S3 S
e S T Pt (S B B
—Si, 53* _54 34 81 81 32 —82
—S83 —S83 —S4 —S4 S1 —381 S92 S92
—54 81 sy —s3 —s5 sb s7 57
—S4 —S84 S3 S3 —8S9 —89 S1 —S81

We note that the CO STB@S in (4) can be derived from
our CO STBC in (35) by multiplying every
with j. However,G8 in (2§ itself does not follow our propose
structure as the sub-matricés and B in G8 do not satisfy
the second condition in Theorem 1. ]

Example 3: This example illustrates the case in Theorem
whereB andD are each of similar form to\:

s7  sF T sy s}
A = kl[si 7;1},37192[55 7§2]
_ s3 —83 ) _ S* S*
C = k|3 FD=r|d L]

—s sy —sk —sk
S 4 3 3
@II’I of the a%ove codes are

ze that vario

! ng . shows that the
CO STBC GS8 in (4) can be (indirectly) derived from our [4]

even row in (3?[11]

If k;, =1fori=1,...,4, from (33), we have the following
code:

s7 ST 55 55 s3  —s3 S 53

s —S1 Sy —S3 S 53 sS4  —8a

—89 —89 81 $1  —sp —S; S3 —S3

—s5 85 s]  —s] —Si1 S4 55 53 (36)

—83 83 Sa S4 s1 s]  —s2 —8

—s;3 —s3 sy —S; S1  —8 —85 S5

—S4 —S4 —S3 83 55 55 S1 S1

x sy —s2 S} *

—S
C square, maximum rate CO STBCs
order N=8 with a full de5|?n, i.e., without any zeros
ations. The power is equagyI
symbo

V. CONCLUSION

By modifying the Williamson and Wallis-Whiteman arrays
to app(? to complex matrices, we have progosed two new
methods of constructmg square, order-CO STBCs from
square, orderr CO STBCs which satisfy certain properties as
described in Theorems 1 and 2. )

Applying Theorems 1 and 2, we have constructed various
square, maximum rate, order-8 CO STBCs with no zeros.
In our CO STBCs, the transmitted symbols equally disperse
through transmit antennas with the consequence that the power
transmitted via each transmit antenna is equal during every
ymbol time slot. Additionally, our methods may be used to
design square CO STBCs of order 16 or 32 from square CO
STBCs of order 4 or 8, respectively, provided that there exist
sub-matrices satisfying the conditions of our theorems. The
construction of square CO STBCs of higher orders, such as
16 or 32, requires further study, and this is our future work.
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