A Voting-Based Technique for Acoustic Event-Specific Detection
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Introduction

Acoustic event detection has been an active research
topic during last few years. However, building an acous-
tic event detection system still remains a challenging
task. The difficulty stems from the large intra-class vari-
ations in terms of different temporal scales and sounds,
non-stationary background noise, and, especially, the na-
ture of overlapping events.

Several works attempted to address the problem. In gen-
eral, these employ simple frame-level presentations and a
variety of classification algorithms. Typically, individual
events are modelled as Hidden Markov Models (HMM),
and a speech recognition framework is employed to detect
them [4]. The audio segments can also be characterized
by the Gaussian population histograms derived from a
Gaussian Mixture Model (GMM), and the detection is
performed as classification task using GMMs [5]. In an-
other work, Support Vector Machines (SVM) are directly
used over feature vectors derived from audio signals [2].

In this work we introduce a novel concept of acoustic su-
perframe and how event detection can be accomplished
by recognition of superframes using a simple but efficient
class-specific voting scheme. We employ random forest
[3] to model the event superframes. After detection of in-
dividual event superframes, the detection hypotheses for
the events will correspond to majority voting from all su-
perframes. The evaluation on the UPC-TALP database
from CLEAR 2006 challenge [1] shows that our approach
outperforms the best system submitted to that challenge.

The concept of acoustic superframe

Given an audio signal, we divide it into interleaved 100
ms segments with 50% overlap. We call each of these
segments a superframe. Each superframe is divided into
small frames of 20 ms duration with 50% overlap. To
represent a frame, we utilized the acoustic feature set
suggested by [2] including (1) 16 frequency-filtered log
filter-bank energies, along with the first and second time
derivatives, and (2) the following set of features: zero-
crossing rate, short time energy, 4 sub-band energies,
spectral flux calculated for each sub-band, spectral cen-
troid, and spectral bandwidth. Totally, 60 features are
extracted for each frame. The mean and the standard
deviation of the frame representations are used to repre-
sent a superframe, resulting in 120-dimensional feature
vector. Each event is considered as a collection of super-
frames.

This concept can be seen as a mid-level representation
which is a trade-off between too noisy frame-wise and
too conservative event-wise representations. The super-
frames are invariant to temporal scale; therefore, we do

not have to deal with the scaling issue as event-wise rep-
resentation. On another hand, they help to reduce the
number of data samples generated compared to frame-
wise representation and, hence, facilitate the training and
testing process in terms of speed.

Random forest for superframe modelling

Since the number of superframes generated from the data
is very large, it leads to large-scale problems in both
training and testing. For the dataset used in experi-
ments, training and testing data contained 79,586 and
39,312 samples respectively. It is problematic for most
popular classification algorithms, such as SVM [6], espe-
cially when accompanied with non-linear kernels. Fortu-
nately, random forest [3] is particularly suitable for this
purpose since it is efficient for data with large number of
samples and dimensions. A random forest classifier con-
sists of a number of trees, each of which is grown using
some forms of randomization. The leaves of each tree are
labelled by estimates of the posterior distribution of all
categories. Each decisive node performs a test to best
split the data in feature space. A data sample is classi-
fied by sending it down every tree and aggregating the
reached leaf distribution.

Let {(xi,y:)}i=1,...n,, denote the training data where
z; € RP and y; € {0,...,C} denote the feature vec-
tor and label of the superframe 4, respectively. Ny, is
the cardinality of training data. D = 120 and C = 12
are the dimensionality and the number of event cate-
gories, respectively. The background is labelled as class
0. Since we want to detect an event by detecting its su-
perframes, for each event category, a one-vs-rest classifier
can be built to discriminate the superframes belonging
to this category from the rest. However, this strategy
is not preferable since the training data would be highly
skewed. Alternatively, we build two models: (1) a bi-
nary classifier to classify background superframes from
foreground superframes; (2) a multi-class classifier to
discriminate between superframes of different categories.
Since the background is quite different and easy to be dis-
tinguished from the events, it is reasonable to deal with
it first. Moreover, learning the multi-class classifier can
avoid dealing with extremely unbalanced training data.

Event-specific detection system

Let My, and Meyen: denote the binary background-vs-
foreground and multi-class event classifiers that have
been trained from training data. The pipeline of our
system is shown in Figure 1.

Given a testing signal, we divide it into V¢ superframes
as in Figure 1(a). Each superframe ¢ represented by fea-
ture vector z; € RP,i € {1,..., N} is firstly fed into



Table 1: Performance of event detection task

Our approach
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Figure 1: Superframe-based voting event detection system.

Myy. If the superframe is not classified as background,
it is subsequently inputted into Mc,epn: and is finally la-
belled as class ¢ € {1,...,C}. The classification pro-
cess is illustrated in Figure 1(b) whereas Figure 1(c) il-
lustrates the label sequence obtained by classifying the
superframes in Figure 1(a). As expected, the sequence
appears to be noisy due to the misclassification caused
by both My, and Meyent. We propose a simple voting
scheme to smooth the label sequence. At every super-
frame i we employ a window of length W centered at
i, as demonstrated in Figure 1(d) for the particular case
where ¢ = 1 and W = 5, and update its label by majority
voting of all superframes inside the window:

it

Y; = argmax Z Z(gk = c). 1)
cE{O,...,C} k‘:’b‘*%

In (1), §; denotes the resulting label after majority voting
and gy, is the predicted label outputted by random forest
classifiers. Z( = c¢) is the indicator function given by:

tw=a={o i pize O

The smoothed label sequence is shown in Figure 1(e).
Eventually, the subsequences of consecutive event super-
frames are considered as detection hypotheses.

Experiments

We test our approach on the UPC-TALP dataset of iso-
lated meeting-room acoustic events that were used in the
CLEAR 2006 evaluation [1]. It consists of three record-
ing sessions each of which was performed by the same
ten actors. The database contains 13 semantic classes:
knock (door, table); door open; door close; steps; chair
moving; spoon (cup jingle); paper work (listing, wrap-
ping); key jingle; keyboard typing; phone ringing/music;
applause; cough; and laughing. About 60 sounds per
class were recorded and no overlapping between events
was present. As in the CLEAR 2006 evaluation, twelve
classes (excluding door close), were evaluated and the
rest, including door close, speech, unknown events, and
silence were considered as background. We used data
from Session 1 and 2 for training and data from Session
3 for testing. Furthermore, only one channel was used in
our experiments.

kHz to 16 kHz and divided into superframes. Each su-
perframe was labelled as ¢ € {1,...,12} if it belonged to
the event category c. Otherwise, it was labelled as back-
ground. This generated training and testing data with
79,586 and 39,312 samples, respectively. Using random
forest [3], we built two models from training data: (1) a
binary classifier My, to classify background samples from
foreground samples; (2) a multi-class classifier Meyent to
tell apart event superframes of the 12 semantic classes.
For both models, we conservatively set the number of
trees to 500.

Following the steps described previously, we performed
event detection on the testing data with different win-
dows W = 5,10,15,20 which are equivalent to 0.5, 1,
1.5, and 2 seconds respectively. We use the same Acous-
tic Event Error Rate (AEER) which is given by

AEER = (D + 1+ S)/N, (3)

for evaluation, where NN is the number of events to detect,
D, I, and S correspond to deletion, insertion and substi-
tution errors. The detection results of our approach as
well as other systems reported in [1] are tabulated in Ta-
ble 1. As can be seen, our approach with W = 10, 15, 20
outperforms not only the two systems UPC-D and CMU-
D2 with a large margin but also the best system ITC-D2.

Conclusion

We introduced in this paper the concept of acoustic su-
perframe to represent an event as a collection of super-
frames and proposed a simple but efficient voting tech-
nique for acoustic event detection based on detection of
superframes. The performance evaluation on the UPC-
TALP database demonstrates the efficiency of our pro-
posed approach on event detection.
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