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ABSTRACT
In this paper a novel approach of initializing region-based active
contours using unimodality analysis is introduced. Two different
initialization methods using dip test and excess mass test to
adapt the initial radii of the active contours are developed. Both
methods are compared to state of the art methods and a method
which is based on kurtosis and dissimilarity (KDR). It is shown
that the excess mass method outperforms KDR and state of the art
methods for synthetic and real images for different noise setups
with respect to the overall accuracy and Cohen’s kappa of the
segmentation results.

Index Terms—active contours, initialization, dip test, unimodality,
multimodality, excess mass, overall accuracy, Cohen’s kappa, KDR,
segmentation

I. INTRODUCTION
Segmentation of a scene is still a challenging task and thus a

topic of current research. In 1988 Kass et al. introduced in [1] a
new segmentation method based on active contour models, also
called snakes, using local edge information. This segmentation
method was successfully applied for different applications in
[2], [3]. The problems caused by the edge detectors are their
sensitivity to noise and discontinuous boundaries in the image
as shown in [4]. They were first substituted by region-based
approaches in [5]. Related to the Mumford-Shah functional Chan
and Vese [4] developed an active contour model assuming that an
image is piecewise constant and Osher and Sethian [6] introduced
level sets that allow topological changes of the contours.
In [7], [8], [9], [10] geodesic active contour algorithms were
developed, for which the initialization step is not crucial. Bresson
et al. [11] introduced a fast global minimization of the active
contour model which is based on the combination of segmentation
and denoising without depending on initial contour positions.
Nevertheless most active contour algorithms need an appropri-
ate initialization of the starting contours. These contours have
significant influence on the segmentation result as it is shown in
[12]. The different initializations may lead to local minima of the
functional energy of the active contours and not to the desired
global minimum.
There exist only a few initialization methods in literature up to
now. The easiest and probably best initialization is done manually
by the user as described in [13], [14], [15]. Another common
method for initializing the active contours are seed contours
placed in a regular grid in the image [13], [16], [17] while no
adaptation of the grid pitch or initial contour size to image data
are made. We showed in [12] that an adaptation of the initial

radii of the active contours lead to more accurate segmentation
results. The proposed methods initialize the contours by using
two different unimodality measures. This approach is related to
the initialization method introduced by Ohliger et al. in [12].
The outline of the paper is as follows. After introducing our active
contour model in Section II and our image model in Section
III we derive two novel methods for adaptation of the initial
contours. In Section V experimental results on synthetic and real
images are discussed and finally we conclude in Section VI.

II. ACTIVE CONTOUR MODEL

The energy of a classical active contour (AC) model EAC (see
[1]) consists of an internal energy Eint and an external energy Eext

EAC (u,C) = Eint (C) + Eext (u,C) . (1)

Eint depends on the contour C only and forces the contour to
become smooth and Eext includes the influence of the function
u describing the image. We use a region-based AC model
introduced by [5] defining the energy of a single contour i

EAC,i (u,Ci, θi) =
μ

2
Length (Ci)

−
�

(x,y)∈Ri

ln P (u (x, y) | θi) dx dy. (2)

Ri is the region enclosed by contour Ci and θi contains the
statistical parameters describing a feature probability density
function of Ri. Length (Ci) is the length of the boundary curve
and μ a positive weighting factor for the smoothness term. The
segmentation is achieved by minimizing the energy of the contour
set C including P contours Ci

C̃ = arg min
Ci∈C

P∑
i=1

[
EAC (u,Ci, θi) + λ

]

= arg min
Ci∈C

P∑
i=1

⎡⎢⎢⎢⎢⎣μ2 Length (Ci) (3)

−
�

(x,y)∈Ri

ln P (u (x, y) | θi) dx dy + λ
⎤⎥⎥⎥⎥⎦.

λ is a positive constant for avoiding oversegmentation and C̃ is
the set of final contours.
The parameters θi are estimated based on the sampled image data
matrix U0 with dimension K x L. We assume that U0 contains M
different objects ω j with features (e.g. intensity values) that can
be described by unimodal Gaussian distributions N

(
μω j , σ

2
ω j

)
.
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μω j and σ2
ω j

are the feature means and variances of the respective
object. The parameters

θi = [θi0, θi1] = [μRi , σ
2
Ri

] (4)

of a unimodal Gaussian distribution N (θi0, θi1) for Region Ri are
estimated by

θi0 =

M∑
j=1

α ji · μω j (5)

and

θi1 ≈ NRi

NRi − 1

M∑
j=1

α ji

[
σ2
ω j
+
(
μRi − μω j

)2]
, (6)

while α ji describes the ratio of ω j outcomes in region Ri to com-
plete count of outcomes NRi of Ri. Due to the approximation of a
χ2 distribution included by the derivation of (6) the approximation
of the variance leads to good results for NRi >100.

III. IMAGE MODEL
In this section we introduce the image model used. As men-

tioned in Section II the undistorted image data U0 is assumed to
include M ∈ [2,K · L] different objects

u0 (k, l) =

M∑
j=1

fω j (k, l) , (7)

with k = 1, . . . ,K, l = 1, . . . , L, and

fω j (k, l) =
{

F j (k, l) k, l inside of ω j

0 otherwise. (8)

F j is described by

F j ∼ N
(
μω j , σ

2
ω j

)
. (9)

We extend our model (7) with additive noise N resulting in the
noisy image

U = U0 + N, (10)

while N is independent identically distributed noise. We con-
centrate on additive white Gaussian noise with zero mean and
variance σ2

n

Ng ∼ N
(
0, σ2

n

)
. (11)

IV. INITIALIZING THE CONTOURS
Our approach for selection of the initial contours (ICs) is based

on the analysis of the probability density function (pdf) of the
respective feature. According to our image model (10) the pdf
inside a contours Ci, which contains one single object, is expected
to be a unimodal Gaussian distribution distorted by noise. If a
region Ri includes more than one object the pdf is assumed to
have two or more modes. This assumption is valid if

∀ω j ,ωk∈Ri ∃ μ j � μk. (12)

Our image model also includes noise. This will lead to degraded
pdfs dependent on the energy and type of the noise. The
following sections introduce different statistical methods for
testing of multimodality. The initialization of the contours is

done by decreasing the starting initial contour with radius
r0 = d0/2 placed on a regular grid with spatial pitch d0 until
the multimodality measure of the respective method is less
than a threshold. We investigate in Section IV-A and Section
IV-B the behavior of two multimodality measures with respect
to multimodality and noise influence. The experiments were
made on a sample set including 100 samples and a mixture of
N1 (0.25, 0.01) and N2 (0.75, 0.01) while α1 = 1 − α2 describes
the relative sample count of N1. All experiments were repeated
100 times.

IV-A. Hartigan’s Dip Test Method (DT)
Hartigan and Hartigan introduced in [18] the dip test of

unimodality. The dip is defined as

D (F) = ρ (F,U) , (13)

while

ρ (F,G) = sup
x
|F (x) −G (x)| . (14)

F, G are bounded distribution functions and U is the class of
unimodal distribution functions. (13) leads to D (F) = 0 for F ∈ U
and to D (F) > 0 otherwise.

Multimodality: As shown in Fig. 1 the dip test for unimodality
leads to rejection rates greater than 85% if at least 30% of the
sample set are outcomes of the minor distribution (α2 ≥ 0.3). The
variance of the rejection rate decreases with α2.

Noise Dependency: The noise dependency of the dip test for
unimodality is shown in Fig. 2. The rejection rate is strongly
influenced by the additive Gaussian noise. The mean rejection
rate of an equal mixture (α1 = α2) decreases from approximately
1.0 to 0.3 by adding Gaussian noise with variance 4e-2 to the
sample set. This results in a need for a noise adaptive threshold
for the dip test.

IV-B. Excess Mass Method (EM)
In [19] Müller and Sawatzki introduced a new test for multi-

modality called excess mass test. The excess mass for a specified
level λ is defined as

E (λ) =
∫ (

f̂ (x) − λ
)+

dx (15)

representing the integrated probability mass exceeding the
Lebesgue density λ. For determining the excess mass of a
unimodal distribution, f̂ (x) is estimated by N

(
μ, σ2

)
while μ

and σ2 are the empirical mean and variance estimations.

EM (λ) = sup
M∑

i=1

∫
Ci(λ)

(
f̂ j (x) − λ

)+
dx, (16)

is the excess mass of a multimodal distribution containing M
modes. Ci (λ) is a cluster of connectivity components at level
λ and f̂ j (x) is the estimated unimodal distribution based on
the samples included in Ci (λ). The excess mass test between a
unimodal distribution and an M-modal distribution includes the
maximal excess mass difference

sup
λ

DM (λ) = sup
λ

(EM (λ) − E1 (λ)) . (17)
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Fig. 1. Empirically determined p-value using critical bandwidth esti-
mates for bimodal distributions depending on α2.
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Fig. 2. Empirically determined p-value using critical bandwidth esti-
mates for bimodal distributions depending on the noise variance σ2.

The excess mass test for multimodality succeeds if (17) exceeds a
specified threshold value. In our investigations we use the excess
mass test between a unimodal and bimodal distribution.

Multimodality: As shown in Fig. 1 the excess mass test lead
to high rejection rates p (α2) ≥ 0.9 for α2 ≥ 0.05. The variance of
the rejection rate is in our setup negligible. This behavior of the
rejection is expected to be a much better multimodality measure
than the dip test.

Noise Dependency: The noise dependency of the EM is, as
shown in Fig. 2, insignificant within the considered noise range.
Also the variance of the test is very low. Both characteristics are
expected to give a good measure for multimodality also for noisy
sample sets.

V. EXPERIMENTAL RESULTS
To evaluate the methods for contour initialization, the segmen-

tation results for a synthetic image fulfilling our image model
(10) and for two real images are compared. We use the overall
accuracy (OA) and Cohen’s kappa (κ) [20] as measures for the
accuracy of segmentation. The centers of the ICs are placed
on a regular grid with pitch d0, the initial radius is 0.5 · d0

the minimum radius is rmin.The parameter of the AC energy
(4) including λ and μ are fixed for each configuration of the
input image in order to provide comparability of the segmentation
results. Between the different images and different noise levels
the parameters are configured to provide accurate results. The

(a) (b) (c) (d)

Fig. 3. Row 1-3 (a): Synthetic image with noise σ2
n = 1e-8 (1), σ2

n = 4e-2
(2), σ2

n = 9e-2 (3); Row 4-5 (a): Real images with σ2
n = 4e-2; Column

(b)-(d) ICs of KDR (b), DT (c), and EM (d). Column (a) is scaled to
[0,1] and (b)-(d) are scaled to [0,0.8] excluding the contours. Row 1-3:
d0 = 30 and rmin = 5;Row 4-5: d0 = 50 and rmin = 5.

experimental results are focussing on the ICs selection and not
on the optimal parameter for energy minimization of the AC.

V-A. Synthetic Image

The synthetic image generated for evaluation of the different
methods contains three overlapping circular objects ω1, ω2, ω3,
and a background ωbg with the respective means μbg = 1, μ1 =

0.2, μ2 = 0.5, and μ3 = 0.8.
Fig. 3 shows the initialization of KDR, DT and EM methods.
Row 1 shows that even in an image with little noise the KDR
method leads to contours containing more than one object (e.g.
ω1 and ωbg) while DT and EM lead to accurate ICs. In row 2 and
3 KDR and DT lead to several inaccurate contours. The excess
mass method leads in all noise conditions to the best ICs with
the drawback of a lower contour count than for KDR and DT.
The accuracies of the segmentation results are listed in Table I.
The first row of Table I includes the best segmentation results
for a fixed r0 ∈ {5, 10, 15}. The segmentation resulting from EM
initialization performs best excluding κ at noise variance σ2

n =

4e−2 where it is similar to the best result (fixed r0 = 5). The KDR
lead to similar results for low noise setups while DT segmentation
was worst.
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TABLE I
Segmentation Accuracy for Synthetic and Real Images with Additive

Gaussian Noise

Synth. Synth. Synth. Real 1 Real 2
1e-8 4e-2 9e-2 4e-2 4e-2

OA κ OA κ OA κ OA κ OA κ

Fix 1.0 1.0 0.99 0.95 0.96 0.83 0.89 0.87 0.79 0.76
KDR 1.0 1.0 0.98 0.93 0.97 0.88 0.90 0.88 0.78 0.75
DT 1.0 1.0 0.97 0.89 0.95 0.81 0.90 0.88 0.76 0.72
EM 1.0 1.0 0.99 0.94 0.98 0.90 0.91 0.89 0.80 0.77

V-B. Real Images

The evaluation of the segmentation results for real images
was made on two different images of the Berkeley segmentation
dataset1 which were scaled to [0, 1] and distorted by additive
Gaussian noise with variance σ2

n = 4e-2. We expect the images
to be compatible to our image model. The segmentation reference
was also available in the dataset.
In Fig. 3 (row 4 and 5) the ICs for the different initialization meth-
ods are shown. Although the skies in both images are expected to
be unimodal rows 4 and 5 in Fig. 3 show that KDR and DT reject
many of ICs in this part. The EM method leads to a much better
initialization of the ACs. The accuracies of the segmentation
results are listed in Table I. The first row includes the best
segmentation results for a fixed r0 ∈ {5, 10, 15, 20, 25}. EM leads
to best results also for real images while the performances of
KDR and DT are similar.

VI. CONCLUSIONS

In this paper we introduced the DT and EM methods based
on the novel approach of initializing active contours utilizing
unimodality analysis. Both adapt the radii of the initial contours
driven by image data. They were evaluated against state of the
art initialization methods and the KDR method on synthetic and
real images containing additive Gaussian noise. The EM method
outperforms all other methods while the DT method leads to
similar results as the KDR method.
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