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Abstract

This paper addresses the joint design of transmitter and
receiver for multichannel data transmission over disper-
sive channels. The transmitter is assumed to consist of
FIR filters and the channel impulse response is allowed
to have arbitrary length. The design criterion is the
maximization of the information rate between transmit-
ter input and receiver output under the constraint of a
fixed transmit power. A link to minimum mean squared
error designs for a similar setting is established. The
proposed algorithm allows a straightforward transmit-
ter design and generally yields a near-optimum solu-
tion for the transmit filters. Under certain conditions,
the exact solution for the globally optimal transmitter is
obtained.

1 Introduction

The joint design of transmitter and receiver for data
transmission over dispersive channels has attracted nu-
merous researchers, as it has the potential to yield very
high throughput without the need of costly algorithms
on the receiver side, such as maximum likelihood se-
quence estimation with the Viterbi algorithm. The pro-
cess of shaping the transmit signal and/or introducing
redundancy based on the knowledge of the channel is
also known as precoding. Salz [1] provided a first solu-
tion to the joint transmit/receive filter design problem,
but it required the filters to have support within the first
Nyquist zone [�1=2T; 1=2T ]. Yang and Roy proposed
an algorithm for the design of precoders that use excess
bandwidth to introduce redundancy [2]. Their method
required an iteration to find the optimum solution. Xia
studied the existence of redundant precoders that allow
a perfect inversion of FIR channels with FIR receivers
[3]. The effects of noise were not considered in [3]. Di-
rect solutions to the joint design problem for the case
of block transforms with a sufficiently long guard inter-
val to avoid interblock interference (IBI) were provided
in [4–6]. The optimality criteria considered in [4] were

the zero forcing (ZF) and minimum mean squared er-
ror (MMSE) criteria. In [5] and [6] the maximization
of mutual information between transmitter and receiver
was studied, using results derived in [7]. A drawback
of the block transforms of [4–6] is that the length of
the guard interval needs to be at least equal to the chan-
nel order. This is the same problem as with the well-
known DMT and OFDM techniques [8,9]. To cope with
longer channel impulse responses one can increase the
length of the guard interval, but this will decrease the
efficiency, as less data symbols can be transmitted. In-
creasing both the length of the guard interval and the
number of subchannels allows one to maintain a de-
sired bandwidth efficiency, but this strategy also has its
limits, because the delay between transmitter and re-
ceiver may become unacceptably high. Li and Ding
provided a direct solution to the problem of minimiz-
ing the mean squared error (MSE) between transmitter
input and receiver output under the power constraint for
arbitrary channel lengths with overlapping blocks [10].
However, their solution generally yields IIR transmit
filters, which restricts the practical use of their exact so-
lution. An FIR approximation of the technique in [10]
was provided in [11]. Finally, transmitter design meth-
ods for the case where decision feedback receivers are
employed have been proposed in [7, 12, 13].

This paper addresses the design of FIR precoders
for the case where the channel impulse response has
arbitrary length. Note that this configuration is of
significant interest for practical applications, because
real-world channel impulse responses may become ex-
tremely long and the use of sufficiently long guard in-
tervals, as required for DMT, OFDM, or the methods in
[4–6], may be prohibitive due to delay constraints. Dur-
ing transmitter optimization an approximation is used
that allows us to simplify the objective function and ob-
tain a straightforward solution. ForL � N�M , where
L is the channel order,M is the number of subchannels,
and N is the upsampling factor in the transmitter, the
algorithm yields the exact optimum solutions of [5, 6],
and forL > N�M it leads to near optimum solutions.
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Figure 1: Redundant precoder.

The paper is organized as follows. Section 2 de-
scribes the input-output relationships of the considered
transmit/receive system. Section 3 then addresses the
maximization of the information rate through the choice
of optimal transmit and receive filters. Also a link to
MMSE designs for similar settings is established. Sec-
tion 4 demonstrates the properties of the proposed algo-
rithm in several examples, and finally Section 5 gives
some conclusions.

Notation. Vectors and matrices are printed in bold-
face. The superscripts f�gT , f�gH , f�g+ denote transpo-
sition, Hermitian transposition, and the pseudoinverse.
The determinant and trace of a matrix are denoted as j � j
and tr f�g, respectively. E f�g is the expectation opera-
tion.

2 System Description

A block diagram of the considered system is depicted
in Figure 1. The input stream x(m) is split into M par-
allel streams which are then upsampled by a factor of
N � M and fed into the M transmit filters with im-
pulse responses gk(n); k = 0; 1; : : : ;M�1. The chan-
nel is described by its impulse response c(n) and an ad-
ditive, data independent, zero-mean, stationary, Gaus-
sian noise process �(n). The receive signal is filtered
with the analysis filters hk(n), k = 0; 1; : : : ;M � 1
and subsampled by N to yield the parallel output data
yk(m). Finally, a parallel-to-serial conversion yields
the output sequence y(n).

For further analysis it is advantageous to de-
compose the filters into their polyphase compo-
nents and to describe the system as a multiple-
input multiple-output (MIMO) system as depicted in
Figure 2. The input vector at time m is given
by x(m) = [x0(m); x1(m); : : : ; xM�1(m)]T with
xk(m) = x(mM�k). Accordingly, the output process
y(m) is defined as y(m) = [y0(m); : : : ; yM�1(m)]T .
The transmit filter bank can be described via its N�M
polyphase matrix [14]

G(z) =

2
64

G00(z) : : : GM�1;0(z)
...

...
G0;N�1(z) : : : GM�1;N�1(z)

3
75 (1)

where Gk;`(z) is the `th polyphase component of the
kth transmit filter, given by

Gk;`(z) =
X

n
gk(nN + `) z�n: (2)

Alternatively, G(z) may be expressed as G(z) =P
nGnz

�n with [Gn]`;k = gk(nN+`) where [Gn]`;k
denotes the element of [Gn] at position `; k.

The polyphase matrix of the receiver filter bank is
given by

H(z) =
X

n
Hnz

�n

=

2
64

H 0
00(z) : : : H 0

0;N�1(z)
...

...
H 0
M�1;0(z) : : : H 0

M�1;N�1(z)

3
75
(3)

with

H 0
k;`(z) =

P
n hk(nN +N � 1� `) z�n;

[Hn]k;` = hk(nN +N � 1� `):
(4)

The channel can be described via the pseudo-
circulant N �N matrix

C(z) =

2
6664

C0(z) z�1CN�1(z) : : : z�1C1(z)
C1(z) C0(z) : : : z�1C2(z)

...
. . .

...
CN�1(z) CN�2(z) : : : C0(z)

3
7775
(5)

with C`(z) =
P

n c(nN + `) z�n. Alternatively,C(z)
can be written as a polynomial of matrices:

C(z) =
X

k
z�k Ck: (6)

The often desired (zero forcing) property

y(n) = x(n� n0) (7)

is obtained in the noise free case ifH(z) andG(z) are
chosen such that the perfect reconstruction (PR) condi-
tion

H(z)C(z)G(z) = z�n0+1IM�M (8)

holds. Conditions to satisfy (7) for a given channel c(n)
are for example discussed in [3, 4].
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Figure 2: Redundant precoder in polyphase (MIMO) representation.

3 Maximizing Information Rate

In this section we address the problem of maximizing
the information rate through the choice of the transmit
and receive filters. We will first consider a straightfor-
ward matrix model, similar to block transforms, and
will show for this model that the mutual information
can be expressed via the error covariance matrix of
MMSE receive filters. Using this fact, an algorithm for
determining optimal FIR transmit filters is presented.

3.1 A General Expression for Mutual
Information

The mutual information between a block of input sym-
bols, x, and a block of output symbols, y, of a
transceiver is defined as I0(x;y) = H(x) � H(xjy)
where H(x) is the entropy of x and H(xjy) is the con-
ditional entropy of x given y [15]. We define a normal-
ized mutual information as

I(x;y) =
1

N
[H(x)�H(xjy)] (9)

where N is the upsampling factor in Figure 1. The
length of x is M with M � N , and the length of y will
be defined as needed. It is known that I(x;y) becomes
maximal if x is Gaussian [15], and therefore we will
assume Gaussian processes henceforth. For this case it
was shown in [7] that

I(x;y) =
1

N
log2

 
jRxxj
jR?

xjyj

!
(10)

with
R?
xjy = Rxx �RxyR

�1
yyRyx (11)

and Rxx = E
�
xxH

	
, Rxy = RH

yx = E
�
xyH

	
,

Ryy = E
�
yyH

	
.

We now consider the model

y =H[CGx+ n] (12)

where the matrices G;C;H describe the transmitter,
channel, and receiver, respectively, and vector n de-
scribes additive noise. At this point, no assumptions

are made about the size of vectors and matrices in (12)
and the type of noise. With (12) one obtains forR?

xjy

R?
xjy = Rxx �RxxG

HCHHH�
�[H(CGRxxG

HCH +Rnn)H
H ]�1�

�HCGRxx;

(13)

withRnn = E
�
nnH

	
. By using the pseudoinverse of

R?
xjy given by

(R?
xjy)

+ = R+
xx +

+ GHCHHH [HRnnH
H ]�1HCG

(14)
the quantity I(x;y) can be alternatively expressed as

I(x;y) =
1

N
log2

��Rxx (R
?
xjy)

+
��: (15)

Note that the expression (14) for (R?
xjy)

+ includes the
shaping of the transmit signal with matrix G and the
influence of the receive filters in matrix H. A similar
expression for mutual information has been derived in
[7], but for the simpler modely = Cx+nwithn being
white noise. Using the results of [7] and a model similar
to (12), but without possible interblock interference, a
related expression has also been obtained in [5].

3.2 Incorporating the Filterbank Model

Now let the model (12) describe the filterbank
transceiver of Section 2 with x := x(m) and y :=
y(m � n0). The columns of matrixG are the transmit
filter impulse responses, and the channel matrix C has
the structure

C =

2
6664
c(0) 0 0 0 : : : 0
c(1) c(0) 0 0 : : : 0
c(2) c(1) c(0) 0 : : : 0

...
...

...
. . .

...

3
7775 : (16)

The size ofC depends on the lengths of the transmit fil-
ters and the channel. C may even be of infinite dimen-
sion, and similarly, the vector v = CGx+n observed
at the channel output may be of infinite length. How-
ever, both x and y are of length M . The noise process



n contains the additive channel noise and the IBI from
other data blocks.

In the following we show that the optimal receive
matrixH has the structure

H =XGHCHR�1
nn (17)

with an arbitrary, full-rankM �M matrixX. Depend-
ing on X one obtains, for example, the ZF or MMSE
receive filters. Inserting (17) into (14) and rearranging
the obtained expression yields

(R?
xjy)

+ = R+
xx +GHCHR�1

nnCG: (18)

Note that (18) is independent of X. Obviously,
(R?

xjy)
+ according to (18) is the same as the ma-

trix (R?
xjv)

+, which relates to the conditional entropy
H(xjv) based on the observation v. Because of
H(xjy) � H(xjv), we can conclude that any matrix
H of the form (17) maximizes the mutual information.
Thus, due to the structure of H in (17) this means that
the optimal receive filters are “matched filters”, given
by the termGHCHR�1

nn , followed by an arbitrary, full-
rank matrix operationX. Through the choice ofX one
can obtain, for example, the optimal zero forcing and
MMSE solutions.

Interestingly, the matrix (R?
xjy) is the same as the

error correlation matrix

R?
xjy := Ree = E

�
(y � x)(y � x)H	

for the case of linear MMSE estimation of x from the
noisy observation v.1 This observation has also been
made in [7]. For the filterbank transceivers considered
in this papers it means that we can concentrate on min-
imizing the determinant of the error correlation matrix
in the presence of an MMSE receive filterbank. To sim-
plify the notation we assume white channel noise with
variance �2� and white data x(n) with variance �2x. The
incorporation of nonwhite data and noise processes is
straightforward.

For further derivations, the expression (18) for
(R?

xjy)
+ is not very convenient, as it contains the in-

verse correlation matrix of the noise which is comprised
of channel noise and IBI. Knowing that we need the
error correlation matrix of MMSE estimation we can
alternatively use the expression obtained in [11] for
MMSE precoders:

Ree =
1

2�

Z �

��

�2x

h
IM�M+

+
�2x
�2�
GH(ej!)

hX
k
Rcc(k)e

�j!k
i
G(ej!)

i�1
d!

(19)
where

Rcc(k) =
X

`
CH
` C`+k: (20)

1Introductions to linear estimation theory can be found in [16].

3.3 Using FIR transmit filters

To minimize the transmitter complexity and system de-
lay, we assume transmit filters of length N where N is
the upsampling factor in Figure 1. For this filter length
we haveG(z) =G0 and obtain

Ree =
1

2�

Z �

��

�2x

h
IM�M

+
�2x
�2�
GH
0

hX
k
Rcc(k)e

�j!k
i
G0

i�1
d!:

(21)
The next step is to approximate (21) by a simpler

expression. Because the summation terms for k 6= 0
in (21) relate to IBI we choose G0 from a subspace
such that the terms GH

0 Rcc(k)G0 for k 6= 0 become
so small that they can be neglected in (21). To deter-
mine a suitable subspace for the choice of G0 we em-
ploy an iterative procedure based on the singular value
decomposition (svd). We do not explicitly formulate a
basis for the required subspace, and rather consider a
projection P that projects onto the required subspace.

The algorithm is as follows:
Step 1: Let P = IN�N

Step 2: Compute the svd’s

Ak�kB
H
k = PH

Rcc(k)P

for all k 6= 0 for whichRcc(k) 6= 0.

Step 3: Determine the largest singular value for k 6= 0
and denote it as �max. Assuming that �max is con-
tained in matrix�K denote the corresponding col-
umn ofAK as a.

Step 4: If rank(P ) > M and �max > 0 set

P := [IN�N � aaH ]P

and go back to Step 2. Otherwise, end the algo-
rithm.

When incorporating the projection matrix P , the er-
ror correlation matrix can be approximated by

~Ree = �2x

h
IM�M +

�2x
�2�
GH
0 P

H
Rcc(0)PG0

i�1
;

(22)
and the normalized mutual information can thus be ap-
proximated as

�I(x;y) =
1

N
log2(jM j) (23)

with

M =
h
IM�M +

�2x
�2�
GH
0 P

H
Rcc(0)PG0

i
: (24)



According to Hadamard’s inequality [15], M must be
diagonal in order to maximize jM j under the transmit
power constraint

�2x tr
�
G0G

H
0

	
= N � P0: (25)

This means that the columns of G0 have to be scaled
eigenvectors of P H

Rcc(0)P . We now consider the
eigendecompositions

PH
Rcc(0)P = U�UH (26)

and
G0G

H
0 = UQUH (27)

with
�=diag [�1; : : : ; �N ] (28)

and
Q=diag [q1; : : : ; �N ] (29)

where the eigenvalues �i are assumed to be sorted such
that �i � �i + 1. Note that some of the eigenvalues �i
may be zero and that only the first M values q1; : : : ; qM
are non-zero. Using (26) and (27) the mutual informa-
tion �I(x;y) according to (23) and (24) can be rewritten
as

�I(x;y) =
1

N

MX
i=1

log2(1 +
�2x
�2�

�iqi) (30)

A standard Lagrange optimization, similar to [5, 7],
yields

qi = max(c� �2�
�2x�i

; 0) (31)

where c is to be determined from the power constraint
(25). As one can see in (31), the optimal values q i obey
the waterpouring distribution. Assuming thatM is cho-
sen such that qi, i = 1; : : : ;M are nonzero, the transmit
filters finally become

G0 = �U diag [
p
q1; : : : ;

p
qM ] (32)

where �U contains theM eigenvectors that belong to the
largest eigenvalues �1; : : : ; �M . A comparison with the
solution in [11] shows that maximizing the information
rate and minimizing the overall MSE leads to the same
transmit filters, but with different power loading factors
qi, i = 1; : : : ;M . Moreover, it is straightforward to
show that if the channel order L is smaller or equal to
N �M we have �I(x;y) = I(x;y), and the proposed
algorithm yields the solutions of [5, 6].

4 A Design Example

We demonstrate the performance of the precoder design
algorithm using a simple example where significant IBI
between adjacent data blocks occurs. The chosen pa-
rameters are L = 6, N = 16, M = 14, and the Eb=N0
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Figure 3: Channel frequency response and transmit
power spectra.

ratio at the receiver input is set to 20dB. The chan-
nel impulse response is c(n) = [1; 1; 1; 1; 1; 1; 1].
Note that all channel zeros lie on the unit circle of the
z-plane. The frequency response of the channel is de-
picted in Figure 3, together with the transmit power
spectra for the following two precoder design meth-
ods: (i) the MMSE precoder of [11] and (ii) the pre-
coder maximizing information rate proposed in this pa-
per. The comparison between the two power spectra
shows that the MMSE precoder tends to spend power in
frequency bands where the channel gain is low, whereas
the precoder maximizing information rate reduces the
transmit power for such frequencies.

Figure 4 shows the obtained SNR’s at the receiver
output for the two design methods. One can see that
maximizing the information rate yields several sub-
channels with very good SNR and a few with poor
SNR. The MMSE design, on the other hand, tries to up-
hold all SNR’s in order to minimize the MSE. The ob-
tained normalized information rates are 3.49 bit/symbol
for the MMSE design and 3.84 bit/symbol when maxi-
mizing �I(x;y).

When reducing the number of subchannels to M =
10, all IBI vanishes, and the design method becomes
equivalent to the ones in [5,6]. However, the maximum
normalized mutual information is only 3.47 bit/symbol
for this case, which shows that allowing IBI has the
potential to improve performance compared to block
transmission.

5 Conclusions

A method for the joint design of transmitter and re-
ceiver for data transmission over dispersive channels
has been presented. The proposed method maximizes
the information rate and can treat the practically impor-
tant case where the transmitter is FIR and the channel



0 5 10 15
0

5

10

15

20

25

30

dB

channel index

MMSE
max. Info.

Figure 4: Signal to noise ratios it subchannels at the
receiver output.

has arbitrary length. This allows for low latency trans-
mission over dispersive channels. Design examples
have confirmed the effectiveness of the design method.
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